Duret L, Chureau C, Samain S, Weissenbach J, Avner P: The Xist RNA gene evolved in eutherians by pseudogenization of a protein-coding gene. Science. 2006, 312 (5780): 1653-1655. 10.1126/science.1126316.
Article
CAS
PubMed
Google Scholar
Choi IG, Kim SH: Global extent of horizontal gene transfer. Proc Natl Acad Sci USA. 2007, 104 (11): 4489-4494. 10.1073/pnas.0611557104.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gilbert C, Schaack S, Pace JK, Brindley PJ, Feschotte C: A role for host-parasite interactions in the horizontal transfer of transposons across phyla. Nature. 2010, 464 (7293): 1347-1350. 10.1038/nature08939.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim DS, Lee Y, Hahn Y: Evidence for bacterial origin of heat shock RNA-1. RNA. 2010, 16 (2): 274-279. 10.1261/rna.1879610.
Article
PubMed
PubMed Central
Google Scholar
Friesen TL, Stukenbrock EH, Liu Z, Meinhardt S, Ling H, Faris JD, Rasmussen JB, Solomon PS, McDonald BA, Oliver RP: Emergence of a new disease as a result of interspecific virulence gene transfer. Nat Genet. 2006, 38 (8): 953-956. 10.1038/ng1839.
Article
CAS
PubMed
Google Scholar
Rumpho ME, Worful JM, Lee J, Kannan K, Tyler MS, Bhattacharya D, Moustafa A, Manhart JR: Horizontal gene transfer of the algal nuclear gene psbO to the photosynthetic sea slug Elysia chlorotica. Proc Natl Acad Sci USA. 2008, 105 (46): 17867-17871. 10.1073/pnas.0804968105.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmitt I, Lumbsch HT: Ancient Horizontal Gene Transfer from Bacteria Enhances Biosynthetic Capabilities of Fungi. PLoS ONE. 2009, 4 (2): e4437-10.1371/journal.pone.0004437.
Article
PubMed
PubMed Central
Google Scholar
Moran NA, Jarvik T: Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science. 2010, 328 (5978): 624-627. 10.1126/science.1187113.
Article
CAS
PubMed
Google Scholar
Koonin EV, Makarova KS, Aravind L: Horizontal gene transfer in prokaryotes: quantification and classification. Annu Rev Microbiol. 2001, 55: 709-742. 10.1146/annurev.micro.55.1.709.
Article
CAS
PubMed
Google Scholar
Gogarten JP, Doolittle WF, Lawrence JG: Prokaryotic evolution in light of gene transfer. Mol Biol Evol. 2002, 19 (12): 2226-2238.
Article
CAS
PubMed
Google Scholar
Ochman H, Lawrence JG, Groisman EA: Lateral gene transfer and the nature of bacterial innovation. Nature. 2000, 405 (6784): 299-304. 10.1038/35012500.
Article
CAS
PubMed
Google Scholar
Garcia-Vallvé S, Romeu A, Palau J: Horizontal gene transfer in bacterial and archaeal complete genomes. Genome Res. 2000, 10 (11): 1719-25. 10.1101/gr.130000.
Article
PubMed
PubMed Central
Google Scholar
Treangen TJ, Rocha EPC: Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes. PLoS Genet. 2011, 7 (1): e1001284-10.1371/journal.pgen.1001284.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andersson JO: Lateral gene transfer in eukaryotes. Cell Mol Life Sci. 2005, 62: 1182-1197. 10.1007/s00018-005-4539-z.
Article
CAS
PubMed
Google Scholar
Keeling PJ, Palmer JD: Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet. 2008, 9 (8): 605-618. 10.1038/nrg2386.
Article
CAS
PubMed
Google Scholar
Yoshida S, Maruyama S, Nozaki H, Shirasu K: Horizontal gene transfer by the parasitic plant Striga hermonthica. Science. 2010, 328 (5982): 1128-10.1126/science.1187145.
Article
CAS
PubMed
Google Scholar
Dunning Hotopp JC: Horizontal gene transfer between bacteria and animals. Trends Genet. 2011, 27 (4): 157-163. 10.1016/j.tig.2011.01.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Daimon T, Katsuma S, Iwanaga M, Kang WK, Shimada T: The BmChi-h gene, a bacterial-type chitinase gene of Bombyx mori, encodes a functional exochitinase that plays a role in the chitin degradation during the molting process. Insect Biochem Mol Biol. 2005, 35 (10): 1112-1123. 10.1016/j.ibmb.2005.05.005.
Article
CAS
PubMed
Google Scholar
Daimon T, Taguchi T, Meng Y, Katsuma S, Mita K, Shimada T: β-fructofuranosidase genes of the silkworm, Bombyx mori: insights into enzymatic adaptation of B. mori to toxic alkaloids in mulberry latex. J Biol Chem. 2008, 283 (22): 15271-15279. 10.1074/jbc.M709350200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meng Y, Katsuma S, Mita K, Shimada T: Abnormal red body coloration of the silkworm, Bombyx mori, is caused by a mutation in a novel kynureninase. Genes Cells. 2009, 14 (2): 129-140. 10.1111/j.1365-2443.2008.01257.x.
Article
CAS
PubMed
Google Scholar
Keeling PJ: Functional and ecological impacts of horizontal gene transfer in eukaryotes. Curr Opin Genet Dev. 2009, 19 (6): 613-619. 10.1016/j.gde.2009.10.001.
Article
CAS
PubMed
Google Scholar
Dunning Hotopp JC, Clark ME, Oliveira DC, Foster JM, Fischer P, Muñoz Torres MC, Giebel JD, Kumar N, Ishmael N, Wang S, Ingram J, Nene RV, Shepard J, Tomkins J, Richards S, Spiro DJ, Ghedin E, Slatko BE, Tettelin H, Werren JH: Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science. 2007, 317 (5845): 1753-1756. 10.1126/science.1142490.
Article
CAS
PubMed
Google Scholar
Nikoh N, Tanaka K, Shibata F, Kondo N, Hizume M, Shimada M, Fukatsu T: Wolbachia genome integrated in an insect chromosome: evolution and fate of laterally transferred endosymbiont genes. Genome Res. 2008, 18 (2): 272-280. 10.1101/gr.7144908.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klasson L, Kambris Z, Cook PE, Walker T, Sinkins SP: Horizontal gene transfer between Wolbachia and the mosquito Aedes aegypti. BMC Genomics. 2009, 10: 33-10.1186/1471-2164-10-33.
Article
PubMed
PubMed Central
Google Scholar
Nikoh N, Nakabachi A: Aphids acquired symbiotic genes via lateral gene transfer. BMC Biology. 2009, 7: 12-10.1186/1741-7007-7-12.
Article
PubMed
PubMed Central
Google Scholar
Nikoh N, McCutcheon JP, Kudo T, Miyagishima SY, Moran NA, Nakabachi A: Bacterial genes in the aphid genome: absence of functional gene transfer from Buchnera to its host. PLoS Genet. 2010, 26 (2): e1000827-
Article
Google Scholar
Mita K, Morimyo M, Okano K, Koike Y, Nohata J, Kawasaki H, Kadono-Okuda K, Yamamoto K, Suzuki MG, Shimada T, Goldsmith MR, Maeda S: The construction of an EST database for Bombyx mori and its application. Proc Natl Acad Sci USA. 2003, 100 (24): 14121-14126. 10.1073/pnas.2234984100.
Article
PubMed
PubMed Central
Google Scholar
Zhu B, Lou MM, Xie GL, Zhang GQ, Zhou XP, Li B, Jin GL: Horizontal gene transfer in silkworm, Bombyx mori. BMC Genomics. 2011, 12: 248-10.1186/1471-2164-12-248.
Article
PubMed
PubMed Central
Google Scholar
Marcet-Houben M, Gabaldón T: Acquisition of prokaryotic genes by fungal genomes. Trends Genet. 2010, 26 (1): 5-8. 10.1016/j.tig.2009.11.007.
Article
CAS
PubMed
Google Scholar
Stanhope MJ, Lupas A, Italia MJ, Koretke KK, Volker C, Brown JR: Phylogenetic analyses do not support horizontal gene transfers from bacteria to vertebrates. Nature. 2001, 411 (6840): 940-944. 10.1038/35082058.
Article
CAS
PubMed
Google Scholar
Salzberg SL, White O, Peterson J, Eisen JA: Microbial genes in the human genome: lateral transfer or gene loss?. Science. 2001, 292 (5523): 1903-1906. 10.1126/science.1061036.
Article
CAS
PubMed
Google Scholar
Genereux DP, Logsdon JM: Much ado about bacteria-to-vertebrate lateral gene transfer. Trends Genet. 2003, 19 (4): 191-195. 10.1016/S0168-9525(03)00055-6.
Article
CAS
PubMed
Google Scholar
Duan J, Li R, Cheng D, Fan W, Zha X, Cheng T, Wu Y, Wang J, Mita K, Xiang Z, Xia Q: SilkDB v2.0: a platform for silkworm (Bombyx mori) genome biology. Nucleic Acids Res. 2010, 38 (suppl 1): D453-D456.
Article
CAS
PubMed
PubMed Central
Google Scholar
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25 (17): 3389-3402. 10.1093/nar/25.17.3389.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32 (5): 1792-1797. 10.1093/nar/gkh340.
Article
CAS
PubMed
PubMed Central
Google Scholar
Felsenstein J: PHYLIP--Phylogeny Inference Package (Version 3.2). Cladistics. 1989, 5: 164-166.
Google Scholar
Gascuel O: BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol. 1997, 14 (7): 685-695.
Article
CAS
PubMed
Google Scholar
Higgins DG, Thompson JD, Gibson TJ: Using CLUSTAL for multiple sequence alignments. Methods Enzymol. 1996, 226: 383-402.
Article
Google Scholar
Tamura K, Dudley J, Nei M, Kumar S: MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol. 2007, 24 (8): 1596-1599. 10.1093/molbev/msm092.
Article
CAS
PubMed
Google Scholar
Abascal F, Zardoya R, Posada D: ProtTest: selection of best-fit models of protein evolution. Bioinformatics. 2005, 21 (9): 2104-2105. 10.1093/bioinformatics/bti263.
Article
CAS
PubMed
Google Scholar
Huelsenbeck JP, Ronquist F: MRBAYES: bayesian inference of phylogenetic trees. Bioinformatics. 2001, 17 (8): 754-755. 10.1093/bioinformatics/17.8.754.
Article
CAS
PubMed
Google Scholar
Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003, 52 (5): 696-704. 10.1080/10635150390235520.
Article
PubMed
Google Scholar
The Nasonia Genome Working Group: Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science. 2010, 327 (5963): 343-348. 10.1126/science.1178028.
Article
PubMed Central
Google Scholar
Munoz-Torres MC, Reese JT, Childers CP, Bennett AK, Sundaram JP, Childs KL, Anzola JM, Milshina N, Elsik CG: Hymenoptera Genome Database: integrated community resources for insect species of the order Hymenoptera. Nucleic Acids Res. 2011, 39 (suppl 1): D658-D662.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xia Q, Cheng D, Duan J, Wang G, Cheng T, Zha X, Liu C, Zhao P, Dai F, Zhang Z, He N, Zhang L, Xiang Z: Microarray-based gene expression profiles in multiple tissues of the domesticated silkworm, Bombyx mori. Genome Biol. 2007, 8 (8): R162-10.1186/gb-2007-8-8-r162.
Article
PubMed
PubMed Central
Google Scholar
Faulkner P: A hexose-l-phosphatase in silkworm blood. Biochem J. 1955, 60 (4): 590-596.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee DC, Cottrill MA, Forsberg CW, Jia Z: Functional insights revealed by the crystal structures of Escherichia coli Glucose-1-phosphatase. J Biol Chem. 2003, 278 (33): 31412-31418. 10.1074/jbc.M213154200.
Article
CAS
PubMed
Google Scholar
Shi L, Liu JF, An XM, Liang DC: Crystal structure of glycerophosphodiester phosphodiesterase (GDPD) from Thermoanaerobacter tengcongensis, a metal ion-dependent enzyme: Insight into the catalytic mechanism. Proteins. 2008, 72 (1): 280-288. 10.1002/prot.21921.
Article
CAS
PubMed
Google Scholar
Liu Y, Thoden JB, Kim J, Berger E, Gulick AM, Ruzicka FJ, Holden HM, Frey PA: Mechanistic roles of tyrosine 149 and serine 124 in UDP-galactose 4-epimerase from Escherichia coli. Biochemistry. 1997, 36 (35): 10675-10684. 10.1021/bi970430a.
Article
CAS
PubMed
Google Scholar
Ilari A, Bonamore A, Franceschini S, Fiorillo A, Boffi A, Colotti G: The X-ray structure of N-methyltryptophan oxidase reveals the structural determinants of substrate specificity. Proteins. 2008, 71 (4): 2065-2075. 10.1002/prot.21898.
Article
CAS
PubMed
Google Scholar
Thorn JM, Barton JD, Dixon NE, Ollis DL, Edwards KJ: Crystal structure of Escherichia coli QOR quinone oxidoreductase complexed with NADPH. J Mol Biol. 1995, 249 (4): 785-799. 10.1006/jmbi.1995.0337.
Article
CAS
PubMed
Google Scholar
Shimomura Y, Kakuta Y, Fukuyama K: Crystal structures of the quinone oxidoreductase from Thermus thermophilus HB8 and its complex with NADPH: implication for NADPH and substrate recognition. J Bacteriol. 2003, 185 (14): 4211-4218. 10.1128/JB.185.14.4211-4218.2003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pauchet Y, Wilkinson P, Vogel H, Nelson DR, Reynolds SE, Heckel DG, ffrench-Constant RH: Pyrosequencing the Manduca sexta larval midgut transcriptome: messages for digestion, detoxification and defence. Insect Mol Biol. 2010, 19 (1): 61-75. 10.1111/j.1365-2583.2009.00936.x.
Article
CAS
PubMed
Google Scholar
Papanicolaou A, Gebauer-Jung S, Blaxter ML, Owen McMillan W, Jiggins CD: ButterflyBase: a platform for lepidopteran genomics. Nucl Acids Res. 2008, 36 (suppl 1): D582-D587.
CAS
PubMed
PubMed Central
Google Scholar
Regier JC, Zwick A, Cummings MP, Kawahara AY, Cho S, Weller S, Roe A, Baixeras J, Brown JW, Parr C, Davis DR, Epstein M, Hallwachs W, Hausmann A, Janzen DH, Kitching IJ, Solis MA, Yen SH, Bazinet AL, Mitter C: Toward reconstructing the evolution of advanced moths and butterflies (Lepidoptera: Ditrysia): an initial molecular study. BMC Evol Biol. 2009, 9: 280-10.1186/1471-2148-9-280.
Article
PubMed
PubMed Central
Google Scholar
Grimont PAD, Grimont F: The Genus Serratia. Annu Rev Microbiol. 1978, 32: 221-248. 10.1146/annurev.mi.32.100178.001253.
Article
CAS
PubMed
Google Scholar
Jander G, Rahme LG, Ausubel FM: Positive Correlation between Virulence of Pseudomonas aeruginosa Mutants in Mice and Insects. J Bacteriol. 2000, 182 (13): 3843-3845. 10.1128/JB.182.13.3843-3845.2000.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock RE, Lory S, Olson MV: Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature. 2000, 406 (6799): 959-964. 10.1038/35023079.
Article
CAS
PubMed
Google Scholar
Duchaud E, Rusniok C, Frangeul L, Buchrieser C, Givaudan A, Taourit S, Bocs S, Boursaux-Eude C, Chandler M, Charles JF, Dassa E, Derose R, Derzelle S, Freyssinet G, Gaudriault S, Médigue C, Lanois A, Powell K, Siguier P, Vincent R, Wingate V, Zouine M, Glaser P, Boemare N, Danchin A, Kunst F: The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nat Biotechnol. 2003, 21 (11): 1307-1313. 10.1038/nbt886.
Article
CAS
PubMed
Google Scholar
Vallet-Gely I, Lemaitre B, Boccard F: Bacterial strategies to overcome insect defences. Nat Rev Microbiol. 2008, 6 (4): 302-313. 10.1038/nrmicro1870.
Article
CAS
PubMed
Google Scholar
Wilkinson P, Waterfield NR, Crossman L, Corton C, Sanchez-Contreras M, Vlisidou I, Barron A, Bignell A, Clark L, Ormond D, Mayho M, Bason N, Smith F, Simmonds M, Churcher C, Harris D, Thompson NR, Quail M, Parkhill J, Ffrench-Constant RH: Comparative genomics of the emerging human pathogen Photorhabdus asymbiotica with the insect pathogen Photorhabdus luminescens. BMC Genomics. 2009, 10: 302-10.1186/1471-2164-10-302.
Article
PubMed
PubMed Central
Google Scholar
Gaspar F, Teixeira N, Rigottier-Gois L, Marujo P, Nielsen-LeRoux C, Crespo MT, Lopes Mde F, Serror P: Virulence of Enterococcus faecalis dairy strains in an insect model: the role of fsrB and gelE. Microbiology. 2009, 155 (Pt 11): 3564-3571.
Article
CAS
PubMed
Google Scholar
Hanin A, Sava I, Bao Y, Huebner J, Hartke A, Auffray Y, Sauvageot N: Screening of in vivo activated genes in Enterococcus faecalis during insect and mouse infections and growth in urine. PLoS One. 2010, 5 (7): e11879-10.1371/journal.pone.0011879.
Article
PubMed
PubMed Central
Google Scholar
Corpe WA, Rheem S: Ecology of the methylotrophic bacteria on living leaf surfaces. FEMS Microbiol Ecol. 1989, 62: 243-250. 10.1111/j.1574-6968.1989.tb03698.x.
Article
CAS
Google Scholar
Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, Schlapbach R, von Mering C, Vorholt JA: Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci USA. 2009, 106 (38): 16428-16433. 10.1073/pnas.0905240106.
Article
CAS
PubMed
PubMed Central
Google Scholar
Werren JH, Windsor DM: Wolbachia infection frequencies in insects: evidence of a global equilibrium?. Proc Biol Sci. 2000, 267 (1450): 1277-1285. 10.1098/rspb.2000.1139.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fenn K, Conlon C, Jones M, Quail MA, Holroyd NE, Parkhill J, Blaxter M: Phylogenetic relationships of the Wolbachia of nematodes and arthropods. PLoS Pathog. 2006, 2 (10): e94-10.1371/journal.ppat.0020094.
Article
PubMed
PubMed Central
Google Scholar
Korochkina S, Barreau C, Pradel G, Jeffery E, Li J, Natarajan R, Shabanowitz J, Hunt D, Frevert U, Vernick KD: A mosquito-specific protein family includes candidate receptors for malaria sporozoite invasion of salivary glands. Cell Microbiol. 2006, 8 (1): 163-175. 10.1111/j.1462-5822.2005.00611.x.
Article
CAS
PubMed
Google Scholar
Woolfit M, Iturbe-Ormaetxe I, McGraw EA, O'Neill SL: An ancient horizontal gene transfer between mosquito and the endosymbiotic bacterium Wolbachia pipientis. Mol Biol Evol. 2009, 26 (2): 367-374. 10.1093/molbev/msn253.
Article
CAS
PubMed
Google Scholar
Nosenko T, Bhattacharya D: Horizontal gene transfer in chromalveolates. BMC Evol Biol. 2007, 7: 173-10.1186/1471-2148-7-173.
Article
PubMed
PubMed Central
Google Scholar
The International Aphid Genomics Consortium: Genome Sequence of the Pea Aphid Acyrthosiphon pisum. PLoS Biol. 2010, 8 (2): e1000313-10.1371/journal.pbio.1000313.
Article
PubMed Central
Google Scholar
Corderoand OX, Hogeweg P: The impact of long-distance horizontal gene transfer on prokaryotic genome size. Proc Natl Acad Sci USA. 2009, 106 (51): 21748-21753. 10.1073/pnas.0907584106.
Article
Google Scholar
Lawrence JG, Ochman H: Amelioration of bacterial genomes: rates of change and exchange. J Mol Evol. 1997, 44: 383-397. 10.1007/PL00006158.
Article
CAS
PubMed
Google Scholar
Hooper SD, Berg OG: Duplication is more common among laterally transferred genes than among indigenous genes. Genome Biol. 2003, 4 (8): R48-10.1186/gb-2003-4-8-r48.
Article
PubMed
PubMed Central
Google Scholar
Puttaraju HP, Madhu M: Presence of Wolbachia endosymbionts in different silkworm species and races and in their uzi fly parasites. J Invertebr Pathol. 2002, 79 (2): 120-122. 10.1016/S0022-2011(02)00031-9.
Article
CAS
PubMed
Google Scholar
McNulty SN, Foster JM, Mitreva M, Dunning Hotopp JC, Martin J, Fischer K, Wu B, Davis PJ, Kumar S, Brattig NW, Slatko BE, Weil GJ, Fischer PU: Endosymbiont DNA in endobacteria-free filaria nematodes indicates ancient horizontal genetic transfer. PLoS ONE. 2010, 5 (6): e11029-10.1371/journal.pone.0011029.
Article
PubMed
PubMed Central
Google Scholar
Grimaldi D, Engel MS: Evolution of the insects. 2005, Cambridge University Press
Google Scholar
Ochman H, Moran NA: Genes lost and genes found: evolution of bacterial pathogenesis and symbiosis. Science. 2001, 292 (5519): 1096-1099. 10.1126/science.1058543.
Article
CAS
PubMed
Google Scholar
van Ham RC, Kamerbeek J, Palacios C, Rausell C, Abascal F, Bastolla U, Fernández JM, Jiménez L, Postigo M, Silva FJ, Tamames J, Viguera E, Latorre A, Valencia A, Morán F, Moya A: Reductive genome evolution in Buchnera aphidicola. Proc Natl Acad Sci USA. 2003, 100 (2): 581-586. 10.1073/pnas.0235981100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakabachi A, Yamashita A, Toh H, Ishikawa H, Dunbar HE, Moran NA, Hattori M: The 160-kilobase genome of the bacterial endosymbiont Carsonella. Science. 2006, 314 (5797): 267-10.1126/science.1134196.
Article
CAS
PubMed
Google Scholar
Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H: Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature. 2000, 407 (6800): 81-86. 10.1038/35024074.
Article
CAS
PubMed
Google Scholar
Tamas I, Klasson L, Canbäck B, Näslund AK, Eriksson AS, Wernegreen JJ, Sandström JP, Moran NA, Andersson SG: 50 million years of genomic stasis in endosymbiotic bacteria. Science. 2002, 296 (5577): 2376-2379. 10.1126/science.1071278.
Article
CAS
PubMed
Google Scholar
Blaxter M: Symbiont genes in host genomes: fragments with a future?. Cell Host Microbe. 2007, 2 (4): 211-213. 10.1016/j.chom.2007.09.008.
Article
CAS
PubMed
Google Scholar