Boratyński Z, Koskela E, Mappes M, Oksanen TA: Sex-specific selection on energy metabolism - selection coefficients for winter survival. J Evol Biol. 2010, 23 (9): 1969-1978. 10.1111/j.1420-9101.2010.02059.x.
Article
PubMed
Google Scholar
Boratyński Z, Koteja P: Sexual and natural selection on body mass and metabolic rates in free-living bank voles. Funct Ecol. 2010, 24 (6): 1252-1261. 10.1111/j.1365-2435.2010.01764.x.
Article
Google Scholar
Boratyński Z, Koteja P: The association between body mass, metabolic rates and survival of bank voles. Funct Ecol. 2009, 23 (2): 330-339. 10.1111/j.1365-2435.2008.01505.x.
Article
Google Scholar
Jackson DM, Trayhurn P, Speakman JR: Associations between energetics and over-winter survival in the short-tailed field vole Microtus agrestis. J Anim Ecol. 2001, 70 (4): 633-640. 10.1046/j.1365-2656.2001.00518.x.
Article
Google Scholar
Sadowska ET, Labocha MK, Baliga K, Stanisz A, Wroblewska AK, Jagusiak W, Koteja P: Genetic correlations between basal and maximum metabolic rates in a wild rodent: consequences for evolution of endothermy. Evolution. 2005, 59 (3): 672-681.
Article
PubMed
Google Scholar
Larivée ML, Boutin S, Speakman JR, McAdam AG, Humphries MM: Associations between over-winter survival and resting metabolic rate in juvenile North American red squirrels. Funct Ecol. 2010, 24 (3): 597-607. 10.1111/j.1365-2435.2009.01680.x.
Article
Google Scholar
Nilsson J, Åkesson M, Nilsson JF: Heritability of resting metabolic rate in a wild population of blue tits. J Evol Biol. 2009, 22 (9): 1867-1874. 10.1111/j.1420-9101.2009.01798.x.
Article
PubMed
Google Scholar
Blackmer AL, Mauck RA, Ackerman JT, Huntington CE, Nevitt GA, Williams JB: Exploring individual quality: basal metabolic rate and reproductive performance in storm-petrels. Behav Ecol. 2005, 16 (5): 906-913. 10.1093/beheco/ari069.
Article
Google Scholar
Lovegrove BG: The influence of climate on the basal metabolic rate of small mammals: a slow-fast metabolic continuum. J Comp Physiol B. 2003, 173 (2): 87-112.
CAS
PubMed
Google Scholar
Rezende EL, Bozinovic F, Garland T: Climatic adaptation and the evolution of basal and maximum metabolism in rodents. Evolution. 2004, 58 (6): 1361-1374.
Article
PubMed
Google Scholar
Ksiąek A, Konarzewski M, Łapo IB: Anatomic and energetic correlates of divergent selection for basal metabolic rate in laboratory mice. Physiol Biochem Zool. 2004, 77 (6): 890-899. 10.1086/425190.
Article
Google Scholar
Konarzewski M, Diamond J: Evolution of basal metabolic fate and organ masses in laboratory mice. Evolution. 1995, 49 (6): 1239-1248. 10.2307/2410448.
Article
Google Scholar
da Fonseca RR, Johnson WE, O'Brien SJ, Ramos MJ, Agostinho A: The adaptive evolution of the mammalian mitochondrial genome. BMC Genomics. 2008, 9 (1): 119-10.1186/1471-2164-9-119.
Article
PubMed
PubMed Central
Google Scholar
Dowling DK, Friberg U, Lindell J: Evolutionary implications of non-neutral mitochondrial genetic variation. TREE. 2008, 23 (10): 546-554.
PubMed
Google Scholar
Hassanin A, Ropiquet A, Couloux A, Cruaud C: Evolution of the mitochondrial genome in mammals living at high altitude: new insights from a study of the tribe Caprini (Bovidae, Antilopinae). J Mol Evol. 2009, 68 (4): 293-310. 10.1007/s00239-009-9208-7.
Article
CAS
PubMed
Google Scholar
Rand DM, Haney RA, Fry AJ: Cytonuclear coevolution: the genomics of cooperation. TREE. 2004, 19 (12): 645-653.
PubMed
Google Scholar
Machado CA, Hey J: The causes of phylogenetic conflict in a classic Drosophila species group. Proc R Soc Lond B. 2003, 270 (1520): 1193-1202. 10.1098/rspb.2003.2333.
Article
CAS
Google Scholar
Arnold ML: Evolution through genetic exchange. 2006, Oxford University Press
Google Scholar
Arnold ML: Natural hybridization and evolution. 1997, Oxford University Press
Google Scholar
Alves PC, Melo-Ferreira J, Freitas H, Boursot P: The ubiquitous mountain hare mitochondria: multiple introgressive hybridization in hares, genus Lepus. Phil Trans R Soc B. 2008, 363 (1505): 2831-2839. 10.1098/rstb.2008.0053.
Article
PubMed
PubMed Central
Google Scholar
Richardson AO, Palmer JDJ: Horizontal gene transfer in plants. J Exp Bot. 2007, 58 (1): 1-9.
Article
CAS
PubMed
Google Scholar
Bachtrog D, Thornton K, Clark A, Andolfatto P: Extensive introgression of mitochondrial DNA relative to nuclear genes in the Drosophila yakuba species group. Evolution. 2006, 60 (2): 292-302.
Article
CAS
PubMed
Google Scholar
Doi A, Suzuki H, Matsuura ET: Genetic analysis of temperature-dependent transmission of mitochondrial DNA in Drosophila. Heredity. 1999, 82 (5): 555-560. 10.1038/sj.hdy.6885080.
Article
PubMed
Google Scholar
Doiron S, Bernatchez L, Blier PU: A comparative mitogenomic analysis of the potential adaptive value of arctic charr mtDNA introgression in brook charr populations (Salvelinus fontinalis Mitchill). Mol Biol Evol. 2002, 19 (11): 1902-1909.
Article
CAS
PubMed
Google Scholar
Ropiquet A, Hassanin A: Hybrid origin of the Pliocene ancestor of wild goats. Mol Phylogenet Evol. 2006, 41 (2): 395-404. 10.1016/j.ympev.2006.05.033.
Article
CAS
PubMed
Google Scholar
Ballard JWO, Melvin RG: Linking the mitochondrial genotype to the organismal phenotype. Mol Ecol. 2010, 19 (8): 1523-1539. 10.1111/j.1365-294X.2010.04594.x.
Article
CAS
PubMed
Google Scholar
Tegelström H: Transfer of mitochondrial DNA from the northern red-backed vole (Clethrionomys rutilus) to the bank vole (C. glareolus). J Mol Evol. 1987, 24 (3): 218-227. 10.1007/BF02111235.
Article
PubMed
Google Scholar
Runck A, Matocq M, Cook J: Historic hybridization and persistence of a novel mito-nuclear combination in red-backed voles (genus Myodes). BMC Evol Biol. 2009, 9 (1): 114-10.1186/1471-2148-9-114.
Article
PubMed
PubMed Central
Google Scholar
Cook JA, Runck AM, Conroy CJ: Historical biogeography at the crossroads of the northern continents: molecular phylogenetics of red-backed voles (Rodentia: Arvicolinae). Mol Phylogenet Evol. 2004, 30 (3): 767-777. 10.1016/S1055-7903(03)00248-3.
Article
CAS
PubMed
Google Scholar
Lebedev VS, Bannikova AA, Tesakov AS, Abramson NI: Molecular phylogeny of the genus Alticola (Cricetidae, Rodentia) as inferred from the sequence of the cytochrome b gene. Zool Scr. 2007, 36 (6): 547-563. 10.1111/j.1463-6409.2007.00300.x.
Article
Google Scholar
Amori G, Hutterer R, Kryštufek B, Yigit N, Mitsain G, Muñoz LJP, Henttonen H, Vohralík V, Zagorodnyuk I, Juškaitis R, Meinig H, Bertolino S: Myodes glareolus. 2008, IUCN 2010. IUCN Red List of Threatened Species. Version 2010.4., [http://www.iucnredlist.org]
Google Scholar
Linzey AV, Henttonen H, Sheftel B, Batsaikhan N: Myodes rutilus. 2008, IUCN 2010. IUCN Red List of Threatened Species. Version 2010.4, [http://www.iucnredlist.org]
Google Scholar
Deffontaine V, Libois R, Kotlik P, Sommer R, Nieberding C, Paradis E, Searle JB, Michaux JR: Beyond the Mediterranean peninsulas: evidence of central European glacial refugia for a temperate forest mammal species, the bank vole (Clethrionomys glareolus). Mol Ecol. 2005, 14 (6): 1727-1739. 10.1111/j.1365-294X.2005.02506.x.
Article
CAS
PubMed
Google Scholar
Abramson N, Rodchenkova E, Fokin M, Rakitin S, Gileva E: Recent and ancient introgression of mitochondrial DNA between the red (Clethrionomys rutilus) and bank (Clethrionomys glareolus) voles (Rodentia, Cricetidae). Dokl Biol Sci. 2009, 425 (1): 147-150. 10.1134/S0012496609020185.
Article
Google Scholar
Johns GC, Avise JC: A comparative summary of genetic distances in the vertebrates from the mitochondrial cytochrome b gene. Mol Biol Evol. 1998, 15 (11): 1481-1490.
Article
CAS
PubMed
Google Scholar
Nabholz B, Glémin S, Galtier N: Strong variations of mitochondrial mutation rate across mammals-the longevity hypothesis. Mol Biol Evol. 2008, 25 (1): 120-130.
Article
CAS
PubMed
Google Scholar
Hudson RR, Kreitman M, Aguade M: A test of neutral molecular evolution based on nucleotide data. Genetics. 1987, 116 (1): 153-159.
CAS
PubMed
PubMed Central
Google Scholar
Rand DM: The units of selection of mitochondrial DNA. Annu Rev Ecol Syst. 2001, 32: 415-448. 10.1146/annurev.ecolsys.32.081501.114109.
Article
Google Scholar
Ballard JWO, Whitlock MC: The incomplete natural history of mitochondria. Mol Ecol. 2004, 13 (4): 729-744. 10.1046/j.1365-294X.2003.02063.x.
Article
PubMed
Google Scholar
Mappes T, Grapputo A, Hakkarainen H, Huhta E, Koskela E, Saunanen R, Suorsa P: Island selection on mammalian life-histories: genetic differentiation in offspring size. BMC Evol Biol. 2008, 8 (1): 296-10.1186/1471-2148-8-296.
Article
PubMed
PubMed Central
Google Scholar
Bozinovic F, Rojas JM, Broitman BR, Vásquez RA: Basal metabolism is correlated with habitat productivity among populations of degus (Octodon degus). Comp Biochem Physiol A. 2009, 152 (4): 560-564. 10.1016/j.cbpa.2008.12.015.
Article
Google Scholar
Tieleman BI, Versteegh MA, Fries A, Helm B, Dingemanse NJ, Gibbs HL, Williams JB: Genetic modulation of energy metabolism in birds through mitochondrial function. Proc R Soc B. 2009, 276 (1662): 1685-1693. 10.1098/rspb.2008.1946.
Article
CAS
PubMed
PubMed Central
Google Scholar
Montooth KL, Meiklejohn CD, Abt DN, Rand DM: Mitochondrial-nuclear epistasis affects fitness within species but does not contribute to fixed incompatibilities between species of Drosophila. Evolution. 2010, 64 (12): 3364-3379. 10.1111/j.1558-5646.2010.01077.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Teeter KC, Payseur BA, Harris LW, Bakewell MA, Thibodeau LM, O'Brien JE, Krenz JG, Sans-Fuentes MA, Nachman MW, Tucker PK: Genome-wide patterns of gene flow across a house mouse hybrid zone. Genome Res. 2008, 18 (1): 67-76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Payseur BA, Place M: Searching the genomes of inbred mouse strains for incompatibilities that reproductively isolate their wild relatives. J Hered. 2007, 98 (2): 115-122. 10.1093/jhered/esl064.
Article
CAS
PubMed
Google Scholar
Fontanillas P, Depraz A, Giorgi MS, Perrin N: Nonshivering thermogenesis capacity associated to mitochondrial DNA haplotypes and gender in the greater white-toothed shrew, Crocidura russula. Mol Ecol. 2005, 14 (2): 661-670.
Article
CAS
PubMed
Google Scholar
Speakman JR, Król E, Johnson MS: The functional significance of individual variation in basal metabolic rate. Physiol Biochem Zool. 2004, 77 (6): 900-915. 10.1086/427059.
Article
PubMed
Google Scholar
Koteja P: Energy assimilation, parental care and the evolution of endothermy. Proc R Soc Lond B. 2000, 267: 479-484. 10.1098/rspb.2000.1025.
Article
CAS
Google Scholar
Farmer CG: Reproduction: the adaptive significance of endothermy. Am Nat. 2003, 162 (6): 826-840. 10.1086/380922.
Article
CAS
PubMed
Google Scholar
Frank SA, Hurst LD: Mitochondria and male disease. Nature. 1996, 383 (6597): 224-10.1038/383224a0.
Article
CAS
PubMed
Google Scholar
Currat M, Ruedi M, Petit RJ, Excoffier L: The hidden side of invasions: massive introgression by local genes. Evolution. 2008, 62 (8): 1908-1920.
PubMed
Google Scholar
Excoffier L, Foll M, Petit JR: Genetic consequences of range expansions. Annu Rev Ecol Evol Syst. 2009, 40 (1): 481-501. 10.1146/annurev.ecolsys.39.110707.173414.
Article
Google Scholar
Melo-Ferreira J, Boursot P, Randi EA, Suchentrunk F, Ferrand N, Alves PC: The rise and fall of the mountain hare (Lepus timidus) during Pleistocene glaciations: expansion and retreat with hybridization in the Iberian Peninsula. Mol Ecol. 2007, 16 (3): 605-618.
Article
CAS
PubMed
Google Scholar
Melo-Ferreira J, Alves PC, Freitas H, Ferrand N, Boursot P: The genomic legacy from the extinct Lepus timidus to the three hare species of Iberia: contrast between mtDNA, sex chromosomes and autosomes. Mol Ecol. 2009, 18 (12): 2643-2658. 10.1111/j.1365-294X.2009.04221.x.
Article
CAS
PubMed
Google Scholar
Petit R, Excoffier L: Gene flow and species delimitation. TREE. 2009, 24: 386-393.
PubMed
Google Scholar
Chan KMA, Levin SA: Leaky prezygotic isolation and porous genomes: rapid introgression of maternally inherited DNA. Evolution. 2005, 59 (4): 720-729.
Article
CAS
PubMed
Google Scholar
Bondrup-Nielsen S, Karlsson F: Movements and spatial patterns in populations of Clethrionomys species: a review. Ann Zool Fenn. 1983, 22 (3): 385-392.
Google Scholar
Nagao Y, Totsuka Y, Atomi Y, Kaneda H, Lindahl KF, Imai H, Yonekawa Y: Decreased physical performance of congenic mice with mismatch between the nuclear and the mitochondrial genome. Genes Genet Syst. 1998, 73: 21-27. 10.1266/ggs.73.21.
Article
CAS
PubMed
Google Scholar
Roubertoux PL, Sluyter F, Carlier M, Marcet B, Maarouf-Veray F, Cherif C, Marican C, Arrechi P, Godin F, Jamon M, Verrier B, Cohen-Salmon C: Mitochondrial DNA modifies cognition in interaction with the nuclear genome and age in mice. Nat Genet. 2003, 35 (1): 65-69. 10.1038/ng1230.
Article
CAS
PubMed
Google Scholar
Macdonald D, Barrett P: Collins field guide. Mammals of Britain & Europe. 1993, Harper Collins
Google Scholar
Stephens M, Smith NJ, Donnelly P: A new statistical method for haplotype reconstruction from population data. Am J Hum Biol. 2001, 68 (4): 978-989.
Article
CAS
Google Scholar
Librado P, Rozas J: DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009, 25 (11): 1451-1452. 10.1093/bioinformatics/btp187.
Article
CAS
PubMed
Google Scholar
Excoffier L, Laval G, Schneider S: Arlequin (version 3.0): An integrated software packege for population genetics data analysis. Evol Bioinform Online. 2005, 1: 47-50.
CAS
PubMed Central
Google Scholar
Tamura K, Dudley J, Nei M, Kumar S: MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol. 2007, 24 (8): 1596-1599. 10.1093/molbev/msm092.
Article
CAS
PubMed
Google Scholar
Posada D, Crandall K: MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998, 14 (9): 817-818. 10.1093/bioinformatics/14.9.817.
Article
CAS
PubMed
Google Scholar
Kosakovsky SL, Pond SD, Frost W, Muse SV: HyPhy: hypothesis testing using phylogenies. Bioinformatics. 2005, 21 (5): 676-679. 10.1093/bioinformatics/bti079.
Article
Google Scholar
Felsenstein J: Evolutionary trees from DNA sequences: A maximum likelihood approach. J Mol Evol. 1981, 17 (6): 368-376. 10.1007/BF01734359.
Article
CAS
PubMed
Google Scholar
Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003, 52 (5): 696-704. 10.1080/10635150390235520.
Article
PubMed
Google Scholar
Huelsenbeck JP, Ronquist F: MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001, 17 (8): 754-755. 10.1093/bioinformatics/17.8.754.
Article
CAS
PubMed
Google Scholar
Clement M, Posada D, Crandall KA: TCS: a computer program to estimate gene genealogies. Mol Ecol. 2000, 9 (10): 1657-1659. 10.1046/j.1365-294x.2000.01020.x.
Article
CAS
PubMed
Google Scholar
Rogers AR, Harpending H: Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol. 1992, 9 (3): 552-569.
CAS
PubMed
Google Scholar
Schneider S, Excoffier L: Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics. 1999, 152 (3): 1079-1089.
CAS
PubMed
PubMed Central
Google Scholar
Tajima F: Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989, 123 (3): 585-595.
CAS
PubMed
PubMed Central
Google Scholar
Fu YX: Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics. 1997, 147 (2): 915-925.
CAS
PubMed
PubMed Central
Google Scholar
Koteja P: Measuring energy metabolism with open-flow respirometric systems: which design to choose?. Funct Ecol. 1996, 10 (5): 675-677. 10.2307/2390179.
Article
Google Scholar
Labocha MK, Sadowska ET, Baliga K, Semer AK, Koteja P: Individual variation and repeatability of basal metabolism in the bank vole, Clethrionomys glareolus. Proc R Soc Lond B. 2004, 271: 367-372. 10.1098/rspb.2003.2612.
Article
Google Scholar
Falconer DS, Mackay TFC: Introduction to quantitative genetics. 1996, Longman, Essex
Google Scholar