Stock AM, Robinson VL, Goudreau PN: Two-component signal transduction. Annu Rev Biochem. 2000, 69: 183-215. 10.1146/annurev.biochem.69.1.183.
Article
CAS
PubMed
Google Scholar
Stock JB, Ninfa AJ, Stock AM: Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev. 1989, 53: 450-490.
CAS
PubMed
PubMed Central
Google Scholar
Parkinson JS, Kofoid EC: Communication modules in bacterial signaling proteins. Annu Rev Genet. 1992, 26: 71-112. 10.1146/annurev.ge.26.120192.000443.
Article
CAS
PubMed
Google Scholar
Koretke KK, Lupas AN, Warren PV, Rosenberg M, Brown JR: Evolution of two-component signal transduction. Mol Biol Evol. 2000, 17: 1956-1970.
Article
CAS
PubMed
Google Scholar
Zhang W, Shi L: Distribution and evolution of multiple-step phosphorelay in prokaryotes: lateral domain recruitment involved in the formation of hybrid-type histidine kinases. Microbiology. 2005, 151: 2159-2173. 10.1099/mic.0.27987-0.
Article
CAS
PubMed
Google Scholar
Appleby JL, Parkinson JS, Bourret RB: Signal transduction via the multi-step phosphorelay: not necessarily a road less traveled. Cell. 1996, 86: 845-848. 10.1016/S0092-8674(00)80158-0.
Article
CAS
PubMed
Google Scholar
Zhulin IB, Taylor BL, Dixon R: PAS domain S-boxes in archaea, bacteria and sensors for oxygen and redox. Trends Biochem Sci. 1997, 22: 331-333. 10.1016/S0968-0004(97)01110-9.
Article
CAS
PubMed
Google Scholar
Zhou Q, Ames P, Parkinson JS: Mutational analyses of HAMP helices suggest a dynamic bundle model of input-output signalling in chemoreceptors. Mol Microbiol. 2009, 73: 801-814. 10.1111/j.1365-2958.2009.06819.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao R, Stock AM: Biological insights from structures of two-component proteins. Annu Rev Microbiol. 2009, 63: 133-154. 10.1146/annurev.micro.091208.073214.
Article
CAS
PubMed
PubMed Central
Google Scholar
Galperin MY: A census of membrane-bound and intracellular signal transduction proteins in bacteria: bacterial IQ, extroverts and introverts. BMC Microbiol. 2005, 5: 35-10.1186/1471-2180-5-35.
Article
PubMed
PubMed Central
Google Scholar
Ulrich LE, Koonin EV, Zhulin IB: One-component systems dominate signal transduction in prokaryotes. Trends Microbiol. 2005, 13: 52-56. 10.1016/j.tim.2004.12.006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ulrich LE, Zhulin IB: MiST: a microbial signal transduction database. Nucleic Acids Res. 2007, 35: D386-D390. 10.1093/nar/gkl932.
Article
CAS
PubMed
Google Scholar
Barakat M, Ortet P, Jourlin-Castelli C, Ansaldi M, Mejean V, Whitworth DE: P2CS: a two-component system resource for prokaryotic signal transduction research. BMC Genomics. 2009, 10: 315-10.1186/1471-2164-10-315.
Article
PubMed
PubMed Central
Google Scholar
Grebe TW, Stock JB: The histidine protein kinase superfamily. Adv Microb Physiol. 1999, 41: 139-227. full_text.
Article
CAS
PubMed
Google Scholar
Fabret C, Feher VA, Hoch JA: Two-component signal transduction in Bacillus subtilis: how one organism sees its world. J Bacteriol. 1999, 181: 1975-1983.
CAS
PubMed
PubMed Central
Google Scholar
Kim D, Forst S: Genomic analysis of the histidine kinase family in bacteria and archaea. Microbiology. 2001, 147: 1197-1212.
Article
CAS
PubMed
Google Scholar
Galperin MY: Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J Bacteriol. 2006, 188: 4169-4182. 10.1128/JB.01887-05.
Article
CAS
PubMed
PubMed Central
Google Scholar
Whitworth DE, Cock PJ: Two-component systems of the myxobacteria: structure, diversity and evolutionary relationships. Microbiology. 2008, 154: 360-372. 10.1099/mic.0.2007/013672-0.
Article
CAS
PubMed
Google Scholar
Whitworth DE, Cock PJ: Evolution of prokaryotic two-component systems: insights from comparative genomics. Amino Acids. 2009, 37: 459-466. 10.1007/s00726-009-0259-2.
Article
CAS
PubMed
Google Scholar
Pao GM, Saier MH: Response regulators of bacterial signal transduction systems: selective domain shuffling during evolution. J Mol Evol. 1995, 40: 136-154. 10.1007/BF00167109.
Article
CAS
PubMed
Google Scholar
Alm E, Huang K, Arkin A: The evolution of two-component systems in bacteria reveals different strategies for niche adaptation. PLoS Comput Biol. 2006, 2: e143-10.1371/journal.pcbi.0020143.
Article
PubMed
PubMed Central
Google Scholar
Qi M, Sun FJ, Caetano-Anolles G, Zhao Y: Comparative Genomic and Phylogenetic Analyses Reveal the Evolution of the Core Two-Component Signal Transduction Systems in Enterobacteria. J Mol Evol. 2010.
Google Scholar
Qian W, Han ZJ, He C: Two-component signal transduction systems of Xanthomonas spp.: a lesson from genomics. Mol Plant Microbe Interact. 2008, 21: 151-161. 10.1094/MPMI-21-2-0151.
Article
CAS
PubMed
Google Scholar
Chen YT, Chang HY, Lu CL, Peng HL: Evolutionary analysis of the two-component systems in Pseudomonas aeruginosa PAO1. J Mol Evol. 2004, 59: 725-737. 10.1007/s00239-004-2663-2.
Article
CAS
PubMed
Google Scholar
Ashby MK, Houmard J: Cyanobacterial two-component proteins: structure, diversity, distribution, and evolution. Microbiol Mol Biol Rev. 2006, 70: 472-509. 10.1128/MMBR.00046-05.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dunne C, Murphy L, Flynn S, O'Mahony L, O'Halloran S, Feeney M, Morrissey D, Thornton G, Fitzgerald G, Daly C, et al: Probiotics: from myth to reality. Demonstration of functionality in animal models of disease and in human clinical trials. Antonie Van Leeuwenhoek. 1999, 76: 279-292. 10.1023/A:1002065931997.
Article
CAS
PubMed
Google Scholar
Ouwehand AC, Salminen S, Isolauri E: Probiotics: an overview of beneficial effects. Antonie Van Leeuwenhoek. 2002, 82: 279-289. 10.1023/A:1020620607611.
Article
CAS
PubMed
Google Scholar
Claesson MJ, van Sinderen D, O'Toole PW: Lactobacillus phylogenomics--towards a reclassification of the genus. Int J Syst Evol Microbiol. 2008, 58: 2945-2954. 10.1099/ijs.0.65848-0.
Article
CAS
PubMed
Google Scholar
Makarova KS, Koonin EV: Evolutionary genomics of lactic acid bacteria. J Bacteriol. 2007, 189: 1199-1208. 10.1128/JB.01351-06.
Article
CAS
PubMed
Google Scholar
Fujii T, Ingham C, Nakayama J, Beerthuyzen M, Kunuki R, Molenaar D, Sturme M, Vaughan E, Kleerebezem M, De Vos WM: Two homologous Agr-like quorum-sensing systems cooperatively control adherence, cell morphology, and cell viability properties in Lactobacillus plantarum WCFS1. J Bacteriol. 2008, 190: 7655-7665. 10.1128/JB.01489-07.
Article
CAS
PubMed
PubMed Central
Google Scholar
Risoen PA, Havarstein LS, Diep DB, Nes IF: Identification of the DNA-binding sites for two response regulators involved in control of bacteriocin synthesis in Lactobacillus plantarum C11. Mol Gen Genet. 1998, 259: 224-232.
CAS
PubMed
Google Scholar
Sturme MH, Francke C, Siezen RJ, De Vos WM, Kleerebezem M: Making sense of quorum sensing in lactobacilli: a special focus on Lactobacillus plantarum WCFS1. Microbiology. 2007, 153: 3939-3947. 10.1099/mic.0.2007/012831-0.
Article
CAS
PubMed
Google Scholar
Maldonado-Barragán A, Ruiz-Barba JL, Jiménez-Díaz R: Knockout of three-component regulatory systems reveals that the apparently constitutive plantaricin-production phenotype shown by Lactobacillus plantarum on solid medium is regulated via quorum sensing. Int J Food Microbiol. 2009, 130: 35-42.
Article
PubMed
Google Scholar
Morel-Deville F, Fauvel F, Morel P: Two-component signal-transducing systems involved in stress responses and vancomycin susceptibility in Lactobacillus sakei. Microbiology. 1998, 144: 2873-2883. 10.1099/00221287-144-10-2873.
Article
PubMed
Google Scholar
Pfeiler EA, Azcárate-Peril MA, Klaenhammer TR: Characterization of a novel bile-inducible operon encoding a two-component regulatory system in Lactobacillus acidophilus. J Bacteriol. 2007, 189: 4624-4634. 10.1128/JB.00337-07.
Article
CAS
PubMed
PubMed Central
Google Scholar
Azcárate-Peril MA, McAuliffe O, Altermann E, Lick S, Russell WM, Klaenhammer TR: Microarray analysis of a two-component regulatory system involved in acid resistance and proteolytic activity in Lactobacillus acidophilus. Appl Environ Microbiol. 2005, 71: 5794-5804.
Article
PubMed
PubMed Central
Google Scholar
Landete JM, García-Haro L, Blasco A, Manzanares P, Berbegal C, Monedero V, Zúñiga M: Requirement of the Lactobacillus casei MaeKR two-component system for L-malic acid utilization via a malic enzyme pathway. Appl Environ Microbiol. 2010, 76: 84-95. 10.1128/AEM.02145-09.
Article
CAS
PubMed
Google Scholar
Taylor RK, Hall MN, Enquist L, Silhavy TJ: Identification of OmpR: a positive regulatory protein controlling expression of the major outer membrane matrix porin proteins of Escherichia coli K-12. J Bacteriol. 1981, 147: 255-258.
CAS
PubMed
PubMed Central
Google Scholar
Reuther J, Wohlleben W: Nitrogen metabolism in Streptomyces coelicolor: transcriptional and post-translational regulation. J Mol Microbiol Biotechnol. 2007, 12: 139-146. 10.1159/000096469.
Article
CAS
PubMed
Google Scholar
Hsieh YJ, Wanner BL: Global regulation by the seven-component Pi signaling system. Curr Opin Microbiol. 2010, 13: 198-203. 10.1016/j.mib.2010.01.014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hulett FM: The signal-transduction network for Pho regulation in Bacillus subtilis. Mol Microbiol. 1996, 19: 933-939. 10.1046/j.1365-2958.1996.421953.x.
Article
CAS
PubMed
Google Scholar
Winkler ME, Hoch JA: Essentiality, bypass, and targeting of the YycFG (VicRK) two-component regulatory system in gram-positive bacteria. J Bacteriol. 2008, 190: 2645-2648. 10.1128/JB.01682-07.
Article
CAS
PubMed
PubMed Central
Google Scholar
Uchiyama I: MBGD: a platform for microbial comparative genomics based on the automated construction of orthologous groups. Nucl Acids Res. 2007, 35: D343-D346. 10.1093/nar/gkl978.
Article
CAS
PubMed
Google Scholar
Le SQ, Gascuel O: An improved general amino acid replacement matrix. Mol Biol Evol. 2008, 25: 1307-1320. 10.1093/molbev/msn067.
Article
CAS
PubMed
Google Scholar
Jones DT, Taylor WR, Thornton JM: The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci. 1992, 8: 275-282.
CAS
PubMed
Google Scholar
Lanave C, Preparata G, Saccone C, Serio G: A new method for calculating evolutionary substitution rates. J Mol Evol. 1984, 20: 86-93. 10.1007/BF02101990.
Article
CAS
PubMed
Google Scholar
Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A, Pavlova N, Karamychev V, Polouchine N, et al: Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci USA. 2006, 103: 15611-15616. 10.1073/pnas.0607117103.
Article
PubMed
PubMed Central
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol. 1990, 215: 403-410.
Article
CAS
PubMed
Google Scholar
Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32: 1792-1797. 10.1093/nar/gkh340.
Article
CAS
PubMed
PubMed Central
Google Scholar
Castresana J: Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000, 17: 540-552.
Article
CAS
PubMed
Google Scholar
Abascal F, Zardoya R, Posada D: ProtTest: selection of best-fit models of protein evolution. Bioinformatics. 2005, 21: 2104-2105. 10.1093/bioinformatics/bti263.
Article
CAS
PubMed
Google Scholar
Akaike H: A new look at the statistical model identification. IEEE Trans Automat Contr. 1974, AC-19: 716-723. 10.1109/TAC.1974.1100705.
Article
Google Scholar
Strimmer K, von Haeseler A: Likelihood-mapping: a simple method to visualize phylogenetic content of a sequence alignment. Proc Natl Acad Sci. 1997, 94: 6815-6819. 10.1073/pnas.94.13.6815.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmidt HA, Strimmer K, Vingron M, von Haeseler A: TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics. 2002, 18: 502-504. 10.1093/bioinformatics/18.3.502.
Article
CAS
PubMed
Google Scholar
Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003, 52: 696-704. 10.1080/10635150390235520.
Article
PubMed
Google Scholar
Shimodaira H, Hasegawa M: Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol. 1999, 16: 1114-1116.
Article
CAS
Google Scholar
Page RDM: Parallel Phylogenies - Reconstructing the History of Host-Parasite Assemblages. Cladistics-the International Journal of the Willi Hennig Society. 1994, 10: 155-173. 10.1111/j.1096-0031.1994.tb00170.x.
Article
Google Scholar
Tamura K, Dudley J, Nei M, Kumar S: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol. 2007, 24: 1596-1599. 10.1093/molbev/msm092.
Article
CAS
PubMed
Google Scholar
Tárraga J, Medina I, Arbiza L, Huerta-Cepas J, Gabaldón T, Dopazo J, Dopazo H: Phylemon: a suite of web tools for molecular evolution, phylogenetics and phylogenomics. Nucleic Acids Res. 2007, 35: W38-W42.
Article
PubMed
PubMed Central
Google Scholar
Posada D: jModelTest: phylogenetic model averaging. Mol Biol Evol. 2008, 25: 1253-1256. 10.1093/molbev/msn083.
Article
CAS
PubMed
Google Scholar
Gilliland SE, Speck ML, Morgan CG: Detection of Lactobacillus acidophilus in feces of humans, pigs, and chickens. Appl Microbiol. 1975, 30: 541-545.
CAS
PubMed
PubMed Central
Google Scholar
Fred EB, Peterson WH, Davenport A: Acid fermentation of xylose. J Biol Chem. 1919, 39: 347-383.
CAS
Google Scholar
Mazé A, Boël G, Zúñiga M, Bourand A, Loup V, Yebra MJ, Monedero V, Korreia K, Jacques M, Beaufils S, et al: Complete genome sequence of the probiotic Lactobacillus casei strain BL23. J Bacteriol. 2010, 192 (10): 2647-8.
Article
PubMed
PubMed Central
Google Scholar
Morita H, Toh H, Fukuda S, Horikawa H, Oshima K, Suzuki T, Murakami M, Hisamatsu S, Kato Y, Takizawa T, et al: Comparative genome analysis of Lactobacillus reuteri and Lactobacillus fermentum reveal a genomic island for reuterin and cobalamin production. DNA Res. 2008, 15: 151-161. 10.1093/dnares/dsn009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Callanan M, Kaleta P, O'Callaghan J, O'Sullivan O, Jordan K, McAuliffe O, Sangrador-Vegas A, Slattery L, Fitzgerald GF, Beresford T, et al: Genome sequence of Lactobacillus helveticus, an organism distinguished by selective gene loss and insertion sequence element expansion. J Bacteriol. 2008, 190: 727-735. 10.1128/JB.01295-07.
Article
CAS
PubMed
Google Scholar
Pridmore RD, Berger B, Desiere F, Vilanova D, Barretto C, Pittet AC, Zwahlen MC, Rouvet M, Altermann E, Barrangou R, et al: The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc Natl Acad Sci USA. 2004, 101: 2512-2517. 10.1073/pnas.0307327101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MW, et al: Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci USA. 2003, 100: 1990-1995. 10.1073/pnas.0337704100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lauret R, Morel-Deville F, Berthier F, Champomier-Vergès M, Postma P, Ehrlich SD, Zagorec M: Carbohydrate utilization in Lactobacillus sake. Appl Environ Microbiol. 1996, 62: 1922-1927.
CAS
PubMed
PubMed Central
Google Scholar
Claesson MJ, Li Y, Leahy S, Canchaya C, van Pijkeren JP, Cerdeño-Tárraga AM, Parkhill J, Flynn S, O'Sullivan GC, Collins JK, et al: Multireplicon genome architecture of Lactobacillus salivarius. Proc Natl Acad Sci USA. 2006, 103: 6718-6723. 10.1073/pnas.0511060103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim JF, Jeong H, Lee JS, Choi SH, Ha M, Hur CG, Kim JS, Lee S, Park HS, Park YH, et al: Complete genome sequence of Leuconostoc citreum KM20. J Bacteriol. 2008, 190: 3093-3094. 10.1128/JB.01862-07.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beelman RB, Gavin A, Keen RM: New strain of Leuconostoc oenos for induced malo-lactic fermentation in Eastern wines. Am J Enol Vitic. 1977, 28: 159-165.
CAS
Google Scholar
Mundt JO, Beattie WG, Wieland FR: Pediococci residing on plants. J Bacteriol. 1969, 98: 938-942.
CAS
PubMed
PubMed Central
Google Scholar