Keeling PJ: Chromalveolates and the Evolution of Plastids by Secondary Endosymbiosis. J Euk Microbiol. 2009, 56 (1): 1-8. 10.1111/j.1550-7408.2008.00371.x.
Article
CAS
PubMed
Google Scholar
Howe CJ, Barbrook AC, Nisbet RER, Lockhart PJ, Larkum AWD: The origin of plastids. Phil Trans Royal So B-Biol Sci. 2008, 363 (1504): 2675-2685. 10.1098/rstb.2008.0050.
Article
CAS
Google Scholar
Stiller JW: Plastid endosymbiosis, genome evolution and the origin of green plants. Trends Plant Sci. 2007, 12 (9): 391-396. 10.1016/j.tplants.2007.08.002.
Article
CAS
PubMed
Google Scholar
Bodyl A, Stiller JW, Mackiewicz P: Chromalveolate plastids: direct descent or multiple endosymbioses?. Trends Ecol Evol. 2009, 24 (3): 119-121. 10.1016/j.tree.2008.11.003.
Article
PubMed
Google Scholar
Nozaki H, Maruyama S, Matsuzaki M, Nakada T, Kato S, Misawa K: Phylogenetic positions of Glaucophyta, green plants (Archaeplastida) and Haptophyta (Chromalveolata) as deduced from slowly evolving nuclear genes. Mol Phyl Evol. 2009, 53 (3): 872-880. 10.1016/j.ympev.2009.08.015.
Article
Google Scholar
Archibald JM: The Puzzle of Plastid Evolution. Curr Biol. 2009, 19 (2): R81-R88. 10.1016/j.cub.2008.11.067.
Article
CAS
PubMed
Google Scholar
Sanchez-Puerta MV, Delwiche CF: A hypothesis for plastid evolution in chromalveolates. J Phycol. 2008, 44 (5): 1097-1107. 10.1111/j.1529-8817.2008.00559.x.
Article
PubMed
Google Scholar
Larkum AWD, Lockhart PJ, Howe CJ: Shopping for plastids. Trends Plant Sci. 2007, 12 (5): 189-195. 10.1016/j.tplants.2007.03.011.
Article
CAS
PubMed
Google Scholar
Marin B, Nowack ECM, Melkonian M: A plastid in the making: Evidence for a second primary endosymbiosis. Protist. 2005, 156 (4): 425-432. 10.1016/j.protis.2005.09.001.
Article
CAS
PubMed
Google Scholar
Nowack ECM, Melkonian M, Glockner G: Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by eukaryotes. Curr Biol. 2008, 18 (6): 410-418. 10.1016/j.cub.2008.02.051.
Article
CAS
PubMed
Google Scholar
Delwiche CF, Palmer JD: The origin of plastids and their spread via secondary symbiosis. Plant Syst Evol. 1997, 53-86.
Google Scholar
Gould SB, Waller RR, McFadden GI: Plastid evolution. Ann Review Plant Biol. 2008, 59: 491-517. 10.1146/annurev.arplant.59.032607.092915.
Article
CAS
Google Scholar
Palmer JD: The symbiotic birth and spread of plastids: How many times and whodunit?. J Phycol. 2003, 39 (1): 4-11. 10.1046/j.1529-8817.2003.02185.x.
Article
CAS
Google Scholar
Cavalier-Smith T: Principles of protein and lipid targeting in secondary symbiogenesis: Euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Euk Microbiol. 1999, 46 (4): 347-366. 10.1111/j.1550-7408.1999.tb04614.x.
Article
CAS
PubMed
Google Scholar
Janouskovec J, Horak A, Obornik M, Lukes J, Keeling PJ: A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc Natl Acad Sci USA. 2010, 107 (24): 10949-10954. 10.1073/pnas.1003335107.
Article
PubMed
PubMed Central
Google Scholar
Moustafa A, Beszteri B, Maier UG, Bowler C, Valentin K, Bhattacharya D: Genomic Footprints of a Cryptic Plastid Endosymbiosis in Diatoms. Science. 2009, 324 (5935): 1724-1726. 10.1126/science.1172983.
Article
CAS
PubMed
Google Scholar
Horiguchi T, Takano Y: Serial replacement of a diatom endosymbiont in the marine dinoflagellate Peridinium quinquecorne (Peridiniales, Dinophyceae). Phycol Res. 2006, 54 (3): 193-200. 10.1111/j.1440-1835.2006.00426.x.
Article
Google Scholar
Takano Y, Hansen G, Fujita D, Horiguchi T: Serial replacement of diatom endosymbionts in two freshwater dinoflagenates, Peridiniopsis spp. (Peridiniales, Dinophyceae). Phycologia. 2008, 47 (1): 41-53. 10.2216/07-36.1.
Article
CAS
Google Scholar
Maruyama S, Suzaki T, Weber APM, Archibald JM, Nozaki H: Eukaryote-to-eukaryote gene transfer gives rise to genome mosaicism in euglenids. BMC Evol Biol. 2011, 11: 11-10.1186/1471-2148-11-11.
Article
Google Scholar
Saldarriaga JF, Taylor FJR, Keeling PJ, Cavalier-Smith T: Dinoflagellate nuclear SSU rRNA phylogeny suggests multiple plastid losses and replacements. J Mol Evol. 2001, 53 (3): 204-213. 10.1007/s002390010210.
Article
CAS
PubMed
Google Scholar
Huang J, Gogarten JP: Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids?. Genome Biol. 2007, 8 (6): R99-10.1186/gb-2007-8-6-r99.
Article
PubMed
PubMed Central
Google Scholar
Lane CE, Archibald JM: The eukaryotic tree of life: endosymbiosis takes its TOL. Trends Ecol Evol. 2008, 23 (5): 268-275. 10.1016/j.tree.2008.02.004.
Article
PubMed
Google Scholar
Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D: Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA. 2002, 99 (19): 12246-12251. 10.1073/pnas.182432999.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reyes-Prieto A, Hackett JD, Soares MB, Bonaldo MF, Bhattacharya D: Cyanobacterial contribution to algal nuclear genomes a primarily limited to plastid functions. Curr Biol. 2006, 16 (23): 2320-2325. 10.1016/j.cub.2006.09.063.
Article
CAS
PubMed
Google Scholar
Elias M, Archibald JM: Sizing up the genomic footprint of endosymbiosis. Bioessays. 2009, 31 (12): 1273-1279. 10.1002/bies.200900117.
Article
CAS
PubMed
Google Scholar
Tyler BM, Tripathy S, Zhang XM, Dehal P, Jiang RHY, Aerts A, Arredondo FD, Baxter L, Bensasson D, Beynon JL, et al: Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science. 2006, 313 (5791): 1261-1266. 10.1126/science.1128796.
Article
CAS
PubMed
Google Scholar
Reyes-Prieto A, Moustafa A, Bhattacharya D: Multiple genes of apparent algal origin suggest ciliates may once have been photosynthetic. Curr Biol. 2008, 18 (13): 956-962. 10.1016/j.cub.2008.05.042.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hanekamp K, Bohnebeck U, Beszteri B, Valentin K: PhyloGena - a user-friendly system for automated phylogenetic annotation of unknown sequences. Bioinformatics. 2007, 23 (7): 793-801. 10.1093/bioinformatics/btm016.
Article
CAS
PubMed
Google Scholar
Frickey T, Lupas AN: PhyloGenie: automated phylome generation and analysis. Nucl Acids Res. 2004, 32 (17): 5231-5238. 10.1093/nar/gkh867.
Article
CAS
PubMed
PubMed Central
Google Scholar
Philippe H, Delsuc F, Brinkmann H, Lartillot N: Phylogenomics. Ann Rev Ecol Evol Syst. 2005, 36: 541-562. 10.1146/annurev.ecolsys.35.112202.130205.
Article
Google Scholar
Bergsten J: A review of long-branch attraction. Cladistics. 2005, 21 (2): 163-193. 10.1111/j.1096-0031.2005.00059.x.
Article
Google Scholar
Ranala B, Yang ZH: Phylogenetic inference using whole Genomes. Ann Rev Genom Human Genet. 2008, 9: 217-231. 10.1146/annurev.genom.9.081307.164407.
Article
Google Scholar
Rodriguez-Ezpeleta N, Brinkmann H, Burey SC, Roure B, Burger G, Loffelhardt W, Bohnert HJ, Philippe H, Lang BF: Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Curr Biol. 2005, 15 (14): 1325-1330. 10.1016/j.cub.2005.06.040.
Article
CAS
PubMed
Google Scholar
Chan CX, Yang EC, Banerjee T, Yoon HS, Martone PT, Estevez JM, Bhattacharya D: Red and Green Algal Monophyly and Extensive Gene Sharing Found in a Rich Repertoire of Red Algal Genes. Curr Biol. 2011, 21 (4): 328-333. 10.1016/j.cub.2011.01.037.
Article
CAS
PubMed
Google Scholar
Yoon HS, Grant J, Tekle YI, Wu M, Chaon BC, Cole JC, Logsdon JM, Patterson DJ, Bhattacharya D, Katz LA: Broadly sampled multigene trees of eukaryotes. BMC Evol Biol. 2008, 8: 14-10.1186/1471-2148-8-14.
Article
PubMed
PubMed Central
Google Scholar
Stiller JW, Hall BD: The origin of red algae: Implications for plastid evolution. Proc Natl Acad Sci USA. 1997, 94 (9): 4520-4525. 10.1073/pnas.94.9.4520.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chan CX, Gross J, Yoon HS, Bhattacharya D: Plastid Origin and Evolution: New Models Provide Insights into Old Problems. Plant Physiol. 2011, 155 (4): 1552-1560. 10.1104/pp.111.173500.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burki F, Shalchian-Tabrizi K, Pawlowski J: Phylogenomics reveals a new 'megagroup' including most photosynthetic eukaryotes. Biol Lett. 2008, 4 (4): 366-369. 10.1098/rsbl.2008.0224.
Article
PubMed
PubMed Central
Google Scholar
Bodyl A: Do plastid-related characters support the chromalveolate hypothesis?. J Phycol. 2005, 41 (3): 712-719. 10.1111/j.1529-8817.2005.00091.x.
Article
Google Scholar
Burki F, Inagaki Y, Brate J, Archibald JM, Keeling PJ, Cavalier-Smith T, Sakaguchi M, Hashimoto T, Horak A, Kumar S, et al: Large-Scale Phylogenomic Analyses Reveal That Two Enigmatic Protist Lineages, Telonemia and Centroheliozoa, Are Related to Photosynthetic Chromalveolates. Genome Biol Evol. 2009, 231-238.
Google Scholar
Patron NJ, Inagaki Y, Keeling PJ: Multiple gene phylogenies support the monophyly of cryptomonad and haptophyte host lineages. Curr Biol. 2007, 17 (10): 887-891. 10.1016/j.cub.2007.03.069.
Article
CAS
PubMed
Google Scholar
Baurain D, Brinkmann H, Petersen J, Rodriguez-Ezpeleta N, Stechmann A, Demoulin V, Roger AJ, Burger G, Lang BF, Philippe H: Phylogenomic evidence for separate acquisition of plastids in cryptophytes, haptophytes and stramenopiles. Mol Biol Evol. 2010, 27 (7): 1698-1709. 10.1093/molbev/msq059.
Article
CAS
PubMed
Google Scholar
Stiller JW, Huang JL, Ding Q, Tian J, Goodwillie C: Are algal genes in nonphotosynthetic protists evidence of historical plastid endosymbioses?. BMC Genomics. 2009, 10: 484-10.1186/1471-2164-10-484.
Article
PubMed
PubMed Central
Google Scholar
Nozaki H, Iseki M, Hasegawa M, Misawa K, Nakada T, Sasaki N, Watanabe M: Phylogeny of Primary Photosynthetic Eukaryotes as Deduced from Slowly Evolving Nuclear Genes. Mol Biol Evol. 2007, 24 (8): 1592-1595. 10.1093/molbev/msm091.
Article
CAS
PubMed
Google Scholar
Lockhart P, Novis P, Milligan BG, Riden J, Rambaut A, Larkum T: Heterotachy and tree building: A case study with plastids and eubacteria. Mol Biol Evol. 2006, 23 (1): 40-45.
Article
CAS
PubMed
Google Scholar
Sun GL, Yang ZF, Ishwar A, Huang JL: Algal Genes in the Closest Relatives of Animals. Mol Biol Evol. 2010, 27 (12): 2879-2889. 10.1093/molbev/msq175.
Article
CAS
PubMed
Google Scholar
Leigh JW, Susko E, Baumgartner M, Roger AJ: Testing congruence in phylogenomic analysis. Syst Biol. 2008, 57 (1): 104-115. 10.1080/10635150801910436.
Article
PubMed
Google Scholar
Felsenstein J: Cases in which parsimony or compatibility methods will be positively misleading. Syst Zool. 1978, 25: 401-410.
Article
Google Scholar
Elser JJ, Fagan WF, Subramanian S, Kumar S: Signatures of Ecological Resource Availability in the Animal and Plant Proteomes. Mol Biol Evol. 2006, 23 (10): 1946-1951. 10.1093/molbev/msl068.
Article
CAS
PubMed
Google Scholar
Christin PA, Weinreich DM, Besnard G: Causes and evolutionary significance of genetic convergence. Trends Genet. 2010, 26 (9): 400-405. 10.1016/j.tig.2010.06.005.
Article
CAS
PubMed
Google Scholar
McInerney JO, Cotton JA, Pisani D: The prokaryotic tree of life: past, present ... and future?. Trends Ecol Evol. 2008, 23 (5): 276-281. 10.1016/j.tree.2008.01.008.
Article
PubMed
Google Scholar
Stiller JW, Hall BD: Long-branch attraction and the rDNA model of early eukaryotic evolution. Mol Biol Evol. 1999, 16 (9): 1270-1279.
Article
CAS
PubMed
Google Scholar
Hirt RP, Logsdon JM, Healy B, Dorey MW, Doolittle WF, Embley TM: Microsporidia are related to Fungi: Evidence from the largest subunit of RNA polymerase II and other proteins. Proc Natl Acad Sci USA. 1999, 96 (2): 580-585. 10.1073/pnas.96.2.580.
Article
CAS
PubMed
PubMed Central
Google Scholar
Philippe H, Lopez P, Brinkmann H, Budin K, Germot A, Laurent J, Moreira D, Muller M, Le Guyader H: Early-branching or fast-evolving eukaryotes? An answer based on slowly evolving positions. Proc Biol Sci. 2000, 267 (1449): 1213-1221. 10.1098/rspb.2000.1130.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gruenheit N, Lockhart PJ, Steel M, Martin W: Difficulties in testing for covarion-like properties of sequences under the confounding influence of changing proportions of variable sites. Mol Biol Evol. 2008, 25 (7): 1512-1520. 10.1093/molbev/msn098.
Article
CAS
PubMed
Google Scholar
Shalchian-Tabrizi K, Skanseng M, Ronquist F, Klaveness D, Bachvaroff TR, Delwiche CF, Botnen A, Tengs T, Jakobsen KS: Heterotachy processes in rhodophyte-derived secondhand plastid genes: Implications for addressing the origin and evolution of dinoflagellate plastids. Mol Biol Evol. 2006, 23 (8): 1504-1515. 10.1093/molbev/msl011.
Article
CAS
PubMed
Google Scholar
Penny D, McComish BJ, Charleston MA, Hendy MD: Mathematical elegance with biochemical realism: The covarion model of molecular evolution. J Mol Evol. 2001, 53 (6): 711-723. 10.1007/s002390010258.
Article
CAS
PubMed
Google Scholar
Ane C, Larget B, Baum DA, Smith SD, Rokas A: Bayesian estimation of concordance among gene trees. Mol Biol Evol. 2007, 24 (2): 412-426.
Article
CAS
PubMed
Google Scholar
Arvestad L, Lagergren J, Sennblad B: The Gene Evolution Model and Computing Its Associated Probabilities. J Acm. 2009, 56 (2): 44-
Article
Google Scholar
Csuros M, Miklos I: A probabilistic model for gene content evolution with duplication, loss, and horizontal transfer. Res Comp Mol Biol Proc. 2006, 3909: 206-220. 10.1007/11732990_18.
Article
Google Scholar
Huson DH, Scornavacca C: A Survey of Combinatorial Methods for Phylogenetic Networks. Genome Biol Evol. 2011, 3: 23-35. 10.1093/gbe/evq077.
Article
CAS
PubMed
Google Scholar
Susko E, Spencer M, Roger AJ: Biases in phylogenetic estimation can be caused by random sequence segments. J Mol Evol. 2005, 61 (3): 351-359. 10.1007/s00239-004-0352-9.
Article
CAS
PubMed
Google Scholar
Keeling PJ, Palmer JD: Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet. 2008, 9 (8): 605-618. 10.1038/nrg2386.
Article
CAS
PubMed
Google Scholar