Rokas A, Williams BL, King N, Carroll SB: Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature. 2003, 425: 798-804. 10.1038/nature02053.
Article
CAS
PubMed
Google Scholar
Bapteste E, Brinkmann H, Lee JA, Moore DV, Sensen CW, Gordon P, Duruflé L, Gaasterland T, Lopez P, Müller M, et al: The analysis of 100 genes supports the grouping of three highly divergent amoebae: Dictyostelium, Entamoeba, and Mastigamoeba. Proceedings of the National Academy of Sciences, USA. 2002, 99: 1414-1419. 10.1073/pnas.032662799.
Article
CAS
Google Scholar
Wiens JJ, Kuczynski CA, Smith SA, Mulcahy DG, Sites JW, Townsend TM, Reeder TW: Branch lengths, support, and congruence: testing the phylogenomic approach with 20 nuclear loci in snakes. Systematic Biology. 2008, 57 (3): 420-431. 10.1080/10635150802166053.
Article
PubMed
Google Scholar
Zwick A, Regier JC, Mitter C, Cummings MP: Increased gene sampling yields robust support for higher-level clades within Bombycoidea (Lepidoptera). Systematic Entomology. 2011, 36: 31-43. 10.1111/j.1365-3113.2010.00543.x.
Article
Google Scholar
Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD, et al: Broad phylogenomic sampling improves resolution of the animal tree of life. Nature. 2008, 452: 745-749. 10.1038/nature06614.
Article
CAS
PubMed
Google Scholar
Burleigh JG, Hilu KW, Soltis DE: Inferring phylogenies with incomplete data sets: a 5-gene, 567-taxon analysis of angiosperms. BMC Evolutionary Biology. 2009, 9: 61-10.1186/1471-2148-9-61.
Article
PubMed
PubMed Central
Google Scholar
Cho S, Zwick A, Regier JC, Mitter C, Cummings MP, Yao J, Du Z, Zhao H, Kawahara AY, Weller SJ, et al: Deliberately unequal gene sampling: boon or bane for phylogenetics of Lepidoptera (Hexapoda)?. Systematic Biology. 2011
Google Scholar
Labandeira CC, Dilcher DL, Davis DR, Wagner DL: Ninety-seven million years of angiosperm-insect association: paleobiological insights into the meaning of coevolution. Proceedings of the National Academy of Sciences, USA. 1994, 91: 12278-12282. 10.1073/pnas.91.25.12278.
Article
CAS
Google Scholar
De Prins J, De Prins W: Global Taxonomic Database of Gracillariidae (Lepidoptera). World Wide Web electronic publication, accessed 1 Feb 2011, [http://www.gracillariidae.net]
Nieukerken EJ, Kaila L, Kitching IJ, Kristensen NP, Lees DC, Minet J, Mitter C, Mutanen M, Regier JC, Simonsen TJ, et al: Order Lepidoptera Linnaeus, 1758. Zootaxa. Edited by: Zhang ZQ. 2011, Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness,
Google Scholar
Davis DR, Robinson GS: The Tineoidea and Gracillarioidea. Lepidoptera, moths and butterflies 1: Evolution, Systematics and Biogeography. Edited by: Kristensen NP. 1998, Berlin, New York: De Gruyter, 91-117. 4. Arthropoda: Insecta, Part, 35
Google Scholar
Gilbert M, Guichard S, Freise J, Grégoire J-C, Heitland W, Straw N, Tilbury C, Augustin S: Forecasting Cameraria ohridella invasion dynamics in recently invaded countries: from validation to prediction. Journal of Applied Ecology. 2005, 45: 805-813.
Article
Google Scholar
Heppner JB: Citrus leafminer, Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae: Phyllocnistinae). Entomology Circular No 359, Florida Department of Agriculture & Consumer Services. 1993, 1-2.
Google Scholar
Shapiro LH, Scheffer SJ, Maisin N, Lambert S, Purung HB, Sulistyowati E, Vega FE, Gende P, Laup S, Rosmana A, et al: Conopomorpha cramerella (Lepidoptera: Gracillariidae) in the Malay Archipelago: genetic signature of a bottlenecked population?. Annals of the Entomological Society of America. 2008, 101: 930-938. 10.1603/0013-8746(2008)101[930:CCLGIT]2.0.CO;2.
Article
Google Scholar
Valade R, Kenis M, Hernandez-Lopez A, Augustin S, Mari Mena N, Magnoux E, Rougerie R, Lakatos F, Roques A, Lopez-Vaamonde C: Mitochondrial and microsatellite DNA markers reveal a Balkan origin for the highly invasive horse-chestnut leaf miner Cameraria ohridella (Lepidoptera, Gracillariidae). Molecular Ecology. 2009, 18: 3458-3470. 10.1111/j.1365-294X.2009.04290.x.
Article
CAS
PubMed
Google Scholar
Davis DR, Wagner DL: Biology and systematics of the New World Phyllocnistis leafminers of the avocado genus Persea (Lepidoptera: Gracillariidae). ZooKeys. 2011, 97: 39-73.
Article
PubMed
Google Scholar
Davis DR: Gracillariidae. Immature insects. Edited by: Stehr FW. 1987, Dubuque: Kendall/Hunt, 1: 372-374.
Google Scholar
Wagner DL, Loose JL, Fitzgerald TD, DeBenedictis JA, Davis DR: A hidden past: The hypermetamorphic development of Marmara arbutiella (Lepidoptera: Gracillariidae). Annals of the Entomological Society of America. 2000, 93: 59-64. 10.1603/0013-8746(2000)093[0059:AHPTHD]2.0.CO;2.
Article
Google Scholar
Kumata T: Japanese species of the subfamily Oecophyllembiinae Réal and Balachowsky (Lepidoptera: Gracillariidae), with descriptions of a new genus and eight new species. Insecta Matsumurana, New Series. 1998, 54: 77-131.
Google Scholar
Fitzgerald TD, Simeone JB: Serpentine miner Marmara fraxinicola (Lepidoptera: Gracillariidae) in stems of white ash. Annals of the Entomological Society of America. 1971, 64: 770-773.
Article
Google Scholar
Regier JC, Zwick A, Cummings MP, Kawahara AY, Cho S, Weller S, Roe A, Baixeras J, Brown JW, Parr C, et al: Toward reconstructing the evolution of advanced moths and butterflies (Lepidoptera: Ditrysia): an initial molecular study. BMC Evolutionary Biology. 2009, 9: 280-10.1186/1471-2148-9-280.
Article
PubMed
PubMed Central
Google Scholar
Mutanen M, Wahlberg N, Kaila L: Comprehensive gene and taxon coverage elucidates radiation patterns in moths and butterflies. Proceedings of the Royal Society of London, Series B. 2010, 277: 2839-2848. 10.1098/rspb.2010.0392.
Article
Google Scholar
Gerasimov AM: Lepidoptera-the butterflies. Opredelitel Nasekomykh Evropeyskoy Chasti SSSR. 1948, 920-1094.
Google Scholar
Kuznetzov VI, Stekol'nikov AA: Functional morphology of the male genitalia and notes on the classification and phylogenetic relationships of mining moths of superfamily Gracillarioidea (Lepidoptera). Entomological Review. 1987, 66: 16-30.
Google Scholar
Zimmerman EC: Insects of Hawaii 9, Microlepidoptera, pt. 1. 1978, Honolulu: University of Hawaii Press
Google Scholar
Robinson GS: A phylogeny for the Tineoidea (Lepidoptera). Entomologica Scandinavica. 1988, 19: 117-129.
Article
Google Scholar
Kuznetzov VI, Kozlov MV, Seksyaeva SV: To the systematics and phylogeny of mining moths Gracillariidae, Bucculatricidae and Lyonetiidae (Lepidoptera) with consideration of functional and comparative morphology of male genitalia. Trudy Zoologicheskogo Instituta, Akademija Nauk SSSR. 1988, 176: 52-71.
Google Scholar
Ohshima I: Host race formation in the leaf-mining moth Acrocercops transecta (Lepidoptera: Gracillariidae). Biological Journal of the Linnaean Society. 2008, 93: 135-145.
Article
Google Scholar
Ohshima I: Differential introgression causes genealogical discordance in host races of Acrocercops transecta (Insecta: Lepidoptera). Molecular Ecology. 2010, 19: 2106-2119. 10.1111/j.1365-294X.2010.04624.x.
Article
CAS
PubMed
Google Scholar
Kawakita A, Takimura A, Terachi T, Sota T, Kato M: Cospeciation analysis of an obligate pollination mutualism: have Glochidion trees (Euphorbiaceae) and pollinating Epicephala moths (Gracillariidae) diversified in parallel?. Evolution. 2004, 10: 2201-2214.
Google Scholar
Kawakita A, Kato M: Repeated independent evolution of obligate pollination mutualism in the Phyllantheae-Epicephala association. Proceedings of the Royal Society of London, Series B. 2009, 276: 417-426. 10.1098/rspb.2008.1226.
Article
Google Scholar
Kawakita A, Okamoto T, Goto R, Kato M: Mutualism favours higher host specificity than does antagonism in plant-herbivore interaction. Proceedings of the Royal Society of London, Series B. 2010, 277 (1695): 2765-2774. 10.1098/rspb.2010.0355.
Article
Google Scholar
Lopez-Vaamonde C, Godfray C, Cook JM: Evolutionary dynamics of host-plant use in a genus of leaf mining moth. Evolution. 2003, 57: 1804-1821.
Article
PubMed
Google Scholar
Lopez-Vaamonde C, Wikström N, Labandeira C, Godfrey HCJ, Goodman SJ, Cook JM: Fossil-calibrated molecular phylogenies reveal that leaf-mining moths radiated millions of years after their host plants. Journal of Evolutionary Biology. 2006, 19: 1314-1326. 10.1111/j.1420-9101.2005.01070.x.
Article
CAS
PubMed
Google Scholar
Vári L, Kroon DM, Krüger M: Classification and checklist of the species of Lepidoptera recorded in southern Africa. 2002, Chatswood: Simple Solutions
Google Scholar
Regier JC, Shultz JW, Ganley ARD, Hussey A, Shi D, Ball B, Zwick A, Stajich JE, Cummings MP, Martin JW, et al: Resolving arthropod phylogeny: exploring phylogenetic signal within 41 kb of protein-coding nuclear gene sequence. Systematic Biology. 2008, 57: 920-938. 10.1080/10635150802570791.
Article
CAS
PubMed
Google Scholar
Cho S, Mitchell A, Regier JC, Mitter C, Poole RW, Friedlander TP, Zhao S: A highly conserved nuclear gene for low-level phylogenetics: elongation factor-1α recovers morphology-based tree for heliothine moth. Molecular Biology and Evolution. 1995, 12: 650-656.
CAS
PubMed
Google Scholar
Ogden TH, Whiting MF: The problem with "the Paleoptera problem:" sense and sensitivity. Cladistics. 2003, 19: 432-442.
Article
Google Scholar
Regier JC: Protocols, Concepts, and Reagents for preparing DNA sequencing templates. Version 12/4/08, [http://www.umbi.umd.edu/users/jcrlab/PCR_primers.pdf]
Kawakita A, Kato M: Assessment of the diversity and species specificity of the mutualistic association between Epicephala moths and Glochidion trees. Molecular Ecology. 2006, 15: 3567-3581. 10.1111/j.1365-294X.2006.03037.x.
Article
CAS
PubMed
Google Scholar
Drummond AJ, Ashton B, Cheung M, Heled J, Kearse M, Moir R, Stones-Havas S, Thierer T, Wilson A: Geneious ver. 5.1. 2010, [http://www.geneious.com]
Google Scholar
Castresana J: GBlocks, ver. 0.91b. 2002, [http://molevol.cmima.csic.es/castresana/]
Google Scholar
Talavera G, Castresana J: Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology. 2007, 56: 564-577. 10.1080/10635150701472164.
Article
CAS
PubMed
Google Scholar
Castresana J: Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution. 2000, 17: 540-552.
Article
CAS
PubMed
Google Scholar
Swofford DL: PAUP*: Phylogenetic analysis using parsimony (*and other methods). Version 4.0b10. 2002, Sunderland: Sinauer Associates
Google Scholar
Zwickl DJ: Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. 2006, Ph.D. dissertation: The University of Texas at Austin
Google Scholar
Zwickl DJ: GARLI-PART Version 0.97. Genetic Algorithm for Rapid Likelihood Inference. accessed 12 Aug. 2010, [https://www.nescent.org/wg_garli/Partitioned_version]
Posada D: jModelTest: Phylogenetic Model Averaging. Molecular Biology and Evolution. 2008, 25: 1253-1256. 10.1093/molbev/msn083.
Article
CAS
PubMed
Google Scholar
Lanave C, Preparata G, Saccone C, Serio G: A new method for calculating evolutionary substitution rates. Journal of Molecular Evolution. 1984, 20: 86-93. 10.1007/BF02101990.
Article
CAS
PubMed
Google Scholar
Tavaré S: Some probablistic and statistical problems on the analysis of DNA sequences. Lectures on Mathematics in the Life Sciences. 1986, 17: 57-86.
Google Scholar
Yang Z: Maximum-likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. Journal of Molecular Evolution. 1994, 39: 306-314. 10.1007/BF00160154.
Article
CAS
PubMed
Google Scholar
Gu X, Fu YX, Li WH: Maximum likelihood estimation of the heterogeneity of substitution rate among nucleotide sites. Molecular Biology and Evolution. 1995, 12: 546-557.
CAS
PubMed
Google Scholar
Goldman N, Yang Z: A codon-based model of nucleotide substitution for protein-coding DNA sequences. Molecular Biology and Evolution. 1994, 11: 725-736.
CAS
PubMed
Google Scholar
Cummings MP, Huskamp JC: Grid computing. EDUCAUSE Review. 2005, 40: 116-117.
Google Scholar
Bazinet AL, Cummings MP: The Lattice Project: a Grid research and production environment combining multiple Grid computing models. Distributed & Grid Computing - Science Made Transparent for Everyone Principles, Applications and Supporting Communities Tectum. Edited by: Weber WHW. 2009, Marburg, 2-13.
Google Scholar
Lockhart PJ, Stell MA, Hendy MD, Penny D: Recovering evolutionary trees under a more realistic model of sequence evolution. Molecular Biology and Evolution. 1994, 11: 605-612.
CAS
PubMed
Google Scholar
Foster PG, Hickey DA: Compositional bias may affect both DNA-based and protein-based phylogenetic reconstructions. Journal of Molecular Evolution. 1999, 48: 284-290. 10.1007/PL00006471.
Article
CAS
PubMed
Google Scholar
Nesnidal MP, Helmkampf M, Bruchhaus I, Hausdorf B: Compositional heterogeneity and phylogenomic inference of metazoan relationships. Molecular Biology and Evolution. 2010, 27: 2095-2104. 10.1093/molbev/msq097.
Article
CAS
PubMed
Google Scholar
Song H, Sheffield NC, Cameron SL, Miller KB, Whiting MF: When phylogenetic assumptions are violated: base compositional heterogeneity and among-site rate variation in beetle mitochondrial phylogenomics. Systematic Entomology. 2010, 35: 429-448. 10.1111/j.1365-3113.2009.00517.x.
Article
Google Scholar
Gibson A, Gowri-Shankar V, Higgs PG, Rattray M: A comprehensive analysis of mammalian mitochondrial genome base composition and improved phylogenetic methods. Molecular Biology and Evolution. 2005, 22: 251-264.
Article
CAS
PubMed
Google Scholar
Regier JC, Cook CP, Mitter C, Hussey A: A phylogenetic study of the 'bombycoid complex' (Lepidoptera) using five protein-coding nuclear genes, with comments on the problem of macrolepidopteran phylogeny. Systematic Entomology. 2008, 33: 175-189. 10.1111/j.1365-3113.2007.00409.x.
Article
Google Scholar
Regier JC, Shultz JW, Zwick A, Hussey A, Ball B, Wetzer R, Martin JW, Cunningham CW: Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature. 2010, 463: 1079-1083. 10.1038/nature08742.
Article
CAS
PubMed
Google Scholar
Zwick A: Degeneracy Coding Web Service. PhyloTools. 2010, Web, accessed 25 Feb. 2010, [http://www.phylotools.com/ptdegen1webservice.htm]
Google Scholar
Phillips MJ, Delsuc F, Penny D: Genome-scale phylogeny and the detection of systematic biases. Molecular Biology and Evolution. 2004, 21: 1455-1458. 10.1093/molbev/msh137.
Article
CAS
PubMed
Google Scholar
Cai JJ, Smith DK, Xia X, Yuen KY: MBE Toolbox: a Matlab toolbox for sequence data analysis in molecular biology and evolution. BMC Bioinformatics. 2005, 6: 64-10.1186/1471-2105-6-64.
Article
PubMed
PubMed Central
Google Scholar
Davis DR: New leaf-mining moths from Chile, with remarks on the history and composition of Phyllocnistinae (Lepidoptera: Gracillariidae). Tropical Lepidoptera. 1994, 5: 65-75.
Google Scholar
Shimodaira H: An approximately unbiased test of phylogenetic tree selection. Systematic Biology. 2002, 51: 492-508. 10.1080/10635150290069913.
Article
PubMed
Google Scholar
Shimodaira H, Hasegawa M: CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics. 2001, 17: 1246-1247. 10.1093/bioinformatics/17.12.1246.
Article
CAS
PubMed
Google Scholar
Kumata T: A taxonomic revision of the Gracillaria group occurring in Japan (Lepidoptera: Gracillariidae). Insecta Matsumurana, New Series. 1982, 26: 1-186.
Google Scholar
Kumata T, Kuroko H, Ermolaev VP: Japanese species of the Acrocercops-group (Lepidoptera: Gracillariidae). Insecta Matsumurana, New Series. 1988, 38: 1-111. 40:1-133
Google Scholar
Kumata T: A new stem-miner of alder in Japan, with a review of the larval transformation in the Gracillariidae (Lepidoptera). Insecta Matsumurana, New Series. 1978, 13: 1-27.
Google Scholar
Kumata T: On the Japanese species of the genera Macarostola, Aristaea and Systoloneura, with descriptions of three new species (Lepidoptera: Gracillariidae). Insecta Matsumurana, New Series. 1977, 9: 1-51.
Google Scholar
Kristensen NP, Scoble M, Karsholt O: Lepidoptera phylogeny and systematics: the state of inventorying moth and butterfly diversity. Linnaeus Tercentenary: Progress in Invertebrate Taxonomy. Zootaxa. 2007, 1668: 699-747.
Google Scholar
Whitfield JB, Kjer KM: Ancient rapid radiations of insects: challenges for phylogenetic analysis. Annual Review of Entomology. 2008, 53: 449-472. 10.1146/annurev.ento.53.103106.093304.
Article
CAS
PubMed
Google Scholar
Lemmon AR, Brown JM, Stanger-Hall K, Lemmon EM: The effect of ambiguous data on phylogenetic estimates obtained by maximum likelihood and Bayesian inference. Systematic Biology. 2009, 58: 130-145. 10.1093/sysbio/syp017.
Article
CAS
PubMed
Google Scholar
Felsenstein J: Cases in which parsimony or compatibility methods will be positively misleading. Systematic Zoology. 1978, 27: 401-410. 10.2307/2412923.
Article
Google Scholar
Hendy MD, Penny D: A framework for the quantitative study of evolutionary trees. Systematic Zoology. 1989, 38: 297-309. 10.2307/2992396.
Article
Google Scholar
Soltis DE, Soltis PS: Amborella not a "basal angiosperm"? Not so fast. American Journal of Botany. 2004, 2004: 997-1001.
Article
Google Scholar
Philippe H, Germot A: Phylogeny of eukaryotes based on ribosomal RNA: long-branch attraction and models of sequence evolution. Molecular Biology and Evolution. 2000, 17: 830-834.
Article
CAS
PubMed
Google Scholar
Hedtke SM, Townsend TM, Hillis DM: Resolution of phylogenetic conflict in large data sets by increased taxon sampling. Systematic Biology. 2006, 55 (3): 522-529. 10.1080/10635150600697358.
Article
PubMed
Google Scholar
Kawahara AY, Mignault AA, Regier JC, Kitching IJ, Mitter C: Phylogeny and biogeography of hawkmoths (Lepidoptera: Sphingidae): evidence from five nuclear genes. PLoS ONE. 2009, 4 (5): e5719-10.1371/journal.pone.0005719.
Article
PubMed
PubMed Central
Google Scholar
Kyrki J: The Yponomeutoidea: a reassessment of the superfamily and its suprageneric groups (Lepidoptera). Entomologica Scandinavica. 1984, 15: 71-84.
Article
Google Scholar
Kuznetzov VI, Stekol'nikov AA: Phylogenetic relationship between the superfamilies Psychoidea, Tineoidea, and Yponomeutoidea (Lepidoptera), taking into account the functional morphology of the male genital apparatus. Part 1. Functional morphology of the male genitalia. Entomological Review. 1976, 55: 533-548.
Google Scholar
Kuznetzov VI, Stekol'nikov AA: Phylogenetic relationship between the superfamilies Psychoidea, Tineoidea, and Yponomeutoidea (Lepidoptera), taking into account the functional morphology of the male genital apparatus. Part 2. Phylogenetic relationships of the families and subfamilies. Entomological Review. 1977, 56: 14-21.
Google Scholar
Moulton JK, Wiegmann B: Evolution and phylogenetic utility of CAD (rudimentary) among Mesozoic-aged eremoneuran Diptera (Insecta). Molecular Phylogenetics and Evolution. 2003, 31: 363-378.
Article
Google Scholar
Fang QQ, Cho S, Regier JC, Mitter C, Matthews M, Poole RW, Friedlander TP, Zhao SW: A new nuclear gene for insect phylogenetics: dopa decarboxylase is informative of relationships within Heliothinae (Lepidoptera: Noctuidae). Systematic Biology. 1997, 46: 269-283. 10.1093/sysbio/46.2.269.
Article
CAS
PubMed
Google Scholar
Farrell BD: Evolutionary assembly of the milkweed fauna: Cytochrome oxidase I and the age of Tetraopes beetles. Molecular Phylogenetics and Evolution. 2001, 18: 467-478. 10.1006/mpev.2000.0888.
Article
CAS
PubMed
Google Scholar
Regier JC, Fang QQ, Mitter C, Peigler RS, Friedlander TP, Solis MA: Evolution and phylogenetic utility of the period gene in Lepidoptera. Molecular Biology and Evolution. 1998, 15: 1172-1182.
Article
CAS
PubMed
Google Scholar
Brower AVZ, DeSalle R: Patterns of mitochondrial versus nuclear DNA sequence divergence among nymphalid butterflies: the utility of wingless as a source of characters for phylogenetic inference. Insect Molecular Biology. 1998, 7: 73-82. 10.1046/j.1365-2583.1998.71052.x.
Article
CAS
PubMed
Google Scholar
Comments
View archived comments (1)