Willis JC: Age and area: a study in geographical distribution and origin of species. 1922, Cambridge: Cambridge University Press
Book
Google Scholar
Savage HM: The shape of evolution: systematic tree topology. Biol J Linnean Soc. 1983, 20: 225-244. 10.1111/j.1095-8312.1983.tb01874.x.
Article
Google Scholar
Burlando B: The fractal geometry of evolution. J Theor Biol. 1993, 163 (2): 161-172. 10.1006/jtbi.1993.1114.
Article
CAS
PubMed
Google Scholar
Kirkpatrick M, Slatkin M: Searching for Evolutionary Patterns in the Shape of a Phylogenetic Tree. Evolution. 1993, 47: 1171-1181. 10.2307/2409983.
Article
Google Scholar
Mooers AO, Heard SB: Inferring evolutionary process from the phylogenetic tree shape. Q Rev Biol. 1997, 72: 31-54. 10.1086/419657.
Article
Google Scholar
Blum MGB, François O: Which random processes describe the tree of life? A large-scale study of phylogenetic tree imbalance. Syst Biol. 2006, 55 (4): 685-691. 10.1080/10635150600889625.
Article
PubMed
Google Scholar
Herrada EA, Tessone CJ, Klemm K, Eguíluz VM, Hernández-García E, Duarte CM: Universal Scaling in the Branching of the Tree of Life. PLoS ONE. 2008, 3: e2757-10.1371/journal.pone.0002757.
Article
PubMed
PubMed Central
Google Scholar
Morris SC: Evolution: bringing molecules into the fold. Cell. 2000, 100: 1-11.
Article
CAS
PubMed
Google Scholar
Carroll SB: Evolution at two levels: on genes and form. PLoS Biol. 2005, 3 (7): e245-10.1371/journal.pbio.0030245.
Article
PubMed
PubMed Central
Google Scholar
Roth C, Rastogi S, Arvestad L, Dittmar K, Light S, Ekman D, Liberles DA: Evolution after gene duplication: models, mechanisms, sequences, systems, and organisms. J Exp Zool B Mol Dev Evol. 2007, 308: 58-73.
Article
PubMed
Google Scholar
Dial KP, Marzluff JM: Nonrandom diversification within taxonomic assemblages. Syst Zool. 1989, 38: 26-37. 10.2307/2992433.
Article
Google Scholar
Burlando B: The fractal dimension of taxonomic systems. J Theor Biol. 1990, 146: 99-114. 10.1016/S0022-5193(05)80046-3.
Article
Google Scholar
Dayhoff MO: Atlas of Protein Sequence and Structure. 1965, Washington: National Biomedical Research Foundation
Google Scholar
Whelan S, de Bakker PIW, Quevillon E, Rodriguez N, Goldman N: PANDIT: an evolution-centric database of protein and associated nucleotide domains with inferred trees. Nucleic Acids Res. 2006, D327-D331. 34 Database
Banavar JR, Maritan A, Rinaldo A: Size and form in efficient transportation networks. Nature. 1982, 399: 130-132.
Article
Google Scholar
Garlaschelli D, Caldarelli G, Pietronero L: Universal scaling relations in food webs. Nature. 2003, 423 (6936): 165-168. 10.1038/nature01604.
Article
CAS
PubMed
Google Scholar
Camacho J, Arenas A: Food-web topology: universal scaling in food-web structure?. Nature. 2005, 435 (7044): E3-E4. 10.1038/nature03839.
Article
CAS
PubMed
Google Scholar
Klemm K, Eguíluz VM, San Miguel M: Scaling in the structure of directory trees in a computer cluster. Phys Rev Lett. 2005, 95 (12): 128701-
Article
PubMed
Google Scholar
Apic G, Huber W, Teichmann SA: Multi-domain protein families and domain pairs: comparison with known structures and a random model of domain recombination. J Struct Funct Genomics. 2003, 4 (2-3): 67-78.
Article
CAS
PubMed
Google Scholar
Unger R, Uliel S, Havlin S: Scaling law in sizes of protein sequence families: from super-families to orphan genes. Proteins. 2003, 51 (4): 569-576. 10.1002/prot.10347.
Article
CAS
PubMed
Google Scholar
Cotton JA, Page RDM: Rates and patterns of gene duplication and loss in the human genome. Proc R Soc B. 2005, 272 (1560): 277-283. 10.1098/rspb.2004.2969.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kunin V, Teichmann SA, Huynen MA, Ouzounis CA: The properties of protein family space depend on experimental design. Bioinformatics. 2005, 21 (11): 2618-2622. 10.1093/bioinformatics/bti386.
Article
CAS
PubMed
Google Scholar
Lee D, Grant A, Marsden RL, Orengo C: Identification and distribution of protein families in 120 completed genomes using Gene3D. Proteins. 2005, 59 (3): 603-615. 10.1002/prot.20409.
Article
CAS
PubMed
Google Scholar
Cotton JA, Page RDM: The shape of human gene family phylogenies. BMC Evol Biol. 2006, 6: 66-10.1186/1471-2148-6-66.
Article
PubMed
PubMed Central
Google Scholar
Sales-Pardo M, Chan AOB, Amaral LAN, Guimerà R: Evolution of protein families: is it possible to distinguish between domains of life?. Gene. 2007, 402 (1-2): 81-93. 10.1016/j.gene.2007.07.029.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hughes T, Liberles DA: The power-law distribution of gene family size is driven by the pseudogenisation rate's heterogeneity between gene families. Gene. 2008, 414 (1-2): 85-94. 10.1016/j.gene.2008.02.014.
Article
CAS
PubMed
Google Scholar
Ford DJ: Probabilities on cladograms:introduction to the alpha model. PhD thesis. 2006, Stanford University, Stanford
Google Scholar
Hernández-García E, Tuğrul M, Herrada EA, Eguíluz VM, Klemm K: Simple models for scaling in phylogenetic trees. Int J Bifurcat Chaos. 2010, 20: 805-811. 10.1142/S0218127410026095.
Article
Google Scholar
Sackin M: Good and bad phenograms. Syst Zool. 1972, 21: 225-226. 10.2307/2412292.
Article
Google Scholar
Blum MGB, François O: On statistical tests of phylogenetic tree imbalance: the Sackin and other indices revisited. Math Biosci. 2005, 195 (2): 141-153. 10.1016/j.mbs.2005.03.003.
Article
PubMed
Google Scholar
Cavalli-Sforza LL, Edwards AWF: Phylogenetic analysis: models and estimation procedures. Am J Hum Genet. 1967, 19: 233-257.
CAS
PubMed
PubMed Central
Google Scholar
Harding EF: The probabilities of rooted tree-shapes generated by random bifurcation. Adv Appl Prob. 1971, 3: 44-77. 10.2307/1426329.
Article
Google Scholar
Aldous DJ: Stochastic models and descriptive statistics for phylogenetic trees from Yule to today. Stat Sci. 2001, 16: 23-34. 10.1214/ss/998929474.
Article
Google Scholar
Keller-Schmidt S, Tuğrul M, Eguíluz VM, Hernández-Garca E, Klemm K: An Age Dependent Branching Model for Macroevolution. 2010, [http://arxiv.org/abs/1012.3298]
Google Scholar
Pinelis I: Evolutionary models of phylogenetic trees. Proc R Soc B. 2003, 270 (1522): 1425-1431. 10.1098/rspb.2003.2374.
Article
PubMed
PubMed Central
Google Scholar
Stich M, Manrubia SC: Topological properties of phylogenetic trees in evolutionary models. Eur Phys J B. 2009, 71: 583-592.
Article
Google Scholar
Yule GU: A mathematical theory of evolution, based on the conclusions of Dr. J. C. Willis. Philos Trans R Soc Lond A. 1924, 213: 21-87.
Article
Google Scholar
Dawkins R: The evolution of evolvability. Artificial Life. The Proceedings of an Interdisciplinary Workshop on the Synthesis and Simulation of Living Systems. Edited by: Langton C. 1989, Los Alamos: Addison-Wesley Pub. Corp, VI: 201-220.
Google Scholar
Brookfield JFY: Evolution and evolvability: celebrating Darwin 200. Biol Lett. 2009, 5: 44-46. 10.1098/rsbl.2008.0639.
Article
PubMed
Google Scholar
Masel J, Siegal ML: Robustness: mechanisms and consequences. Trends Genet. 2009, 25 (9): 395-403. 10.1016/j.tig.2009.07.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Erwin DH: Macroevolution is more than repeated rounds of microevolution. Evol Dev. 2000, 2: 78-84. 10.1046/j.1525-142x.2000.00045.x.
Article
CAS
PubMed
Google Scholar
Simons AM: The continuity of microevolution and macroevolution. J Evol Biol. 2002, 15: 688-701. 10.1046/j.1420-9101.2002.00437.x.
Article
Google Scholar
Grantham T: Is macroevolution more than succesive rounds of microevolution?. Paleontology. 2007, 50: 75-85. 10.1111/j.1475-4983.2006.00603.x.
Article
Google Scholar
Wagner A: Robustness and evolvability in living systems. 2005, Princeton: Princeton University Press
Google Scholar
Lenski RE, Barrick JE, Ofria C: Balancing robustness and evolvability. PLoS Biol. 2006, 4 (12): e428-10.1371/journal.pbio.0040428.
Article
PubMed
PubMed Central
Google Scholar
Daniels BC, Chen YJ, Sethna JP, Gutenkunst RN, Myers CR: Sloppiness, robustness, and evolvability in systems biology. Curr Opin Biotechnol. 2008, 19 (4): 389-395. 10.1016/j.copbio.2008.06.008.
Article
CAS
PubMed
Google Scholar
Wagner A: Robustness and evolvability: a paradox resolved. Proc R Soc B. 2008, 275 (1630): 91-100. 10.1098/rspb.2007.1137.
Article
PubMed
Google Scholar
Guyer C, Slowinski JB: Comparisons between observed phylogenetic topologies with null expectation among three monophyletic lineages. Evolution. 1991, 45: 340-350. 10.2307/2409668.
Article
Google Scholar
Heard SB: Patterns in tree balance among cladistic, phenetic, and randomly generated phylogenetic trees. Evolution. 1992, 46: 1818-1826. 10.2307/2410033.
Article
Google Scholar
Guyer C, Slowinski JB: Adaptive radiation an the topology of large phylogenies. Evolution. 1993, 47: 253-263. 10.2307/2410133.
Article
Google Scholar
Mooers AØ, Page RDM, Purvis A, Harvey PH: Phylogenetic noise leads to unbalanced cladistic trees reconstructions. Syst Biol. 1995, 44: 332-342.
Article
Google Scholar
Chan KMA, Moore BR: Accounting for mode of speciation increases power and realism of tests of phylogenetic asymmetry. Am Nat. 1999, 153: 332-346. 10.1086/303173.
Article
Google Scholar
Heard SB, Mooers AØ: Signatures of random and selective mass extinctions in phylogenetic tree balance. Syst Biol. 2002, 51 (6): 889-897. 10.1080/10635150290102591.
Article
PubMed
Google Scholar
Davies TJ, Savolainen V, Chase MW, Goldblatt P, Barraclough TG: Environment, area, and diversification in the species-rich owering plant family Iridaceae. Am Nat. 2005, 166 (3): 418-425. 10.1086/432022.
Article
PubMed
Google Scholar
Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer ELL, Studholme DJ, Yeats C, Eddy SR: The Pfam protein families database. Nucleic Acids Res. 2004, D138-D141. 32 Database
Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987, 4 (4): 406-425. [http://www.ncbi.nlm.nih.gov/pubmed/3447015]
CAS
PubMed
Google Scholar
Gascuel O: BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol. 1997, 14 (7): 685-695. [http://www.ncbi.nlm.nih.gov/pubmed/9254330]
Article
CAS
PubMed
Google Scholar
Bruno WJ, Socci ND, Halpern AL: Weighted neighbor joining: a likelihood-based approach to distance-based phylogeny reconstruction. Mol Biol Evol. 2000, 17: 189-197. [http://www.ncbi.nlm.nih.gov/pubmed/10666718]
Article
CAS
PubMed
Google Scholar
Desper R, Gascuel O: Fast and accurate phylogeny reconstruction algorithms based on the minimum-evolution principle. J Comput Biol. 2002, 9 (5): 687-705. 10.1089/106652702761034136.
Article
CAS
PubMed
Google Scholar
Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003, 52 (5): 696-704. 10.1080/10635150390235520. [http://www.ncbi.nlm.nih.gov/pubmed/14530136]
Article
PubMed
Google Scholar
Huynen MA, van Nimwegen E: The frequency distribution of gene family sizes in complete genomes. Mol Biol Evol. 1998, 15 (5): 583-589.
Article
CAS
PubMed
Google Scholar
Harrison PM, Gerstein M: Studying genomes through the aeons: protein families, pseudogenes and proteome evolution. J Mol Biol. 2002, 318 (5): 1155-1174. 10.1016/S0022-2836(02)00109-2.
Article
CAS
PubMed
Google Scholar
Koonin EV, Wolf YI, Karev GP: The structure of the protein universe and genome evolution. Nature. 2002, 420 (6912): 218-223. 10.1038/nature01256.
Article
CAS
PubMed
Google Scholar
Luscombe NM, Qian J, Zhang Z, Johnson T, Gerstein M: The dominance of the population by a selected few: power-law behaviour applies to a wide variety of genomic properties. Genome Biol. 2002, 3 (8): RESEARCH0040-
Article
PubMed
PubMed Central
Google Scholar
Campos PRA, de Oliveira VM: Emergence of allometric scaling in genealogical trees. Advances in Complex Systems. 2004, 7: 39-46. 10.1142/S0219525904000044.
Article
Google Scholar