White MJD: Animal Cytology and Evolution. 1973, Cambridge: Cambridge University Press
Google Scholar
King M: Species Evolution: The Role of Chromosomal Change. 1993, Cambridge: Cambridge University Press
Google Scholar
Coghlan A, Eichler EE, Oliver SG, Paterson AH, Stein L: Chromosome evolution in eukaryotes: a multi-kingdom perspective. Trends Genet. 2005, 21: 673-682. 10.1016/j.tig.2005.09.009.
Article
CAS
PubMed
Google Scholar
Lukhtanov VA, Kandul NP, Plotkin JB, Dantchenko AV, Haig D, Pierce NE: Reinforcement of pre-zygotic isolation and karyotype evolution in Agrodiaetus butterflies. Nature. 2005, 436: 385-389. 10.1038/nature03704.
Article
CAS
PubMed
Google Scholar
Shimabukuro-Dias CK, Oliveira C, Foresti F: Karyotype variability in eleven species of the catfish genus Corydoras (Siluriformes: Callichthyidae). Ichtyiol Explor Freshwaters. 2004, 15: 135-146.
Google Scholar
Giménez MD, Mirol PM, Bidau CJ, Searle JB: Molecular analysis of populations of Ctenomys (Caviomorpha, Rodentia) with high karyotypic variability. Cytogenet Genome Res. 2002, 96: 130-136. 10.1159/000063051.
Article
PubMed
Google Scholar
Huang L, Wang J, Nie W, Su W, Yang F: Tandem chromosome fusions in karyotypic evolution of Muntiacus: evidence from M. feae and M. gongshanensis. Chrom Res. 2006, 14: 637-647. 10.1007/s10577-006-1073-2.
Article
CAS
PubMed
Google Scholar
Hipp AL: Nonuniform processes of chromosome evolution in sedges (Carex: Cyperaceae). Evolution. 2007, 61: 2175-2194. 10.1111/j.1558-5646.2007.00183.x.
Article
PubMed
Google Scholar
Britton-Davidian J, Catalan J, Ramalhinho MD, Ganem G, Auffray JC, Capela R, Biscoito M, Searle JB, Mathias MD: Rapid chromosomal evolution in island mice. Nature. 2000, 403: 158-10.1038/35003116.
Article
CAS
PubMed
Google Scholar
Pialek J, Hauffe HC, Rodriguez-Clark KM, Searle JB: Raciation and speciation in house mice from the Alps: the role of chromosomes. Mol Ecol. 2001, 10: 613-625.
Article
CAS
PubMed
Google Scholar
Castiglia R, Annesi F, Capanna E: Geographical pattern of genetic variation in the Robertsonian system of Mus musculus domesticus in central Italy. Biol J Linn Soc. 2005, 84: 395-405. 10.1111/j.1095-8312.2005.00442.x.
Article
Google Scholar
White TA, Bordewich M, Searle JB: A network approach to study karyotypic evolution: the chromosomal races of the common shrew (Sorex araneus) and house mouse (Mus musculus) as model systems. Syst Biol. 2010, 59: 262-276. 10.1093/sysbio/syq004.
Article
CAS
PubMed
Google Scholar
Franchini P, Castiglia R, Capanna E: Reproductive isolation between chromosomal races of the house mouse Mus musculus domesticus in a parapatric contact area revealed by an analysis of multiple unlinked loci. J Evol Biol. 2008, 21: 502-513. 10.1111/j.1420-9101.2007.01492.x.
Article
CAS
PubMed
Google Scholar
Nunes AC, Catalan J, Lopez J, da Graça Ramalhinho M, da Luz Mathias M, Britton-Davidian J: Fertility assessment in hybrids between monobrachially homologous Rb races of the house mouse from the island of Madeira: implications for modes of chromosomal evolution. Heredity. 2011, 106: 348-356. 10.1038/hdy.2010.74.
Article
CAS
PubMed
Google Scholar
McAllister BF, Sheeley SL, Mena PA, Evans AL, Schlötterer C: Clinal distribution of a chromosomal rearrangement: a precursor to chromosomal speciation?. Evolution. 2008, 62: 1852-1865. 10.1111/j.1558-5646.2008.00435.x.
Article
PubMed
Google Scholar
Bidau CJ, Mirol PM: Orientation and segregation of Robertsonian trivalents in Dichroplus pratensis (Acrididae). Genome. 1988, 30: 947-955. 10.1139/g88-151.
Article
CAS
PubMed
Google Scholar
Fornel R, Cordeiro-Estrela P, De Freitas TRO: Skull shape and size variation in Ctenomys minutus (Rodentia: Ctenomyidae) in geographical, chromosomal polymorphism, and environmental contexts. Biol J Linn Soc. 2010, 101: 705-720. 10.1111/j.1095-8312.2010.01496.x.
Article
Google Scholar
Sharp HE, Rowell DM: Unprecedented chromosomal diversity and behaviour modify linkage patterns and speciation potential: structural heterozygosity in an Australian spider. J Evol Biol. 2007, 20: 2427-2439. 10.1111/j.1420-9101.2007.01395.x.
Article
CAS
PubMed
Google Scholar
Qumsiyeh MB, Coate JL, Peppers JA, Kennedy PK, Kennedy ML: Robertsonian chromosomal rearrangements in the short-tailed shrew, Blarina carolinensis, in western Tennessee. Cytogenet Cell Genet. 1997, 76: 153-158. 10.1159/000134534.
Article
CAS
PubMed
Google Scholar
Qumsiyeh MB, Barker S, Dover S, Kennedy PK, Kennedy MP: A potential model for early stages of chromosomal evolution via concentric Robertsonian fans: A large area of polymorphism in southern short-tailed shrews (Blarina carolinensis). Cytogen Cell Genet. 1999, 87: 27-31. 10.1159/000015387.
Article
CAS
Google Scholar
Völker M, Sonnenberg R, Kullmann RPH: Karyotype differentiation in Chromaphyosemion killifishes (Cyprinodontiformes, Nothobranchiidae). III: Extensive karyotypic variability associated with low mitochondrial haplotype differentiation in C. bivittatum. Cytogen Genome Res. 2007, 116: 116-126. 10.1159/000097429.
Article
Google Scholar
Nagaraju J, Jolly MS: Interspecific hybrids of Antheraea roylei and A. pernyi - A cytogenetic reassessment. Theor App Genet. 1986, 72: 269-273. 10.1007/BF00267003.
Article
CAS
Google Scholar
Nachman MW, Myers P: Exceptional chromosomal mutations in a rodent population are not strongly underdominant. Proc Natl Acad Sci USA. 1989, 86: 6666-6670. 10.1073/pnas.86.17.6666.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kerridge DC, Baker RJ: Genetic variation and origin of the most chromosomally polymorphic natural mammalian population. Cytogen. Cell Genet. 1990, 53: 5-7. 10.1159/000132884.
Article
CAS
Google Scholar
Nogueira CDA, Fagundes V: Akodon cursor Winge, 1887 (Rodentia: Sigmodontinae): one or two species? New evidences based on molecular data. Zootaxa. 2008, 1768: 41-51.
Google Scholar
Dobzhansky T: Genetics of the evolutionary process. 1970, New York: Columbia University Press
Google Scholar
Kirkpatrick M: How and why chromosome inversions evolve. PLoS Biol. 2010, 8: e1000501-10.1371/journal.pbio.1000501.
Article
PubMed
PubMed Central
Google Scholar
Baker RJ, Chesser RK, Koop BF, Hoyt RA: Adaptive nature of chromosomal rearrangement differential fitness in pocket gophers Geomys bursarius. Genetica. 1983, 61: 161-164. 10.1007/BF00123719.
Article
Google Scholar
Lyapunova EA, Bakloushinskaya IY, Saidov AS, Saidov KK: Dynamics of chromosome variation in mole voles Ellobius tancrei (Mammalia, Rodentia) in Pamiro-Alai in the period from 1982 to 2008. Russian J Genet. 2010, 46: 566-571. 10.1134/S1022795410050091.
Article
CAS
Google Scholar
Lorković Z: Some peculiarities of spatially and sexually restricted gene exchange in the Erebia tyndarus group. Cold Spring Harb Symp Quant Biol. 1958, 23: 319-325.
Article
PubMed
Google Scholar
Nevo E, Cleve H: Genetic differentiation during speciation. Nature. 1978, 275: 125-126. 10.1038/275125a0.
Article
CAS
PubMed
Google Scholar
Albre J, Gers C, Legal L: Molecular phylogeny of the Erebia tyndarus (Lepidoptera, Rhopalocera, Nymphalidae, Satyrinae) species group combining CoxII and ND5 mitochondrial genes: A case study of a recent radiation. Mol Phyl Evol. 2008, 47: 196-210. 10.1016/j.ympev.2008.01.009.
Article
CAS
Google Scholar
Karanth KP, Avivi A, Beharav A, Nevo E: Microsatellite diversity in populations of blind subterranean mole rats (Spalax ehrenbergi superspecies) in Israel: speciation and adaptation. Biol J Linn Soc. 2004, 83: 229-241. 10.1111/j.1095-8312.2004.00384.x.
Article
Google Scholar
Gorbunov PY: The butterflies of Russia (Lepidoptera: Hesperioidea and Papilionoidea): classification, genitalia, keys for identification. 2001, Ekaterinburg: Thesis
Google Scholar
Robinson R: Lepidoptera Genetics. 1971, Pergamon Press
Google Scholar
Lorković Z: Leptidea reali Reissinger, 1989 (= lorkovicii Real, 1988), a new European species (Lepid., Pieridae). Natura Croatica. 1993, 2: 1-26.
Google Scholar
Camacho JPM, Sharbel TF, Beukeboom LW: B-chromosome evolution. Phil Trans R Soc Lond B. 2000, 355: 163-178. 10.1098/rstb.2000.0556.
Article
CAS
Google Scholar
Jones RN, Gonzalez-Sanchez M, Gonzalez-Garcia M, Vega JM, Puertas MJ: Chromosomes with a life of their own. Cytogenet Genome Res. 2008, 120: 265-280. 10.1159/000121076.
Article
CAS
PubMed
Google Scholar
Lukhtanov VA: Evolution of the karyotype and system of higher taxa of the Pieridae (Lepidoptera) of the world fauna. Entomol Obozr. 1991, 70: 619-641.
Google Scholar
Fumi M: Distinguishing between Leptidea sinapis and L. reali (Lepidoptera: Pieridae) using a morphometric approach: impact of measurement error on the discriminative characters. Zootaxa. 2008, 1819: 40-54.
Google Scholar
Martin J, Gilles A, Descimon H: Species concepts and sibling species: the case of Leptidea sinapis and Leptidea reali. Butterflies: Ecology and Evolution Taking Flight. Edited by: Boggs CL, Watt WB, Ehrlich PR. 2003, Chicago: Chicago University Press, 459-476.
Google Scholar
Dincă V, Zakharov EV, Hebert PDN, Vila R: Complete DNA barcode reference library for a country's butterfly fauna reveals high performance for temperate Europe. Proc R Soc B. 2011, 278: 347-355. 10.1098/rspb.2010.1089.
Article
PubMed
Google Scholar
Wahlberg N, Saccheri I: The effects of Pleistocene glaciations on the phylogeography of Melitaea cinxia (Lepidoptera: Nymphalidae). Eur J Entomol. 2007, 104: 675-684.
Article
CAS
Google Scholar
Verovnik R, Glogovčan P: Morphological and molecular evidence of a possible hybrid zone of Leptidea sinapis and L. reali (Lepidoptera: Pieridae). Eur J Entomol. 2007, 104: 667-674.
Article
CAS
Google Scholar
Freese A, Fiedler K: Experimental evidence for specific distinctness of the two wood white butterfly taxa, Leptidea sinapis and L. reali (Pieridae). Nota lepid. 2002, 25: 39-59.
Google Scholar
Friberg M, Vongvanich N, Borg-Karlson AK, Kemp DJ, Merilaita S, Wiklund C: Female mate choice determines reproductive isolation between sympatric butterflies. Behav Ecol Sociobiol. 2008, 62: 873-886. 10.1007/s00265-007-0511-2.
Article
Google Scholar
Simakova A, Puzachenko A: The vegetation during the last glacial maximum (LGM) (24.0 - 17.0 kyr BP). Evolution of European ecosystems during Pleistocene - Holocene transition (24.0 - 8.0 kyr BP). Edited by: Markova AK, van Kolfschoten T. 2008, Moscow: KMK Scientific Press, 315-341.
Google Scholar
Freitas TRO, Mattevi MS, Oliveira LFB, Souza MJ, Yonenagayassuda Y, Salzano FM: Chromosome relationships in 3 representatives of the genus Holochilus (Rodentia, Cricetidae) from Brazil. Genetica. 1983, 61: 13-20. 10.1007/BF00563228.
Article
Google Scholar
Koop BF, Baker RJ, Genoways HH: Numerous chromosomal polymorphisms in a natural population of rice rats Oryzomys (Cricetidae). Cytogenet Cell Genet. 1983, 35: 131-135. 10.1159/000131854.
Article
CAS
PubMed
Google Scholar
Yonenaga-Yassuda Y, Doprado RC, Mello DA: Supernumerary chromosomes in Holochilus brasiliensis and comparative cytogenetic analysis with nectomys -squamipes (Cricetidae, Rodentia). Rev Bras Genet. 1987, 10: 209-220.
Google Scholar
Angines N, Guilera M: Chromosome polymorphism in Holochilus venezuelae (Rodentia, Cricetidae) - C-bands and G-bands. Genome. 1991, 34: 13-18. 10.1139/g91-003.
Article
Google Scholar
Nachman MW: Geographic patterns of chromosomal variation in South American marsh rats, Holochilus brasiliensis and H. vulpinus. Cytogen Cell Genet. 1992, 61: 10-16. 10.1159/000133361.
Article
CAS
Google Scholar
Volobuev VT, Aniskin VM: Comparative chromosome banding analysis of three South American species of rice rat of the genus Oryzomys (Rodentia, Sigmodontidae). Chrom Res. 2000, 8: 295-304. 10.1023/A:1009223210737.
Article
Google Scholar
Andrades-Miranda J, Zanchin NIT, Oliveira LFB, Langguth AR, Mattevi MS: Cytogenetic studies in nine taxa of the genus Oryzomys (Rodentia, Sigmodontinae) from Brazil. Mammalia. 2001, 65: 461-472. 10.1515/mamm.2001.65.4.461.
Article
Google Scholar
Brant SV, Ortí G: Molecular phylogeny of short-tailed shrews, Blarina (Insectivora: Soricidae). Mol Phyl Evol. 2002, 22: 163-173. 10.1006/mpev.2001.1057.
Article
CAS
Google Scholar
Silva MJJ, Yonenaga-Yassuda Y: B chromosomes in Brazilian rodents. Cytogenet Genome Res. 2004, 106: 257-263. 10.1159/000079296.
Article
CAS
PubMed
Google Scholar
Hipp AL, Rothrock PE, Whitkus R, Weber JA: Chromosomes tell half of the story: the correlation between karyotype rearrangements and genetic diversity in sedges, a group with holocentric chromosomes. Mol Ecol. 2010, 19: 3124-3138. 10.1111/j.1365-294X.2010.04741.x.
Article
PubMed
Google Scholar
Baker RJ, Bickham : Speciation by monobrachial centric fusion. Proc Natl Acad Sci USA. 1986, 83: 8245-8248. 10.1073/pnas.83.21.8245.
Article
CAS
PubMed
PubMed Central
Google Scholar
Basset P, Yannic G, Brunner H, Hausser J: Restricted gene flow at specific parts of the shrew genome in chromosomal hybrid zones. Evolution. 2006, 60: 1718-1730.
Article
CAS
PubMed
Google Scholar
Wolf KW: The structure of condensed chromosomes in mitosis and meiosis of insects. Int J Insect Morphol Embryol. 1996, 25: 37-62. 10.1016/0020-7322(95)00021-6.
Article
Google Scholar
Lukhtanov VA, Kuznetsova VG: Molecular and cytogenetic approaches to species diagnostics, systematics, and phylogenetics. Zh Obshch Biol. 2009, 70: 415-437.
CAS
PubMed
Google Scholar
Lukhtanov VA, Kuznetsova VG: What genes and chromosomes say about the origin and evolution of insects and other arthropods. Russian J Genet. 2010, 46: 1115-1121. 10.1134/S1022795410090279.
Article
CAS
Google Scholar
Coyne JA, Orr AH: Speciation. 2004, Sunderland, MA: Sinauer
Google Scholar
Noor M, Grams KL, Bertucci LA, Reiland J: Chromosomal inversions and the reproductive isolation of species. Proc Natl Acad Sci USA. 2001, 98: 12084-12088. 10.1073/pnas.221274498.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rieseberg LH: Chromosomal rearrangements and speciation. Trends Ecol Evol. 2001, 16: 351-358. 10.1016/S0169-5347(01)02187-5.
Article
PubMed
Google Scholar
Faria R, Navarro A: Chromosomal speciation revisited: rearranging theory with pieces of evidence. Trends Ecol Evol. 2010, 25: 660-669. 10.1016/j.tree.2010.07.008.
Article
PubMed
Google Scholar
Lowry DB, Willis JH: A widespread chromosomal inversion polymorphism contributes to a najor life-history transition, local adaptation, and reproductive isolation. PLoS Biol. 2010, 8 (9): e1000500-10.1371/journal.pbio.1000500.
Article
PubMed
PubMed Central
Google Scholar
Ayala FJ, Coluzzi M: Chromosome speciation: humans, Drosophila, and mosquitoes. Proc Natl Acad Sci USA. 2005, 102 (suppl 1): 6535-6542.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dincă V, Lukhtanov VA, Talavera G, Vila R: Unexpected layers of cryptic diversity inwood white Leptidea butterflies. Nature Comm. 2011, 2: 324-
Article
Google Scholar
Lukhtanov VA, Vila R, Kandul NP: Rearrangement of the Agrodiaetus dolus species group (Lepidoptera, Lycaenidae) using a new cytological approach and molecular data. Insect Syst Evol. 2006, 37: 325-334. 10.1163/187631206788838563.
Article
Google Scholar
Vershinina AO, Lukhtanov VA: Geographical distribution of the cryptic species Agrodiaetus alcestis alcestis, A. alcestis karacetinae and A. demavendi (Lepidoptera, Lycaenidae) revealed by cytogenetic analysis. Comparative Cytogenetics. 2010, 4: 1-11.
Article
Google Scholar
Marec F, Sahara K, Traut W: Rise and fall of the W chromosome in Lepidoptera. Molecular Biology and Genetics of the Lepidoptera. Edited by: Marec F, Goldsmith MR. 2010, London-New York: CRC Press, 49-63.
Google Scholar
Traut W, Sahara K, Otto TD, Marec F: Molecular differentiation of sex chromosomes probed by comparative genomic hybridization. Chromosoma. 1999, 108: 173-180. 10.1007/s004120050366.
Article
CAS
PubMed
Google Scholar
Yoshido A, Bando H, Yasukochi Y, Sahara K: The Bombyx mori karyotype and the assignment of linkage groups. Genetics. 2005, 170: 675-685. 10.1534/genetics.104.040352.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lukhtanov VA, Dantchenko AV: Principles of highly ordered metaphase I bivalent arrangement in spermatocytes of Agrodiaetus (Lepidoptera). Chrom Res. 2002, 10: 5-20. 10.1023/A:1014249607796.
Article
CAS
PubMed
Google Scholar
Lorković Z: The butterfly chromosomes and their application in systematics and phylogeny. Butterflies of Europe. Edited by: Kudrna O. 1990, Wiesbaden: Aula-Verlag, 2: 332-396.
Google Scholar
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R: DNA primers for amplification of mitochondrial Cytochrome C oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech. 1994, 3: 294-299.
CAS
Google Scholar
Simons C, Frati R, Beckenbach A, Crespit B, Liu H, Floors P: Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Ent Soc Am. 1994, 87: 651-701.
Article
Google Scholar
Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W: Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci USA. 2004, 101: 14812-14817. 10.1073/pnas.0406166101.
Article
CAS
PubMed
PubMed Central
Google Scholar
White TJ, Bruns T, Lee S, Taylor J: Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: a guide to methods and applications. Edited by: Innis MA, Gelfand DH, Sninsky JJ, White TJ. 1990, San Diego: Academic Press, 315-322.
Google Scholar
Biomatters Ltd. 2009 Geneious v.4.8.3. [http://www.geneious.com/]
Posada D: Collapse: Describing haplotypes from sequence alignments. 2004, Vigo (Spain): University of Vigo, [http://darwin.uvigo.es/software/collapse.html]
Google Scholar
Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003, 52: 696-704. 10.1080/10635150390235520.
Article
PubMed
Google Scholar
Hasegawa M, Kishino H, Yano TA: Dating of the human ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol. 1985, 22: 160-174. 10.1007/BF02101694.
Article
CAS
PubMed
Google Scholar
Posada D: jModelTest: phylogenetic model averaging. Mol Biol Evol. 2008, 25: 1253-1256. 10.1093/molbev/msn083.
Article
CAS
PubMed
Google Scholar
Clement M, Posada D, Crandall K: TCS: a computer program to estimate gene genealogies. Mol Ecol. 2000, 9: 1657-1660. 10.1046/j.1365-294x.2000.01020.x.
Article
CAS
PubMed
Google Scholar
Excoffier L, Langaney A: Origin and differentiation of human mitochondrial DNA. Am J Human Gen. 1989, 44: 73-85.
CAS
Google Scholar
Drummond AJ, Rambaut A: BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007, 7: 214-10.1186/1471-2148-7-214.
Article
PubMed
PubMed Central
Google Scholar
Quek SP, Davies SJ, Itino T, Pierce NE: Codiversification in an ant-plant mutualism: Stem texture and the evolution of host use in Crematogaster (Formicidae: Myrmicinae) inhabitants of Macaranga (Euphorbiaceae). Evolution. 2004, 58: 554-570.
Article
CAS
PubMed
Google Scholar
Heled J, Drummond AJ: Bayesian inference of species trees from multilocus data. Mol Biol Evol. 2010, 27: 570-580. 10.1093/molbev/msp274.
Article
CAS
PubMed
Google Scholar