Rawlings ND, Morton FR, Kok CY, Kong J, Barrett AJ: MEROPS: the peptidase database. Nucleic Acids Res. 2008, 36: D320-325. 10.1093/nar/gkm954.
Article
PubMed Central
CAS
PubMed
Google Scholar
White JM, Bridges LC, DeSimone DW, Tomczuk M, Wolfsberg TG: Introduction to the ADAM family. The ADAM Family of Proteases. Edited by: Hooper NM, Lendeckel U. 2005, Dordrecht, Springer, 1-28. full_text.
Chapter
Google Scholar
Blobel CP: ADAMs: key components in EGFR signalling and development. Nat Rev Mol Cell Biol. 2005, 6: 32-43. 10.1038/nrm1548.
Article
CAS
PubMed
Google Scholar
Huang J, Bridges LC, White JM: Selective modulation of integrin-mediated cell migration by distinct ADAM family members. Mol Biol Cell. 2005, 16: 4982-4991. 10.1091/mbc.E05-03-0258.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gaultier A, Cousin H, Darribere T, Alfandari D: ADAM13 disintegrin and cysteine-rich domains bind to the second heparin-binding domain of fibronectin. J Biol Chem. 2002, 277: 23336-23344. 10.1074/jbc.M201792200.
Article
CAS
PubMed
Google Scholar
Thodeti CK, Albrechtsen R, Grauslund M, Asmar M, Larsson C, Takada Y, Mercurio AM, Couchman JR, Wewer UM: ADAM12/syndecan-4 signaling promotes beta 1 integrin-dependent cell spreading through protein kinase Calpha and RhoA. J Biol Chem. 2003, 278: 9576-9584. 10.1074/jbc.M208937200.
Article
CAS
PubMed
Google Scholar
Smith KM, Gaultier A, Cousin H, Alfandari D, White JM, DeSimone DW: The cysteine-rich domain regulates ADAM protease function in vivo. J Cell Biol. 2002, 159: 893-902. 10.1083/jcb.200206023.
Article
PubMed Central
CAS
PubMed
Google Scholar
Janes PW, Saha N, Barton WA, Kolev MV, Wimmer-Kleikamp SH, Nievergall E, Blobel CP, Himanen JP, Lackmann M, Nikolov DB: Adam meets Eph: an ADAM substrate recognition module acts as a molecular switch for ephrin cleavage in trans. Cell. 2005, 123: 291-304. 10.1016/j.cell.2005.08.014.
Article
CAS
PubMed
Google Scholar
Cousin H, Gaultier A, Bleux C, Darribere T, Alfandari D: PACSIN2 is a regulator of the metalloprotease/disintegrin ADAM13. Dev Biol. 2000, 227: 197-210. 10.1006/dbio.2000.9871.
Article
CAS
PubMed
Google Scholar
Zheng Y, Schlondorff J, Blobel CP: Evidence for regulation of the tumor necrosis factor alpha-convertase (TACE) by protein-tyrosine phosphatase PTPH1. J Biol Chem. 2002, 277: 42463-42470. 10.1074/jbc.M207459200.
Article
CAS
PubMed
Google Scholar
Tanaka M, Nanba D, Mori S, Shiba F, Ishiguro H, Yoshino K, Matsuura N, Higashiyama S: ADAM binding protein Eve-1 is required for ectodomain shedding of epidermal growth factor receptor ligands. J Biol Chem. 2004, 279: 41950-41959. 10.1074/jbc.M400086200.
Article
CAS
PubMed
Google Scholar
ADAM family tree in Treefam. [http://www.treefam.org/cgi-bin/treeview.pl?ac=TF314733&stype=full]
Cho C: Mammalian ADAMs with testis-specific or -predominant expression. The ADAM Family of Proteases. Edited by: Hooper NM, Lendeckel U. 2005, Dordrecht, Springer, 239-259. full_text.
Chapter
Google Scholar
Kurisaki T, Masuda A, Sudo K, Sakagami J, Higashiyama S, Matsuda Y, Nagabukuro A, Tsuji A, Nabeshima Y, Asano M, et al: Phenotypic analysis of Meltrin alpha (ADAM12)-deficient mice: involvement of Meltrin alpha in adipogenesis and myogenesis. Mol Cell Biol. 2003, 23: 55-61. 10.1128/MCB.23.1.55-61.2003.
Article
PubMed Central
CAS
PubMed
Google Scholar
Takahashi E, Sagane K, Oki T, Yamazaki K, Nagasu T, Kuromitsu J: Deficits in spatial learning and motor coordination in ADAM11-deficient mice. BMC Neurosci. 2006, 7: 19-10.1186/1471-2202-7-19.
Article
PubMed Central
PubMed
Google Scholar
Takahashi E, Sagane K, Nagasu T, Kuromitsu J: Altered nociceptive response in ADAM11-deficient mice. Brain Res. 2006, 1097: 39-42. 10.1016/j.brainres.2006.04.043.
Article
CAS
PubMed
Google Scholar
Hartmann D, de Strooper B, Serneels L, Craessaerts K, Herreman A, Annaert W, Umans L, Lubke T, Lena Illert A, von Figura K, et al: The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for alpha-secretase activity in fibroblasts. Hum Mol Genet. 2002, 11: 2615-2624. 10.1093/hmg/11.21.2615.
Article
CAS
PubMed
Google Scholar
Peschon JJ, Slack JL, Reddy P, Stocking KL, Sunnarborg SW, Lee DC, Russell WE, Castner BJ, Johnson RS, Fitzner JN, et al: An essential role for ectodomain shedding in mammalian development. Science. 1998, 282: 1281-1284. 10.1126/science.282.5392.1281.
Article
CAS
PubMed
Google Scholar
Zhou HM, Weskamp G, Chesneau V, Sahin U, Vortkamp A, Horiuchi K, Chiusaroli R, Hahn R, Wilkes D, Fisher P, et al: Essential role for ADAM19 in cardiovascular morphogenesis. Mol Cell Biol. 2004, 24: 96-104. 10.1128/MCB.24.1.96-104.2004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Huovila AP, Turner AJ, Pelto-Huikko M, Karkkainen I, Ortiz RM: Shedding light on ADAM metalloproteinases. Trends Biochem Sci. 2005, 30: 413-422. 10.1016/j.tibs.2005.05.006.
Article
CAS
PubMed
Google Scholar
Asakura M, Kitakaze M, Takashima S, Liao Y, Ishikura F, Yoshinaka T, Ohmoto H, Node K, Yoshino K, Ishiguro H, et al: Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: metalloproteinase inhibitors as a new therapy. Nat Med. 2002, 8: 35-40. 10.1038/nm0102-35.
Article
CAS
PubMed
Google Scholar
Black RA: Tumor necrosis factor-alpha converting enzyme. Int J Biochem Cell Biol. 2002, 34: 1-5. 10.1016/S1357-2725(01)00097-8.
Article
CAS
PubMed
Google Scholar
Overall CM, Blobel CP: In search of partners: linking extracellular proteases to substrates. Nat Rev Mol Cell Biol. 2007, 8: 245-257. 10.1038/nrm2120.
Article
CAS
PubMed
Google Scholar
Jarriault S, Greenwald I: Evidence for functional redundancy between C. elegans ADAM proteins SUP-17/Kuzbanian and ADM-4/TACE. Dev Biol. 2005, 287: 1-10. 10.1016/j.ydbio.2005.08.014.
Article
PubMed Central
CAS
PubMed
Google Scholar
Horiuchi K, Zhou HM, Kelly K, Manova K, Blobel CP: Evaluation of the contributions of ADAMs 9, 12, 15, 17, and 19 to heart development and ectodomain shedding of neuregulins beta1 and beta2. Dev Biol. 2005, 283: 459-471. 10.1016/j.ydbio.2005.05.004.
Article
CAS
PubMed
Google Scholar
Pan D, Rubin GM: Kuzbanian controls proteolytic processing of Notch and mediates lateral inhibition during Drosophila and vertebrate neurogenesis. Cell. 1997, 90: 271-280. 10.1016/S0092-8674(00)80335-9.
Article
CAS
PubMed
Google Scholar
Sardi SP, Murtie J, Koirala S, Patten BA, Corfas G: Presenilin-dependent ErbB4 nuclear signaling regulates the timing of astrogenesis in the developing brain. Cell. 2006, 127: 185-197. 10.1016/j.cell.2006.07.037.
Article
CAS
PubMed
Google Scholar
Sagane K, Ishihama Y, Sugimoto H: LGI1 and LGI4 bind to ADAM22, ADAM23 and ADAM11. Int J Biol Sci. 2008, 4: 387-396.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fukata Y, Adesnik H, Iwanaga T, Bredt DS, Nicoll RA, Fukata M: Epilepsy-related ligand/receptor complex LGI1 and ADAM22 regulate synaptic transmission. Science. 2006, 313: 1792-1795. 10.1126/science.1129947.
Article
CAS
PubMed
Google Scholar
Edwards DR, Handsley MM, Pennington CJ: The ADAM metalloproteinases. Mol Aspects Med. 2008, 29: 258-289. 10.1016/j.mam.2008.08.001.
Article
CAS
PubMed
Google Scholar
Reiss K, Ludwig A, Saftig P: Breaking up the tie: disintegrin-like metalloproteinases as regulators of cell migration in inflammation and invasion. Pharmacol Ther. 2006, 111: 985-1006. 10.1016/j.pharmthera.2006.02.009.
Article
CAS
PubMed
Google Scholar
Iba K, Albrechtsen R, Gilpin B, Frohlich C, Loechel F, Zolkiewska A, Ishiguro K, Kojima T, Liu W, Langford JK, et al: The cysteine-rich domain of human ADAM 12 supports cell adhesion through syndecans and triggers signaling events that lead to beta1 integrin-dependent cell spreading. J Cell Biol. 2000, 149: 1143-1156. 10.1083/jcb.149.5.1143.
Article
PubMed Central
CAS
PubMed
Google Scholar
Millichip MI, Dallas DJ, Wu E, Dale S, McKie N: The metallo-disintegrin ADAM10 (MADM) from bovine kidney has type IV collagenase activity in vitro. Biochem Biophys Res Commun. 1998, 245: 594-598. 10.1006/bbrc.1998.8485.
Article
CAS
PubMed
Google Scholar
Alfandari D, Cousin H, Gaultier A, Smith K, White JM, Darribere T, DeSimone DW: Xenopus ADAM 13 is a metalloprotease required for cranial neural crest-cell migration. Curr Biol. 2001, 11: 918-930. 10.1016/S0960-9822(01)00263-9.
Article
CAS
PubMed
Google Scholar
Roy R, Wewer UM, Zurakowski D, Pories SE, Moses MA: ADAM 12 cleaves extracellular matrix proteins and correlates with cancer status and stage. J Biol Chem. 2004, 279: 51323-51330. 10.1074/jbc.M409565200.
Article
CAS
PubMed
Google Scholar
Maretzky T, Reiss K, Ludwig A, Buchholz J, Scholz F, Proksch E, de Strooper B, Hartmann D, Saftig P: ADAM10 mediates E-cadherin shedding and regulates epithelial cell-cell adhesion, migration, and beta-catenin translocation. Proc Natl Acad Sci USA. 2005, 102: 9182-9187. 10.1073/pnas.0500918102.
Article
PubMed Central
CAS
PubMed
Google Scholar
Reiss K, Maretzky T, Ludwig A, Tousseyn T, de Strooper B, Hartmann D, Saftig P: ADAM10 cleavage of N-cadherin and regulation of cell-cell adhesion and beta-catenin nuclear signalling. EMBO J. 2005, 24: 742-752. 10.1038/sj.emboj.7600548.
Article
PubMed Central
CAS
PubMed
Google Scholar
Reiss K, Maretzky T, Haas IG, Schulte M, Ludwig A, Frank M, Saftig P: Regulated ADAM10-dependent ectodomain shedding of gamma-protocadherin C3 modulates cell-cell adhesion. J Biol Chem. 2006, 281: 21735-21744. 10.1074/jbc.M602663200.
Article
CAS
PubMed
Google Scholar
Bech-Serra JJ, Santiago-Josefat B, Esselens C, Saftig P, Baselga J, Arribas J, Canals F: Proteomic identification of desmoglein 2 and activated leukocyte cell adhesion molecule as substrates of ADAM17 and ADAM10 by difference gel electrophoresis. Mol Cell Biol. 2006, 26: 5086-5095. 10.1128/MCB.02380-05.
Article
PubMed Central
CAS
PubMed
Google Scholar
McCusker C, Cousin H, Neuner R, Alfandari D: Extracellular cleavage of cadherin-11 by ADAM metalloproteases is essential for Xenopus cranial neural crest cell migration. Mol Biol Cell. 2009, 20: 78-89. 10.1091/mbc.E08-05-0535.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fu L, Das B, Mathew S, Shi YB: Genome-wide identification of Xenopus matrix metalloproteinases: conservation and unique duplications in amphibians. BMC Genomics. 2009, 10: 81-10.1186/1471-2164-10-81.
Article
PubMed Central
PubMed
Google Scholar
Shilling FM, Kratzschmar J, Cai H, Weskamp G, Gayko U, Leibow J, Myles DG, Nuccitelli R, Blobel CP: Identification of metalloprotease/disintegrins in Xenopus laevis testis with a potential role in fertilization. Dev Biol. 1997, 186: 155-164. 10.1006/dbio.1997.8586.
Article
CAS
PubMed
Google Scholar
Cai H, Kratzschmar J, Alfandari D, Hunnicutt G, Blobel CP: Neural crest-specific and general expression of distinct metalloprotease-disintegrins in early Xenopus laevis development. Dev Biol. 1998, 204: 508-524. 10.1006/dbio.1998.9017.
Article
CAS
PubMed
Google Scholar
Alfandari D, Wolfsberg TG, White JM, DeSimone DW: ADAM 13: a novel ADAM expressed in somitic mesoderm and neural crest cells during Xenopus laevis development. Dev Biol. 1997, 182: 314-330. 10.1006/dbio.1996.8458.
Article
CAS
PubMed
Google Scholar
Neuner R, Cousin H, McCusker C, Coyne M, Alfandari D: Xenopus ADAM19 is involved in neural, neural crest and muscle development. Mech Dev. 2009, 126: 240-255. 10.1016/j.mod.2008.10.010.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kleino I, Ortiz RM, Huovila AP: ADAM15 gene structure and differential alternative exon use in human tissues. BMC Mol Biol. 2007, 8: 90-10.1186/1471-2199-8-90.
Article
PubMed Central
PubMed
Google Scholar
Parry DA, Toomes C, Bida L, Danciger M, Towns KV, McKibbin M, Jacobson SG, Logan CV, Ali M, Bond J, et al: Loss of the metalloprotease ADAM9 leads to cone-rod dystrophy in humans and retinal degeneration in mice. Am J Hum Genet. 2009, 84: 683-691. 10.1016/j.ajhg.2009.04.005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kurohara K, Komatsu K, Kurisaki T, Masuda A, Irie N, Asano M, Sudo K, Nabeshima Y, Iwakura Y, Sehara-Fujisawa A: Essential roles of Meltrin beta (ADAM19) in heart development. Dev Biol. 2004, 267: 14-28. 10.1016/j.ydbio.2003.10.021.
Article
CAS
PubMed
Google Scholar
Sagane K, Hayakawa K, Kai J, Hirohashi T, Takahashi E, Miyamoto N, Ino M, Oki T, Yamazaki K, Nagasu T: Ataxia and peripheral nerve hypomyelination in ADAM22-deficient mice. BMC Neurosci. 2005, 6: 33-10.1186/1471-2202-6-33.
Article
PubMed Central
PubMed
Google Scholar
Mitchell KJ, Pinson KI, Kelly OG, Brennan J, Zupicich J, Scherz P, Leighton PA, Goodrich LV, Lu X, Avery BJ, et al: Functional analysis of secreted and transmembrane proteins critical to mouse development. Nat Genet. 2001, 28: 241-249. 10.1038/90074.
Article
CAS
PubMed
Google Scholar
Cornwall GA, Hsia N: ADAM7, a member of the ADAM (a disintegrin and metalloprotease) gene family is specifically expressed in the mouse anterior pituitary and epididymis. Endocrinology. 1997, 138: 4262-4272. 10.1210/en.138.10.4262.
CAS
PubMed
Google Scholar
UniGene. [http://www.ncbi.nlm.nih.gov/unigene]
Koller G, Schlomann U, Golfi P, Ferdous T, Naus S, Bartsch JW: ADAM8/MS2/CD156, an emerging drug target in the treatment of inflammatory and invasive pathologies. Curr Pharm Des. 2009, 15: 2272-2281. 10.2174/138161209788682361.
Article
CAS
PubMed
Google Scholar
Kelly K, Hutchinson G, Nebenius-Oosthuizen D, Smith AJ, Bartsch JW, Horiuchi K, Rittger A, Manova K, Docherty AJ, Blobel CP: Metalloprotease-disintegrin ADAM8: expression analysis and targeted deletion in mice. Dev Dyn. 2005, 232: 221-231. 10.1002/dvdy.20221.
Article
CAS
PubMed
Google Scholar
Trainor P, Nieto MA: Jawsfest: new perspectives on neural crest lineages and morphogenesis. Development. 2003, 130: 5059-5063. 10.1242/dev.00768.
Article
CAS
PubMed
Google Scholar
Helms JA, Schneider RA: Cranial skeletal biology. Nature. 2003, 423: 326-331. 10.1038/nature01656.
Article
CAS
PubMed
Google Scholar
Kratzschmar J, Lum L, Blobel CP: Metargidin, a membrane-anchored metalloprotease-disintegrin protein with an RGD integrin binding sequence. J Biol Chem. 1996, 271: 4593-4596. 10.1074/jbc.271.9.4593.
Article
CAS
PubMed
Google Scholar
Lum L, Reid MS, Blobel CP: Intracellular maturation of the mouse metalloprotease disintegrin MDC15. J Biol Chem. 1998, 273: 26236-26247. 10.1074/jbc.273.40.26236.
Article
CAS
PubMed
Google Scholar
Maretzky T, Yang G, Ouerfelli O, Overall CM, Worpenberg S, Hassiepen U, Eder J, Blobel CP: Characterization of the catalytic activity of the membrane-anchored metalloproteinase ADAM15 in cell-based assays. Biochem J. 2009, 420: 105-113. 10.1042/BJ20082127.
Article
CAS
PubMed
Google Scholar
Najy AJ, Day KC, Day ML: The ectodomain shedding of E-cadherin by ADAM15 supports ErbB receptor activation. J Biol Chem. 2008, 283: 18393-18401. 10.1074/jbc.M801329200.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fourie AM, Coles F, Moreno V, Karlsson L: Catalytic activity of ADAM8, ADAM15, and MDC-L (ADAM28) on synthetic peptide substrates and in ectodomain cleavage of CD23. J Biol Chem. 2003, 278: 30469-30477. 10.1074/jbc.M213157200.
Article
CAS
PubMed
Google Scholar
Horiuchi K, Weskamp G, Lum L, Hammes HP, Cai H, Brodie TA, Ludwig T, Chiusaroli R, Baron R, Preissner KT, et al: Potential role for ADAM15 in pathological neovascularization in mice. Mol Cell Biol. 2003, 23: 5614-5624. 10.1128/MCB.23.16.5614-5624.2003.
Article
PubMed Central
CAS
PubMed
Google Scholar
Loechel F, Gilpin BJ, Engvall E, Albrechtsen R, Wewer UM: Human ADAM 12 (meltrin alpha) is an active metalloprotease. J Biol Chem. 1998, 273: 16993-16997. 10.1074/jbc.273.27.16993.
Article
CAS
PubMed
Google Scholar
Kleino I, Ortiz RM, Yritys M, Huovila AP, Saksela K: Alternative splicing of ADAM15 regulates its interactions with cellular SH3 proteins. J Cell Biochem. 2009, 108: 877-885. 10.1002/jcb.22317.
Article
CAS
PubMed
Google Scholar
Jury JA, Perry AC, Hall L: Identification, sequence analysis and expression of transcripts encoding a putative metalloproteinase, eMDC II, in human and macaque epididymis. Mol Hum Reprod. 1999, 5: 1127-1134. 10.1093/molehr/5.12.1127.
Article
CAS
PubMed
Google Scholar
Howard L, Maciewicz RA, Blobel CP: Cloning and characterization of ADAM28: evidence for autocatalytic pro-domain removal and for cell surface localization of mature ADAM28. Biochem J. 2000, 348: 21-27. 10.1042/0264-6021:3480021.
Article
PubMed Central
CAS
PubMed
Google Scholar
Roberts CM, Tani PH, Bridges LC, Laszik Z, Bowditch RD: MDC-L, a novel metalloprotease disintegrin cysteine-rich protein family member expressed by human lymphocytes. J Biol Chem. 1999, 274: 29251-29259. 10.1074/jbc.274.41.29251.
Article
CAS
PubMed
Google Scholar
Bates EE, Fridman WH, Mueller CG: The ADAMDEC1 (decysin) gene structure: evolution by duplication in a metalloprotease gene cluster on chromosome 8p12. Immunogenetics. 2002, 54: 96-105. 10.1007/s00251-002-0430-3.
Article
CAS
PubMed
Google Scholar
Fritsche J, Muller A, Hausmann M, Rogler G, Andreesen R, Kreutz M: Inverse regulation of the ADAM-family members, decysin and MADDAM/ADAM19 during monocyte differentiation. Immunology. 2003, 110: 450-457. 10.1111/j.1365-2567.2003.01754.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yagami-Hiromasa T, Sato T, Kurisaki T, Kamijo K, Nabeshima Y, Fujisawa-Sehara A: A metalloprotease-disintegrin participating in myoblast fusion. Nature. 1995, 377: 652-656. 10.1038/377652a0.
Article
CAS
PubMed
Google Scholar
Sagane K, Ohya Y, Hasegawa Y, Tanaka I: Metalloproteinase-like, disintegrin-like, cysteine-rich proteins MDC2 and MDC3: novel human cellular disintegrins highly expressed in the brain. Biochem J. 1998, 334: 93-98.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kalachikov S, Evgrafov O, Ross B, Winawer M, Barker-Cummings C, Martinelli Boneschi F, Choi C, Morozov P, Das K, Teplitskaya E, et al: Mutations in LGI1 cause autosomal-dominant partial epilepsy with auditory features. Nature Genet. 2002, 30: 335-341. 10.1038/ng832.
Article
PubMed Central
PubMed
Google Scholar
Godde NJ, D'Abaco GM, Paradiso L, Novak U: Differential coding potential of ADAM22 mRNAs. Gene. 2007, 403: 80-88. 10.1016/j.gene.2007.07.033.
Article
CAS
PubMed
Google Scholar
Rooke J, Pan D, Xu T, Rubin GM: KUZ, a conserved metalloprotease-disintegrin protein with two roles in Drosophila neurogenesis. Science. 1996, 273: 1227-1231. 10.1126/science.273.5279.1227.
Article
CAS
PubMed
Google Scholar
Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, Castner BJ, Stocking KL, Reddy P, Srinivasan S, et al: A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature. 1997, 385: 729-733. 10.1038/385729a0.
Article
CAS
PubMed
Google Scholar
Moss ML, Jin SL, Milla ME, Bickett DM, Burkhart W, Carter HL, Chen WJ, Clay WC, Didsbury JR, Hassler D, et al: Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-alpha. Nature. 1997, 385: 733-736. 10.1038/385733a0.
Article
CAS
PubMed
Google Scholar
van Tetering G, van Diest P, Verlaan I, van der Wall E, Kopan R, Vooijs M: The metalloprotease ADAM10 is required for notch1 S2 cleavage. J Biol Chem. 2009, 284: 31018-31027. 10.1074/jbc.M109.006775.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bozkulak EC, Weinmaster G: Selective use of ADAM10 and ADAM17 in activation of Notch1 signaling. Mol Cell Biol. 2009, 29: 5679-5695. 10.1128/MCB.00406-09.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sahin U, Weskamp G, Kelly K, Zhou HM, Higashiyama S, Peschon J, Hartmann D, Saftig P, Blobel CP: Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J Cell Biol. 2004, 164: 769-779. 10.1083/jcb.200307137.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sapir A, Assa-Kunik E, Tsruya R, Schejter E, Shilo BZ: Unidirectional Notch signaling depends on continuous cleavage of Delta. Development. 2005, 132: 123-132. 10.1242/dev.01546.
Article
CAS
PubMed
Google Scholar
X. tropicalis genome assembly v4.1. [http://genome.jgi-psf.org/Xentr4/Xentr4.home.html]
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al: Clustal W and Clustal X version 2.0. Bioinformatics. 2007, 23: 2947-2948. 10.1093/bioinformatics/btm404.
Article
CAS
PubMed
Google Scholar
PHYLIP (Phylogeny Inference Package) version 3.6. [http://evolution.genetics.washington.edu/phylip/]
Metazome. [http://www.metazome.net/]
BLAT. [http://genome.ucsc.edu/cgi-bin/hgBlat?command=start]
SignalP 3.0. [http://www.cbs.dtu.dk/services/SignalP]
SMART. [http://smart.embl-heidelberg.de]
Sive HL, Grainger RM, Harland RM: Early Development of Xenopus Laevis. A Laboratory Manual. 2000, Cold Spring Harbor, Cold Spring Harbor Laboratory Press
Google Scholar