McMahon MM, Sanderson MJ: Phylogenetic supermatrix analysis of GenBank sequences from 2228 papilionoid legumes. Syst Biol. 2006, 55: 818-836. 10.1080/10635150600999150.
Article
PubMed
Google Scholar
Sanderson MJ, Boss D, Chen D, Cranston KA, Wehe A: The PhyLoTA browser: Processing GenBank for molecular phylogenetics research. Syst Biol. 2008, 57: 335-346. 10.1080/10635150802158688.
Article
PubMed
Google Scholar
Bininda-Emonds ORP, (Ed): Phylogenetic supertrees: Combining information to reveal the tree of life. 2004, Dordrecht: Kluwer
Piel WH: TreeBASE: A database of phylogenetic knowledge. 2009, [http://www.phylo.org/treebase]
Google Scholar
Burki F, Shalchian-Tabrizi K, Minge M, Skjaeveland A, Nikolaev SI, Jakobsen KS, Pawlowski J: Phylogenomics reshuffles the eukaryotic supergroups. PLoS ONE. 2007, 2: e790-10.1371/journal.pone.0000790.
Article
PubMed Central
PubMed
Google Scholar
Hampl V, Hug L, Leigh JW, Dacks JB, Lang BF, Simpson AGB, Roger AJ: Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic supergroups. Proc Natl Acad Sci USA. 2009, 106: 3859-3864. 10.1073/pnas.0807880106.
Article
PubMed Central
PubMed
Google Scholar
Yoon HS, Grant J, Tekle Y, Wu M, Chaon B, Cole J, Logsdon J, Patterson D, Bhattacharya D, Katz L: Broadly sampled multigene trees of eukaryotes. BMC Evol Biol. 2008, 8: 14-10.1186/1471-2148-8-14.
Article
PubMed Central
PubMed
Google Scholar
Bininda-Emonds ORP, Cardillo M, Jones KE, MacPhee RDE, Beck RMD, Grenyer R, Price SA, Vos RA, Gittleman JL, Purvis A: The delayed rise of present-day mammals. Nature. 2007, 446: 507-512. 10.1038/nature05634.
Article
PubMed
Google Scholar
James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, Celio G, Gueidan C, Fraker E, Miadlikowska J, et al: Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature. 2006, 443: 818-822. 10.1038/nature05110.
Article
PubMed
Google Scholar
Bouchenak-Khelladi Y, Salamin N, Savolainen V, Forest F, Bank van der M, Chase MW, Hodkinson TR: Large multi-gene phylogenetic trees of the grasses (Poaceae): Progress towards complete tribal and generic level sampling. Mol Phylogenet Evol. 2008, 47: 488-505. 10.1016/j.ympev.2008.01.035.
Article
PubMed
Google Scholar
Graybeal A: Is it better to add taxa or characters to a difficult phylogenetic problem?. Syst Biol. 1998, 47: 9-17. 10.1080/106351598260996.
Article
PubMed
Google Scholar
Mossel E, Steel M: How much can evolved characters tell us about the tree that generated them?. Mathematics of evolution and phylogeny. Edited by: Gashchak SP. 2005, Oxford University Press, 384-412.
Google Scholar
Zwickl DJ, Hillis DM: Increased taxon sampling greatly reduces phylogenetic error. Syst Biol. 2002, 51: 588-598. 10.1080/10635150290102339.
Article
PubMed
Google Scholar
Jian S, Soltis PS, Gitzendanner MA, Moore MJ, Li R, Hendry TA, Qiu Y-L, Dhingra A, Bell CD, Soltis DE: Resolving an ancient, rapid radiation in Saxifragales. Syst Biol. 2008, 57: 38-57. 10.1080/10635150801888871.
Article
PubMed
Google Scholar
Hedtke SM, Townsend TM, Hillis DM: Resolution of phylogenetic conflict in large data sets by increased taxon sampling. Syst Biol. 2006, 55: 522-529. 10.1080/10635150600697358.
Article
PubMed
Google Scholar
Poe S, Swofford DL: Taxon sampling revisited. Nature. 1999, 398: 299-300. 10.1038/18592.
Article
PubMed
Google Scholar
Donoghue MJ, Sanderson MJ: The suitability of molecular and morphological evidence in reconstructing plant phylogeny. Molecular systematics of plants. Edited by: Soltis PS, Soltis DE, Doyle JJ. 1992, New York: Chapman and Hall, 340-368.
Chapter
Google Scholar
Wiens JJ, Kuczynski CA, Smith SA, Mulcahy DG, Sites JW, Townsend TM, Reeder TW: Branch lengths, support, and congruence: testing the phylogenomic approach with 20 nuclear loci in snakes. Syst Biol. 2008, 57: 420-431. 10.1080/10635150802166053.
Article
PubMed
Google Scholar
Whitfield JB, Lockhart PJ: Deciphering ancient rapid radiations. Trends Ecol Evol. 2007, 22: 258-265. 10.1016/j.tree.2007.01.012.
Article
PubMed
Google Scholar
Weisrock DW, Harmon LJ, Larson A: Resolving deep phylogenetic relationships in salamanders: Analyses of mitochondrial and nuclear genomic data. Syst Biol. 2005, 54: 758-777. 10.1080/10635150500234641.
Article
PubMed
Google Scholar
Walsh HE, Kidd MG, Moum T, Friesen VL: Polytomies and the power of phylogenetic inference. Evolution. 1999, 53: 932-937. 10.2307/2640732.
Article
Google Scholar
Fishbein M, Hibsch-Jetter C, Soltis DE, Hufford L: Phylogeny of Saxifragales (Angiosperms, Eudicots): Analysis of a rapid, ancient radiation. Syst Biol. 2001, 50: 817-847. 10.1080/106351501753462821.
Article
PubMed
Google Scholar
Poe S, Chubb AL: Birds in a bush: Five genes indicate explosive evolution of avian orders. Evolution. 2004, 58: 404-415.
Article
PubMed
Google Scholar
Saitou N, Nei M: The number of nucleotides required to determine the branching order of three species, with special reference to the human-chimpanzee-gorilla divergence. J Mol Evol. 1986, 24: 189-204. 10.1007/BF02099966.
Article
PubMed
Google Scholar
Lecointre G, Philippe H, Van Le HL, Le Guyader H: How many nucleotides are required to resolve a phylogenetic problem? The use of a new statistical method applicable to available sequences. Mol Phylogenet Evol. 1994, 3: 292-309. 10.1006/mpev.1994.1037.
Article
PubMed
Google Scholar
Wortley AH, Rudall PJ, Harris DJ, Scotland RW: How much data are needed to resolve a difficult phylogeny? Case study in Lamiales. Syst Biol. 2005, 54: 697-709. 10.1080/10635150500221028.
Article
PubMed
Google Scholar
Bhattacharya D, Weller S: Where to next with the tree of life?. 2008, 22-[http://dblab.rutgers.edu/atol/index.htm]
Google Scholar
Rodríguez-Ezpeleta N, Brinkmann H, Burey SC, Roure B, Burger G, Loffelhardt W, Bohnert HJ, Philippe H, Lang BF: Monophyly of primary photosynthetic eukaryotes: Green plants, red algae, and glaucophytes. Curr Biol. 2005, 15: 1325-1330. 10.1016/j.cub.2005.06.040.
Article
PubMed
Google Scholar
Yoon HS, Hackett JD, Ciniglia C, Pinto G, Bhattacharya D: A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol. 2004, 21: 809-818. 10.1093/molbev/msh075.
Article
PubMed
Google Scholar
Butterfield NJ: Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiol. 2000, 26: 386-404. 10.1666/0094-8373(2000)026<0386:BPNGNS>2.0.CO;2.
Article
Google Scholar
Gantt E: Pigmentation and photoacclimation. Biology of the red algae. Edited by: Cole KM, Sheath RG. 1990, Cambridge: Cambridge University Press, 203-219.
Google Scholar
Pueschel CM: Cell structure. Biology of the red algae. Edited by: Cole KM, Sheath RG. 1990, Cambridge: Cambridge University Press, 7-41.
Google Scholar
Ragan MA, Gutell RR: Are red algae plants?. Bot J Linnean Soc. 1995, 118: 81-105.
Article
Google Scholar
Guiry MD, Guiry GM: AlgaeBase. World-wide electronic publication. 2008, [http://www.algaebase.org]
Google Scholar
Kylin H: Die Gattungen der Rhodophyceen. 1956, Lund: C.W.K. Gleerups Förlag
Google Scholar
Ragan MA, Bird CJ, Rice EL, Gutell RR, Murphy CA, Singh RK: A molecular phylogeny of the marine red algae (Rhodophyta) based on the nuclear small-subunit rRNA gene. Proc Natl Acad Sci USA. 1994, 91: 7276-7280. 10.1073/pnas.91.15.7276.
Article
PubMed Central
PubMed
Google Scholar
Freshwater DW, Fredericq S, Butler BS, Hommersand MH, Chase MW: A gene phylogeny of the red algae (Rhodophyta) based on plastid rbc L. Proc Natl Acad Sci USA. 1994, 91: 7281-7285. 10.1073/pnas.91.15.7281.
Article
PubMed Central
PubMed
Google Scholar
Müller KM, Oliveira MC, Sheat RG, Bhattacharya D: Ribosomal DNA phylogeny of the Bangiophycidae (Rhodophyta) and the origin of secondary plastids. Am J Bot. 2001, 88: 1390-1400. 10.2307/3558445.
Article
PubMed
Google Scholar
Yoon HS, Müller KM, Sheath RG, Ott FD, Bhattacharya D: Defining the major lineages of red algae (Rhodophyta). J Phycol. 2006, 42: 482-492. 10.1111/j.1529-8817.2006.00210.x.
Article
Google Scholar
Harper JT, Saunders GW: Molecular systematics of the Florideophyceae (Rhodophyta) using nuclear large and small subunit rDNA sequence data. J Phycol. 2001, 37: 1073-1082. 10.1046/j.1529-8817.2001.00160.x.
Article
Google Scholar
Saunders GW, Chiovitti A, Kraft GT: Small-subunit rDNA sequences from representatives of selected families of the Gigartinales and Rhodymeniales (Rhodophyta). 3. Delineating the Gigartinales sensu stricto. Can J Bot. 2002, 82: 43-74. 10.1139/b03-110.
Article
Google Scholar
Saunders GW, Hommersand MH: Assessing red algal supraordinal diversity and taxonomy in the context of contemporary systematic data. Am J Bot. 2004, 91: 1494-1507. 10.3732/ajb.91.10.1494.
Article
PubMed
Google Scholar
Withall RD, Saunders GW: Combining small and large subunit ribosomal DNA genes to resolve relationships among orders of the Rhodymeniophycidae (Rhodophyta): recognition of the Acrosymphytales ord. nov. and Sebdeniales ord. nov. Eur J Phycol. 2006, 41: 379-394. 10.1080/09670260600914097.
Article
Google Scholar
Le Gall L, Saunders GW: A nuclear phylogeny of the Florideophyceae (Rhodophyta) inferred from combined EF2, small subunit and large subunit ribosomal DNA: Establishing the new red algal subclass Corallinophycidae. Mol Phylogenet Evol. 2007, 43: 1118-1130. 10.1016/j.ympev.2006.11.012.
Article
PubMed
Google Scholar
Maggs CA, Verbruggen H, De Clerck O: Molecular systematics of red algae: building future structures on firm foundations. Unravelling the algae: the past, present, and future of algal systematics. Edited by: Brodie J, Lewis J. 2007, Taylor and Francis, 103-121.
Chapter
Google Scholar
Chen D, Burleigh GJ, Fernandez-Baca D: Spectral partitioning of phylogenetic data sets based on compatibility. Syst Biol. 2007, 56: 623-632. 10.1080/10635150701499571.
Article
PubMed
Google Scholar
Brandley MC, Schmitz A, Reeder T: Partitioned Bayesian analyses, partition choice, and the phylogenetic relationships of scincid lizards. Syst Biol. 2005, 54: 373-390. 10.1080/10635150590946808.
Article
PubMed
Google Scholar
Shapiro B, Rambaut A, Drummond AJ: Choosing appropriate substitution models for the phylogenetic analysis of protein-coding sequences. Mol Biol Evol. 2006, 23: 7-9. 10.1093/molbev/msj021.
Article
PubMed
Google Scholar
Verbruggen H, Theriot EC: Building trees of algae: some advances in phylogenetic and evolutionary analysis. Eur J Phycol. 2008, 43: 229-252. 10.1080/09670260802207530.
Article
Google Scholar
Brown JM, Lemmon AR: The importance of data partitioning and the utility of Bayes factors in Bayesian phylogenetics. Syst Biol. 2007, 56: 643-655. 10.1080/10635150701546249.
Article
PubMed
Google Scholar
Huelsenbeck JP, Rannala B: Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models. Syst Biol. 2004, 53: 904-913. 10.1080/10635150490522629.
Article
PubMed
Google Scholar
Kalbfleisch JD, Sprott DA: Application of likelihood methods to models involving large numbers of parameters. Journal of the Royal Statistical Society Series B (Methodological). 1970, 32: 175-208.
Google Scholar
Yang Z: Computational molecular evolution. 2006, Oxford: Oxford University Press
Book
Google Scholar
Huelsenbeck JP: Performance of phylogenetic methods in simulation. Syst Biol. 1995, 44: 17-48.
Article
Google Scholar
Hillis DM, Huelsenbeck JP, Cunningham CW: Application and accuracy of molecular phylogenies. Science. 1994, 264: 671-677. 10.1126/science.8171318.
Article
PubMed
Google Scholar
Swofford DL, Waddell PJ, Huelsenbeck JP, Foster PG, Lewis PO, Rogers JS: Bias in phylogenetic estimation and its relevance to the choice between parsimony and likelihood methods. Syst Biol. 2001, 50: 525-539. 10.1080/106351501750435086.
Article
PubMed
Google Scholar
Gaut BS, Lewis PO: Success of maximum likelihood phylogeny inference in the four-taxon case. Mol Biol Evol. 1995, 12: 152-162.
Article
PubMed
Google Scholar
Rokas A, Carroll SB: More genes or more taxa? The relative contribution of gene number and taxon number to phylogenetic accuracy. Mol Biol Evol. 2005, 22: 1337-1344. 10.1093/molbev/msi121.
Article
PubMed
Google Scholar
Goldman N: Phylogenetic information and experimental design in molecular systematics. Proc Roy Soc B - Biol Sci. 1998, 265: 1779-1786. 10.1098/rspb.1998.0502.
Article
Google Scholar
Townsend JP: Profiling phylogenetic informativeness. Syst Biol. 2007, 56: 222-231. 10.1080/10635150701311362.
Article
PubMed
Google Scholar
Spinks P, Thomson R, Lovely G, Shaffer HB: Assessing what is needed to resolve a molecular phylogeny: simulations and empirical data from emydid turtles. BMC Evol Biol. 2009, 9: 56-10.1186/1471-2148-9-56.
Article
PubMed Central
PubMed
Google Scholar
de Queiroz A, Lawson R, Lemos-Espinal JA: Phylogenetic relationships of North American garter snakes (Thamnophis) based on four mitochondrial genes: How much DNA sequence is enough?. Mol Phylogenet Evol. 2002, 22: 315-329. 10.1006/mpev.2001.1074.
Article
PubMed
Google Scholar
DeFilippis VR, Moore WS: Resolution of phylogenetic relationships among recently evolved species as a function of amount of DNA sequence: An empirical study based on woodpeckers (Aves: Picidae). Mol Phylogenet Evol. 2000, 16: 143-160. 10.1006/mpev.2000.0780.
Article
PubMed
Google Scholar
Holder MT, Zwickl DJ, Dessimoz C: Evaluating the robustness of phylogenetic methods to among-site variability in substitution processes. Phil Trans Roy Soc B - Biol Sci. 2008, 363: 4013-4021. 10.1098/rstb.2008.0162.
Article
Google Scholar
Schöniger M, Von Haeseler A: A stochastic model for the evolution of autocorrelated DNA sequences. Mol Phylogenet Evol. 1994, 3: 240-247. 10.1006/mpev.1994.1026.
Article
PubMed
Google Scholar
Telford MJ, Wise MJ, Gowri-Shankar V: Consideration of RNA secondary structure significantly improves likelihood-based estimates of phylogeny: examples from the bilateria. Mol Biol Evol. 2005, 22: 1129-1136. 10.1093/molbev/msi099.
Article
PubMed
Google Scholar
Muse SV, Gaut BS: A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with application to the chloroplast genome. Mol Biol Evol. 1994, 11: 715-724.
PubMed
Google Scholar
Yang ZH, Nielsen R: Mutation-selection models of codon substitution and their use to estimate selective strengths on codon usage. Mol Biol Evol. 2008, 25: 568-579. 10.1093/molbev/msm284.
Article
PubMed
Google Scholar
Lartillot N, Philippe H: A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol Biol Evol. 2004, 21: 1095-1109. 10.1093/molbev/msh112.
Article
PubMed
Google Scholar
Mishler BD: Cladistic analysis of molecular and morphological data. Am J Phys Antrop. 1994, 94: 143-156. 10.1002/ajpa.1330940111.
Article
Google Scholar
Mishler BD: The logic of the data matrix in phylogenetic analysis. Parsimony, phylogeny, and genomics. Edited by: Albert VA. 2005, Oxford: Oxford University Press, 57-70.
Google Scholar
Waddell PJ, Cao Y, Hauf J, Hasegawa M: Using novel phylogenetic methods to evaluate mammalian mtDNA, including amino acid invariant sites LogDet plus site stripping, to detect internal conflicts in the data, with special reference to the positions of hedgehog, armadillo, and elephant. Syst Biol. 1999, 48: 31-53. 10.1093/sysbio/48.1.1.
Article
PubMed
Google Scholar
Choi HG, Kraft GT, Saunders GW: Nuclear small-subunit rDNA sequences from Ballia spp. (Rhodophyta): proposal of the Balliales ord. nov., Balliaceae fam. nov., Ballia nana sp nov and Inkyuleea gen. nov (Ceramiales). Phycologia. 2000, 39: 272-287.
Article
Google Scholar
Choi HG, Kraft GT, Kim HS, Guiry MD, Saunders GW: Phylogenetic relationships among lineages of the Ceramiaceae (Ceramiales, Rhodophyta) based on nuclear small subunit rDNA sequence data. J Phycol. 2008, 44: 1033-1048. 10.1111/j.1529-8817.2008.00554.x.
Article
Google Scholar
Kraft GT, Robins PA: Is the order Cryptonemiales (Rhodophyta) defensible?. Phycologia. 1985, 24: 67-77.
Article
Google Scholar
Saunders GW, Kraft GT: Small-subunit rRNA gene sequences from representatives of selected families of the Gigartinales and Rhodymeniales (Rhodophyta). 1. Evidence for the Plocamiales ord. nov. Can J Bot. 1994, 72: 1250-1263. 10.1139/b94-153.
Article
Google Scholar
Harper JT, Saunders GW: A re-classification of the Acrochaetiales based on molecular and morphological data, and establishment of the Colaconematales ord. nov. (Florideophyceae, Rhodophyta). Eur J Phycol. 2002, 37: 463-476. 10.1017/S0967026202003840.
Article
Google Scholar
Saunders GW: Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. Phil Trans Roy Soc B - Biol Sci. 2005, 360: 1879-1888. 10.1098/rstb.2005.1719.
Article
Google Scholar
Schneider CJ, Wynne MJ: A synoptic review of the classification of red algal genera a half century after Kylin's "Die Gattungen der Rhodophyceen". Bot Mar. 2007, 50: 197-249. 10.1515/BOT.2007.025.
Google Scholar
Le Gall L, Dalen JL, Saunders GW: Phylogenetic analyses of the red algal order Rhodymeniales supports recognition of the Hymenocladiaceae fam. nov., Fryeellaceae fam. nov., and Neogastroclonium gen. nov. J Phycol. 2008, 44: 1556-1571. 10.1111/j.1529-8817.2008.00599.x.
Article
Google Scholar
West JA, Scott JL, West KA, Karsten U, Clayden SL, Saunders GW: Rhodachlya madagascarensis gen. et sp. nov.: a distinct acrochaetioid represents a new order and family (Rhodachlyales ord. nov., Rhodachlyaceae fam. nov.) of the Florideophyceae (Rhodophyta). Phycologia. 2008, 47: 203-212. 10.2216/07-72.1.
Article
Google Scholar
Le Gall L, Payri CE, Bittner L, Saunders GW: Multigene phylogenetic analyses support recognition of the Sporolithales ord. nov. Mol Phylogenet Evol. 2010, 54: 302-305. 10.1016/j.ympev.2009.05.026.
Article
PubMed
Google Scholar
Jobb G, von Haeseler A, Strimmer K: TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol Biol. 2004, 4: 18-10.1186/1471-2148-4-18.
Article
PubMed Central
PubMed
Google Scholar
Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003, 19: 1572-1574. 10.1093/bioinformatics/btg180.
Article
PubMed
Google Scholar
Rambaut A, Drummond AJ: Tracer. 2007, [http://beast.bio.ed.ac.uk/tracer]
Google Scholar
Beiko RG, Keith JM, Harlow TJ, Ragan MA: Searching for convergence in phylogenetic Markov chain Monte Carlo. Syst Biol. 2006, 55: 553-565. 10.1080/10635150600812544.
Article
PubMed
Google Scholar
Shimodaira H, Hasegawa M: CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics. 2001, 17: 1246-1247. 10.1093/bioinformatics/17.12.1246.
Article
PubMed
Google Scholar
Verbruggen H: TreeGradients. 2009, [http://www.phycoweb.net]
Google Scholar
Sanderson MJ, Ané C, Eulenstein O, Férnandez-Baca D, Kim J, McMahon MM, Piaggio-Talice R: Fragmentation of large data sets in phylogenetic analyses. Reconstructing evolution: New mathematical and computational advances. Edited by: Gascuel O, Steel M. 2007, Oxford: Oxford University Press, 199-216.
Google Scholar
Lartillot N, Blanquart S, Lepage T: PhyloBayes. 2009, [http://megasun.bch.umontreal.ca/People/lartillot/www/download.html]
Google Scholar
Rambaut A, Grassly NC: Seq-Gen: An application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic frees. Comp Appl Biosc. 1997, 13: 235-238.
PubMed
Google Scholar
Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006, 22: 2688-2690. 10.1093/bioinformatics/btl446.
Article
PubMed
Google Scholar
Chen D, Burleigh GJ, Fernandez-Baca D: Spectral partitioning of phylogenetic datasets - web computation. 2009, [http://pilin.cs.iastate.edu/public/spectral/webcomp.html]
Google Scholar