Martin W, Hoffmeister M, Rotte C, Henze K: An overview of endosymbiotic models for the origins of eukaryotes, their ATP-producing organelles (mitochondria and hydrogenosomes), and their heterotrophic lifestyle. Biol Chem. 2001, 382 (11): 1521-1539. 10.1515/BC.2001.187.
CAS
PubMed
Google Scholar
Van Valen LM, Maiorana VC: The Archaebacteria and eukaryotic origins. Nature. 1980, 287: 248-250. 10.1038/287248a0.
CAS
PubMed
Google Scholar
Gibbons BH, Asai DJ, Tang WJ, Hays TS, Gibbons IR: Phylogeny and expression of axonemal and cytoplasmic dynein genes in sea urchins. Mol Biol Cell. 1994, 5 (1): 57-70.
PubMed Central
CAS
PubMed
Google Scholar
Goodson HV, Kang SJ, Endow SA: Molecular phylogeny of the kinesin family of microtubule motor proteins. J Cell Sci. 1994, 107: 1875-1884.
CAS
PubMed
Google Scholar
May KM, Watts FZ, Jones N, Hyams JS: Type II myosin involved in cytokinesis in the fission yeast, Schizosaccharomyces pombe. Cell Motil Cytoskeleton. 1997, 38 (4): 385-396. 10.1002/(SICI)1097-0169(1997)38:4<385::AID-CM8>3.0.CO;2-2.
CAS
PubMed
Google Scholar
Foth BJ, Goedecke MC, Soldati D: New insights into myosin evolution and classification. Proc Natl Acad Sci USA. 2006, 103 (10): 3681-3686. 10.1073/pnas.0506307103.
PubMed Central
CAS
PubMed
Google Scholar
Richards TA, Cavalier-Smith T: Myosin domain evolution and the primary divergence of eukaryotes. Nature. 2005, 436: 1113-1118. 10.1038/nature03949.
CAS
PubMed
Google Scholar
Wickstead B, Gull K: A "holistic" kinesin phylogeny reveals new kinesin families and predicts protein functions. Mol Biol Cell. 2006, 17 (4): 1734-1743. 10.1091/mbc.E05-11-1090.
PubMed Central
CAS
PubMed
Google Scholar
Wickstead B, Gull K: Dyneins across eukaryotes: a comparative genomic analysis. Traffic. 2007, 8 (12): 1708-1721. 10.1111/j.1600-0854.2007.00646.x.
PubMed Central
CAS
PubMed
Google Scholar
Simpson AG, Roger AJ: The real 'kingdoms' of eukaryotes. Curr Biol. 2004, 14 (17): R693-696. 10.1016/j.cub.2004.08.038.
CAS
PubMed
Google Scholar
Adl SM, Simpson AG, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle G, Fensome RA, Fredericq S, et al: The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol. 2005, 52 (5): 399-451. 10.1111/j.1550-7408.2005.00053.x.
PubMed
Google Scholar
Durbin R, Eddy SR, Krogh A, Mitchison G: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. 1998, Cambridge: Cambridge University Press
Google Scholar
Sisson JC, Ho KS, Suyama K, Scott MP: Costal2, a novel kinesin related protein in the hedgehog signaling pathway. Cell. 1997, 90: 235-245. 10.1016/S0092-8674(00)80332-3.
CAS
PubMed
Google Scholar
Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003, 19 (12): 1572-1574. 10.1093/bioinformatics/btg180.
CAS
PubMed
Google Scholar
Anisimova M, Gascuel O: Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. Syst Biol. 2006, 55 (4): 539-552. 10.1080/10635150600755453.
PubMed
Google Scholar
Guindon S, Gascuel O: A simple, fast, and accurate aligorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003, 52 (5): 696-704. 10.1080/10635150390235520.
PubMed
Google Scholar
Lawrence CJ, Dawe RK, Christie KR, Cleveland DW, Dawson SC, Endow SA, Goldstein LS, Goodson HV, Hirokawa N, Howard J, et al: A standardized kinesin nomenclature. J Cell Biol. 2004, 167 (1): 19-22. 10.1083/jcb.200408113.
PubMed Central
CAS
PubMed
Google Scholar
Henriquez FL, Richards TA, Roberts F, McLeod R, Roberts CW: The unusual mitochondrial compartment of Cryptosporidium parvum. Trends Parasitol. 2005, 21 (2): 68-74. 10.1016/j.pt.2004.11.010.
CAS
PubMed
Google Scholar
Thompson RF, Langford GM: Myosin superfamily evolutionary history. Anat Rec. 2002, 268 (3): 276-289. 10.1002/ar.10160.
CAS
PubMed
Google Scholar
Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer EL, et al: The Pfam protein families database. Nucleic Acids Res. 2004, D138-141. 10.1093/nar/gkh121. 32 Database
Marchler-Bauer A, Anderson JB, Cherukuri PF, DeWeese-Scott C, Geer LY, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, et al: CDD: a Conserved Domain Database for protein classification. Nucleic Acids Res. 2005, D192-196. 33 Database
Hampl V, Hug L, Leigh JW, Dacks JB, Lang BF, Simpson AGB, Roger AJ: Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic "supergroups". Proceedings of the National Academy of Sciences of the United States of America. 2009, 106 (10): 3859-3864. 10.1073/pnas.0807880106.
PubMed Central
CAS
PubMed
Google Scholar
Rodriguez-Ezpeleta N, Brinkmann H, Burger G, Roger AJ, Gray MW, Philippe H, Lang BF: Toward resolving the eukaryotic tree: the phylogenetic positions of jakobids and cercozoans. Curr Biol. 2007, 17 (16): 1420-1425. 10.1016/j.cub.2007.07.036.
CAS
PubMed
Google Scholar
Rodriguez-Ezpeleta N, Brinkmann H, Roure B, Lartillot N, Lang BF, Philippe H: Detecting and overcoming systematic errors in genome-scale phylogenies. Syst Biol. 2007, 56 (3): 389-399. 10.1080/10635150701397643.
CAS
PubMed
Google Scholar
Burki F, Shalchian-Tabrizi K, Minge M, Skjaeveland A, Nikolaev SI, Jakobsen KS, Pawlowski J: Phylogenomics reshuffles the eukaryotic supergroups. PLoS ONE. 2007, 2 (8): e790-10.1371/journal.pone.0000790.
PubMed Central
PubMed
Google Scholar
Burki F, Shalchian-Tabrizi K, Pawlowski J: Phylogenomics reveals a new 'megagroup' including most photosynthetic eukaryotes. Biol Lett. 2008, 4 (4): 366-369. 10.1098/rsbl.2008.0224.
PubMed Central
PubMed
Google Scholar
Farris JS: Phylogenetic analysis under Dollo's Law. Syst Zool. 1977, 26: 77-88. 10.2307/2412867.
Google Scholar
Felsenstein J: PHYLIP (Phylogeny Inference Package) version 3.6. 2004, Seattle: Distributed by the author. Department of Genome Sciences, University of Washington
Google Scholar
Simpson AG: Cytoskeletal organization, phylogenetic affinities and systematics in the contentious taxon Excavata (Eukaryota). Int J Syst Evol Microbiol. 2003, 53 (Pt 6): 1759-1777. 10.1099/ijs.0.02578-0.
PubMed
Google Scholar
Cavalier-Smith T: The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int J Syst Evol Microbiol. 2002, 52 (Pt 2): 297-354.
CAS
PubMed
Google Scholar
Bapteste E, Brinkmann H, Lee JA, Moore DV, Sensen CW, Gordon P, Durufle L, Gaasterland T, Lopez P, Muller M, et al: The analysis of 100 genes supports the grouping of three highly divergent amoebae: Dictyostelium, Entamoeba, and Mastigamoeba. Proc Natl Acad Sci USA. 2002, 99 (3): 1414-1419. 10.1073/pnas.032662799.
PubMed Central
CAS
PubMed
Google Scholar
Rodriguez-Ezpeleta N, Brinkmann H, Burey SC, Roure B, Burger G, Loffelhardt W, Bohnert HJ, Philippe H, Lang BF: Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Curr Biol. 2005, 15 (14): 1325-1330. 10.1016/j.cub.2005.06.040.
CAS
PubMed
Google Scholar
Andersson JO, Sarchfield SW, Roger AJ: Gene transfers from nanoarchaeota to an ancestor of diplomonads and parabasalids. Mol Biol Evol. 2005, 22 (1): 85-90. 10.1093/molbev/msh254.
CAS
PubMed
Google Scholar
Cavalier-Smith T: The excavate protozoan phyla Metamonada Grassé emend. (Anaeromonadea, Parabasalia, Carpediemonas, Eopharyngia) and Loukozoa emend. (Jakobea, Malawimonas). Int J Syst Evol Microbiol. 2003, 53 (Pt 6): 1741-1758. 10.1099/ijs.0.02548-0.
CAS
PubMed
Google Scholar
Hampl V, Horner DS, Dyal P, Kulda J, Flegr J, Foster P, Embley TM: Inference of the phylogenetic position of oxymonads based on 9 genes: support for Metamonada and Excavata. Mol Biol Evol. 2005, 2508-18. 10.1093/molbev/msi245. 12
Embley TM, Hirt RP: Early branching eukaryotes?. Curr Opin Genet Dev. 1998, 8 (6): 624-629. 10.1016/S0959-437X(98)80029-4.
CAS
PubMed
Google Scholar
Hedges SB, Chen H, Kumar S, Wang DY, Thompson AS, Watanabe H: A genomic timescale for the origin of eukaryotes. BMC Evol Biol. 2001, 1 (1): 4-10.1186/1471-2148-1-4.
PubMed Central
CAS
PubMed
Google Scholar
Morrison HG, McArthur AG, Gillin FD, Aley SB, Adam RD, Olsen GJ, Best AA, Cande WZ, Chen F, Cipriano MJ, et al: Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Science. 2007, 317 (5846): 1921-1926. 10.1126/science.1143837.
CAS
PubMed
Google Scholar
Sogin M: History assignment: when was the mitochondrion founded?. Curr Opin Genet Dev. 1997, 7 (6): 792-799. 10.1016/S0959-437X(97)80042-1.
CAS
PubMed
Google Scholar
Stechmann A, Cavalier-Smith T: Rooting the eukaryote tree by using a derived gene fusion. Science. 2002, 297 (5578): 89-91. 10.1126/science.1071196.
CAS
PubMed
Google Scholar
Stechmann A, Cavalier-Smith T: The root of the eukaryote tree pinpointed. Curr Biol. 2003, 13 (17): R665-666. 10.1016/S0960-9822(03)00602-X.
CAS
PubMed
Google Scholar
Miki H, Okada Y, Hirokawa N: Analysis of the kinesin superfamily: insights into structure and function. Trends Cell Biol. 2005, 15 (9): 467-476. 10.1016/j.tcb.2005.07.006.
CAS
PubMed
Google Scholar
Endow SA, Kang SJ, Satterwhite LL, Rose MD, Skeen VP, Salmon ED: Yeast Kar3 is a minus-end microtubule motor protein that destabilizes microtubules preferentially at the minus ends. EMBO J. 1994, 13 (11): 2708-2713.
PubMed Central
CAS
PubMed
Google Scholar
Cole DG, Saxton WM, Sheehan KB, Scholey JM: A "slow" homotetrameric kinesin-related motor protein purified from Drosophila embryos. J Biol Chem. 1994, 269 (37): 22913-22916.
PubMed Central
CAS
PubMed
Google Scholar
Walker RA, Salmon ED, Endow SA: The Drosophila claret segregation protein is a minus-end directed motor molecule. Nature. 1990, 347 (6295): 780-782. 10.1038/347780a0.
CAS
PubMed
Google Scholar
Sawin KE, LeGuellec K, Philippe M, Mitchison TJ: Mitotic spindle organization by a plus-end-directed microtubule motor. Nature. 1992, 359 (6395): 540-543. 10.1038/359540a0.
CAS
PubMed
Google Scholar
Sharp DJ, Rogers GC, Scholey JM: Microtubule motors in mitosis. Nature. 2000, 407 (6800): 41-47. 10.1038/35024000.
CAS
PubMed
Google Scholar
Sharp DJ, Yu KR, Sisson JC, Sullivan W, Scholey JM: Antagonistic microtubule-sliding motors position mitotic centrosomes in Drosophila early embryos. Nat Cell Biol. 1999, 1 (1): 51-54. 10.1038/9025.
CAS
PubMed
Google Scholar
Gaglio T, Saredi A, Bingham JB, Hasbani MJ, Gill SR, Schroer TA, Compton DA: Opposing motor activities are required for the organization of the mammalian mitotic spindle pole. J Cell Biol. 1996, 135 (2): 399-414. 10.1083/jcb.135.2.399.
CAS
PubMed
Google Scholar
Hunter AW, Caplow M, Coy DL, Hancock WO, Diez S, Wordeman L, Howard J: The kinesin-related protein MCAK is a microtubule depolymerase that forms an ATP-hydrolyzing complex at microtubule ends. Mol Cell. 2003, 11 (2): 445-457. 10.1016/S1097-2765(03)00049-2.
CAS
PubMed
Google Scholar
Desai A, Verma S, Mitchison TJ, Walczak CE: Kin I kinesins are microtubule-destabilizing enzymes. Cell. 1999, 96 (1): 69-78. 10.1016/S0092-8674(00)80960-5.
CAS
PubMed
Google Scholar
Rogers GC, Rogers SL, Schwimmer TA, Ems-McClung SC, Walczak CE, Vale RD, Scholey JM, Sharp DJ: Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase. Nature. 2004, 427 (6972): 364-370. 10.1038/nature02256.
CAS
PubMed
Google Scholar
Liu B, Cyr RJ, Palevitz BA: A kinesin-like protein, KatAp, in the cells of Arabidopsis and other plants. Plant Cell. 1996, 8 (1): 119-132. 10.1105/tpc.8.1.119.
PubMed Central
CAS
PubMed
Google Scholar
Wordeman L, Mitchison TJ: Identification and partial characterization of mitotic centromere-associated kinesin, a kinesin-related protein that associates with centromeres during mitosis. J Cell Biol. 1995, 128 (1-2): 95-104. 10.1083/jcb.128.1.95.
CAS
PubMed
Google Scholar
Dawson SC, Sagolla MS, Mancuso JJ, Woessner DJ, House SA, Fritz-Laylin L, Cande WZ: Kinesin-13 regulates flagellar, interphase, and mitotic microtubule dynamics in Giardia intestinalis. Eukaryot Cell. 2007, 6 (12): 2354-2364. 10.1128/EC.00128-07.
PubMed Central
CAS
PubMed
Google Scholar
DeZwaan TM, Ellingson E, Pellman D, Roof DM: Kinesin-related KIP3 of Saccharomyces cerevisiae is required for a distinct step in nuclear migration. J Cell Biol. 1997, 138 (5): 1023-1040. 10.1083/jcb.138.5.1023.
PubMed Central
CAS
PubMed
Google Scholar
Pereira AJ, Dalby B, Stewart RJ, Doxsey SJ, Goldstein LS: Mitochondrial association of a plus end-directed microtubule motor expressed during mitosis in Drosophila. J Cell Biol. 1997, 136 (5): 1081-1090. 10.1083/jcb.136.5.1081.
PubMed Central
CAS
PubMed
Google Scholar
Sekine Y, Okada Y, Noda Y, Kondo S, Aizawa H, Takemura R, Hirokawa N: A novel microtubule-based motor protein (KIF4) for organelle transports, whose expression is regulated developmentally. J Cell Biol. 1994, 127 (1): 187-201. 10.1083/jcb.127.1.187.
CAS
PubMed
Google Scholar
Wedlich-Soldner R, Straube A, Friedrich MW, Steinberg G: A balance of KIF1A-like kinesin and dynein organizes early endosomes in the fungus Ustilago maydis. EMBO J. 2002, 21 (12): 2946-2957. 10.1093/emboj/cdf296.
PubMed Central
CAS
PubMed
Google Scholar
Okada Y, Yamazaki H, Sekine-Aizawa Y, Hirokawa N: The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell. 1995, 81 (5): 769-780. 10.1016/0092-8674(95)90538-3.
CAS
PubMed
Google Scholar
Gho M, McDonald K, Ganetzky B, Saxton WM: Effects of kinesin mutations on neuronal functions. Science. 1992, 258 (5080): 313-316. 10.1126/science.1384131.
PubMed Central
CAS
PubMed
Google Scholar
Hall DH, Hedgecock EM: Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans. Cell. 1991, 65 (5): 837-847. 10.1016/0092-8674(91)90391-B.
CAS
PubMed
Google Scholar
Brady ST, Pfister KK, Bloom GS: A monoclonal antibody against kinesin inhibits both anterograde and retrograde fast axonal transport in squid axoplasm. Proc Natl Acad Sci USA. 1990, 87 (3): 1061-1065. 10.1073/pnas.87.3.1061.
PubMed Central
CAS
PubMed
Google Scholar
Dacks JB, Field MC: Evolution of the eukaryotic membrane-trafficking system: origin, tempo and mode. J Cell Sci. 2007, 120 (Pt 17): 2977-2985. 10.1242/jcs.013250.
CAS
PubMed
Google Scholar
O'Brien EA, Koski LB, Zhang Y, Yang L, Wang E, Gray MW, Burger G, Lang BF: TBestDB: a taxonomically broad database of expressed sequence tags (ESTs). Nucleic Acids Res. 2007, D445-451. 10.1093/nar/gkl770. 35 Database
Scholey JM: Intraflagellar transport motors in cilia: moving along the cell's antenna. J Cell Biol. 2008, 180 (1): 23-29. 10.1083/jcb.200709133.
PubMed Central
CAS
PubMed
Google Scholar
Rosenbaum JL, Witman GB: Intraflagellar transport. Nat Rev Mol Cell Biol. 2002, 3 (11): 813-825. 10.1038/nrm952.
CAS
PubMed
Google Scholar
Bernstein M, Beech PL, Katz SG, Rosenbaum JL: A new kinesin-like protein (Klp1) localized to a single microtubule of the Chlamydomonas flagellum. J Cell Biol. 1994, 125 (6): 1313-1326. 10.1083/jcb.125.6.1313.
CAS
PubMed
Google Scholar
Erickson HP: Evolution of the cytoskeleton. Bioessays. 2007, 29 (7): 668-677. 10.1002/bies.20601.
PubMed Central
CAS
PubMed
Google Scholar
Ramesh MA, Malik SB, Logsdon JM: A phylogenomic inventory of meiotic genes; evidence for sex in Giardia and an early eukaryotic origin of meiosis. Curr Biol. 2005, 15: 185-191.
CAS
PubMed
Google Scholar
Liu Y, A RT, Aves SJ: Ancient diversification of eukaryotic MCM DNA replication proteins. BMC Evol Biol. 2009, 9: 60-10.1186/1471-2148-9-60.
PubMed Central
CAS
PubMed
Google Scholar
Dacks JB, Poon PP, Field MC: Phylogeny of endocytic components yields insight into the process of nonendosymbiotic organelle evolution. Proc Natl Acad Sci USA. 2008, 105 (2): 588-593. 10.1073/pnas.0707318105.
PubMed Central
CAS
PubMed
Google Scholar
Philippe H: Opinion: long branch attraction and protist phylogeny. Protist. 2000, 151 (4): 307-316. 10.1078/S1434-4610(04)70029-2.
CAS
PubMed
Google Scholar
Katoh K, Misawa K, Kuma K, Miyata T: MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002, 30 (14): 3059-3066. 10.1093/nar/gkf436.
PubMed Central
CAS
PubMed
Google Scholar
Katoh K, Kuma K, Toh H, Miyata T: MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 2005, 33 (2): 511-518. 10.1093/nar/gki198.
PubMed Central
CAS
PubMed
Google Scholar
Whelan S, Goldman N: A general empirical model of protein evolution derived from multiple protein families using a maximum likelihood approach. Mol Biol Evol. 2001, 18: 691-699.
CAS
PubMed
Google Scholar
Le SQ, Gascuel O: An improved general amino acid replacement matrix. Mol Biol Evol. 2008, 25 (7): 1307-1320. 10.1093/molbev/msn067.
CAS
PubMed
Google Scholar
Jones DT, Taylor WR, Thornton JM: The rapid generation of mutation data matrices from protein sequences. Computer Applications in the Biosciences. 1992, 8 (3): 275-282.
CAS
PubMed
Google Scholar
Galtier N, Gouy M, Gautier C: SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci. 1996, 12 (6): 543-548.
CAS
PubMed
Google Scholar
Edgar RC: MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004, 5: 113-10.1186/1471-2105-5-113.
PubMed Central
PubMed
Google Scholar