Brooks DR, McLennan DA: The Nature of Diversity. 2002, Chicago: University of Chicago Press
Google Scholar
Schluter D: The Ecology of Adaptive Radiation. 2000, Oxford: Oxford University Press
Google Scholar
Simpson GG: The Major Features of Evolution. 1953, New York: Columbia University Press
Google Scholar
Stanley SM: Macroevolution: pattern and process. 1979, London: John Hopkins Paperbacks;, 2
Google Scholar
Mayhew PJ: Why are there so many insects? Perspectives from fossils and phylogenies. Biological Reviews. 2007, 82: 425-454. 10.1111/j.1469-185X.2007.00018.x.
PubMed
Google Scholar
Mooers AØ, Heard SJ: Evolutionary process from phylogenetic tree shape. Quarterly Review of Biology. 1997, 72: 31-54. 10.1086/419657.
Google Scholar
Nee S: Inferring speciation rates from phylogenies. Evolution. 2001, 55: 661-668. 10.1554/0014-3820(2001)055[0661:ISRFP]2.0.CO;2.
CAS
PubMed
Google Scholar
Purvis A: Using interspecies phylogenies to test macroevolutionary hypotheses. New Uses for New Phylogenies. Edited by: Harvey PH, Brown AJL, Smith JM, Nee S. 1996, Oxford: Oxford University Press, 153-168.
Google Scholar
Nee S, Barraclough TG, Harvey PH: Temporal changes in biodiversity: detecting patterns and identifying causes. Biodiversity: a biology of numbers and difference. Edited by: Gaston KJ. 1996, Oxford: Oxford University Press, 230-252.
Google Scholar
Gavrilets S, Losos JB: Adaptive radiation: contrasting theory with data. Science. 2009, 323: 732-737. 10.1126/science.1157966.
CAS
PubMed
Google Scholar
Hunter JP: Key innovations and the ecology of macroevolution. Trends in Ecology and Evolution. 1998, 13: 31-36. 10.1016/S0169-5347(97)01273-1.
CAS
PubMed
Google Scholar
de Queiroz A: Contingent predictability in evolution: key traits and diversification. Systematic Biology. 2002, 51: 917-929. 10.1080/10635150290102627.
PubMed
Google Scholar
Davis RB, Baldauf SL, Mayhew PJ: Eusociality and the success of the termites: insights from a supertree of dictyopteran families. Journal of Evolutionary Biology. 2009, 22: 1750-1761. 10.1111/j.1420-9101.2009.01789.x.
CAS
PubMed
Google Scholar
Mayhew PJ: Shifts in hexapod diversification and what Haldane could have said. Proceedings of the Royal Society of London B. 2002, 269: 969-974. 10.1098/rspb.2002.1957.
Google Scholar
Mayhew PJ: A tale of two analyses: estimating the consequences of shifts in hexapod diversification. Biological Journal of the Linnean Society. 2003, 80: 23-36. 10.1046/j.1095-8312.2003.00217.x.
Google Scholar
Barraclough TG, Vogler AP: Recent diversification rates in North American tiger beetles estimated from a dated mtDNA phylogenetic tree. Molecular Biology and Evolution. 2002, 19: 1706-1716.
CAS
PubMed
Google Scholar
Farrell BD: 'Inordinate fondness' explained: why are there so many beetles?. Science. 1998, 25: 196-198.
Google Scholar
Hines HM: Historical biogeography, divergence times, and diversification patterns of bumble bees (Hymenoptera: Apidae: Bombus). Systematic Biology. 2008, 57: 58-75. 10.1080/10635150801898912.
PubMed
Google Scholar
Moreau CS, Bell CD, Vila R, Archibald SB, Pierce NP: Phylogeny of the ants: diversification in the age of angiosperms. Science. 2006, 312: 101-104. 10.1126/science.1124891.
CAS
PubMed
Google Scholar
Wheat CW, Vogel H, Wittstock U, Braby MF, Underwood D, Mitchell-Olds T: The genetic basis of a plant-insect coevolutionary key innovation. Proceedings of the National Academy of Sciences of the United States of America. 2007, 104: 20427-20431. 10.1073/pnas.0706229104.
PubMed Central
CAS
PubMed
Google Scholar
Hunt T, Bergsten J, Levkanicova Z, Papadopoulou A, St. John O, Wild R, Hammond PM, Ahrens D, Balke M, Caterino MS, et al: A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science. 2007, 318: 1913-1916. 10.1126/science.1146954.
CAS
PubMed
Google Scholar
Davies TJ, Barraclough TG, Chase MW, Soltis PS, Savolainen V: Darwin's abominable mystery: insights from a supertree of angiosperms. Proceedings of the National Academy of Sciences of the United States of America. 2004, 101: 1904-1909. 10.1073/pnas.0308127100.
PubMed Central
CAS
PubMed
Google Scholar
Gaston KJ: The magnitude of global insect species richness. Conservation Biology. 1991, 5: 283-296. 10.1111/j.1523-1739.1991.tb00140.x.
Google Scholar
Grimaldi DA, Engel MS: Evolution of the Insects. 2005, Cambridge: Cambridge University Press
Google Scholar
Gullan PJ, Cranston PS: The Insects: An Outline of Entomology. 2005, Oxford: Blackwell Publishing
Google Scholar
Jackson AP: Cophylogeny of the Ficus microcosm. Biological Reviews. 2004, 79: 751-768. 10.1017/S1464793104006463.
PubMed
Google Scholar
Nyman T, Farrell BD, Zinovjev AG, Vikberg V: Larval habits, host-plant associations and speciation in nematine sawflies (Hymenoptera: Tenthredinidae). Evolution. 2006, 60: 1622-1637.
PubMed
Google Scholar
Mitter C, Farrell B, Wiegmann B: The phylogentic study of adaptive zones: has phytophagy promoted insect diversification?. The American Naturalist. 1988, 132: 107-128. 10.1086/284840.
Google Scholar
Wiegmann BM, Mitter C, Farrell B: Diversification of carnivorous parasitic insects: extraordinary radiation or specialized dead end?. The American Naturalist. 1993, 142: 737-754. 10.1086/285570.
Google Scholar
Königsmann E: Das phylogenetische System der Hymenoptera Teil 2: Symphyta. Deutsche Entomologische Zeitschrift Neue Folge. 1977, 24: 1-40.
Google Scholar
Königsmann E: Das phylogenetische Suystem der Hymenoptera Teil3: Terebrantes (Unterordnung Apocrita). Deutsche Entomologische Zeitschrift Neue Folge. 1978, 25: 1-55.
Google Scholar
Königsmann E: Das phylogenetische System der Hymenoptera Teil 4: Aculeata (Unterordnung Apocrita). Deutsche Entomologische Zeitschrift Neue Folge. 1978, 25: 365-435.
Google Scholar
Rasnitsyn AP: An outline of the evolution of the hymenopterous insects (Order Vespida). Oriental Insects. 1988, 22: 115-145.
Google Scholar
Ronquist F, Rasnitsyn AP, Roy A, Eriksson K, Lindgren M: Phylogeny of the Hymenoptera: a cladisitic reanalysis of Rasnitsyn's (1988) data. Zoologica Scripta. 1999, 28: 13-50. 10.1046/j.1463-6409.1999.00023.x.
Google Scholar
Ronquist F: Phylogeny of the Hymenoptera (Insecta): the state of the art. Zoologica Scripta. 1999, 28: 3-11. 10.1046/j.1463-6409.1999.00019.x.
Google Scholar
Dowton M, Austin AD: Evidence for AT-transversion bias in wasp (Hymenoptera: Symphyta) mitochondrial genes and its implications for the origin of parasitism. Journal of Molecular Evolution. 1997, 44: 398-405. 10.1007/PL00006159.
CAS
PubMed
Google Scholar
Schulmeister S, Wheeler WC, Carpenter JM: Simultaneous analysis of the basal lineages of Hymenoptera (Insecta) using sensitivity analysis. Cladistics. 2002, 18: 455-484.
Google Scholar
Dowton M, Austin AD: Molecular phylogeny of the insect order Hymenoptera: apocritan relationships. Proceedings of the National Academy of Sciences of the United States of America. 1994, 91: 9911-9915. 10.1073/pnas.91.21.9911.
PubMed Central
CAS
PubMed
Google Scholar
Dowton M, Austin AD: Simultaneous analysis of 16S, 28S, COI and morphology in the Hymenoptera: Apocrita - evolutionary transitions among parasitic wasps. Biological Journal of the Linnean Society. 2001, 74: 87-111. 10.1006/bijl.2001.0577.
Google Scholar
Campbell B, Heraty J, Rasplus J-Y, Chan K, Steffen-Campbell J, Babcock C: Molecular systematics of the Chalcidoidea using 28S-D2 rDNA. Hymenoptera: Evolution, Biodiversity and Biological Control. Edited by: Austin AD, Dowton M. 2000, Collingwood, Australia: CSIRO Publishing, 59-71.
Google Scholar
Dowton M, Austin AD, Dillon N, Bartowsky E: Molecular phylogeny of the apocritan wasps: the Proctotrupomorpha and Evaniomorpha. Systematic Entomology. 1997, 22: 245-255. 10.1046/j.1365-3113.1997.d01-42.x.
Google Scholar
Schulmeister S: Review of morphological evidence on the phylogeny of basal Hymenoptera (Insecta) with a discussion of the ordering of characters. Biological Journal of the Linnean Society. 2003, 79: 209-243. 10.1046/j.1095-8312.2003.00232.x.
Google Scholar
Vilhelmsen L: Phylogeny and classification of the extant basal lineages of Hymenoptera. Zoological Journal of the Linnean Society. 2001, 131: 393-442. 10.1111/j.1096-3642.2001.tb01320.x.
Google Scholar
Sharkey MJ: Phylogeny and classification of Hymenoptera. Zootaxa. 2007, 1668: 521-548.
Google Scholar
Gibson GAP: Sister-group relationships of the Platygastroidea and Chalcidoidea (Hymenoptera) - an alternate hypothesis to Rasnitsyn (1988). Zoologica Scripta. 1999, 28: 125-138. 10.1046/j.1463-6409.1999.00015.x.
Google Scholar
Krogmann L, Vilhelmsen L: Phylogenetic implications of the mesosomal skeleton in Chalcidoidea (Hymenoptera, Apocrita) - tree searches in a jungle of homoplasy. Invertebrate Systematics. 2006, 20: 615-674. 10.1071/IS06012.
Google Scholar
Gordh G, Headrick DH: A Dictionary of Entomology. 2000, Wallingford: CABI Publishing
Google Scholar
Gauld I, Bolton B: The Hymenoptera. 1988, Oxford: Oxford University Press
Google Scholar
Goulet H, Huber JT: Hymenoptera of the World. 1993, Ottawa: Research Branch, Agriculture Canada
Google Scholar
Béthoux O: Gaps and nodes between fossil and extant insects. Systematic Entomology. 2009, 34: 599-604. 10.1111/j.1365-3113.2009.00484.x.
Google Scholar
Ross AJ, Jarzembowski EA: Arthropoda (Hexapoda: Insecta). The Fossil Record 2. Edited by: Benton MJ. 1993, London: Chapman & Hall, 363-426.
Google Scholar
Hennig W: Die Stammesgeschichte der Insekten. 1969, Frankfurt am Main: Kramer
Google Scholar
Pisani D, Cotton JA, McInerney JO: Supertrees disentangle the chimeric origin of eukaryotic genomes. Molecular Biology and Evolution. 2007, 24: 1752-1760. 10.1093/molbev/msm095.
CAS
PubMed
Google Scholar
Bininda-Emonds ORP, Jones KE, Price SA, Cardillo M, Grenyer R, Purvis A: Garbage in, garbage out: data issues in supertree construction. Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life. Edited by: Bininda-Emonds ORP. 2004, Dordrecht: Kluwer Academic Publishers, 267-280.
Google Scholar
Beck RMD, Bininda-Emonds ORP, Cardillo M, Liu F-GR, Purvis A: A higher-level MRP supertree of placental mammals. BMC Evolutionary Biology. 2006, 6: 93-10.1186/1471-2148-6-93.
PubMed Central
PubMed
Google Scholar
Bininda-Emonds ORP, Gittleman JL, Purvis A: Building large trees by combining phylogenetic information: a complete taxonomy of the extant Carnivora (Mammalia). Biological Reviews. 1999, 74: 143-175. 10.1017/S0006323199005307.
CAS
PubMed
Google Scholar
Cavalcanti MJ: A phylogenetic supertree of the hammerhead sharks (Carcharhiniformes, Sphyrnidae). Zoological Studies. 2007, 46: 6-11.
Google Scholar
Eo SH, Bininda-Emonds ORP, Carroll JP: A phylogenetic supertree of the fowls (Galloanserae, Aves). Zoologica Scripta. 2009, 38: 465-481. 10.1111/j.1463-6409.2008.00382.x.
Google Scholar
Grotkopp E, Rejmánek M, Sanderson MJ, Rost TL: Evolution of genome sizes in pines (Pinus) and its life-history correlates: supertree analyses. Evolution. 2004, 58: 1705-1729.
CAS
PubMed
Google Scholar
Jones KE, Purvis A, MacLarnon A, Bininda-Emonds ORP, Simmons NB: A phylogenetic supertree of the bats (Mammalia, Chiroptera). Biological Reviews. 2002, 77: 223-259. 10.1017/S1464793101005899.
PubMed
Google Scholar
Pisani D, Yates AM, Langer MC, Benton MJ: A genus-level supertree of the Dinosauria. Proceedings of the Royal Society of London B. 2002, 269: 915-921. 10.1098/rspb.2001.1942.
Google Scholar
Purvis A: A composite estimate of primate phylogeny. Philosophical Transactions of the Royal Society London B. 1995, 348: 405-421. 10.1098/rstb.1995.0078.
CAS
Google Scholar
Ruta M: A species-level supertree for stylophoran echinoderms. Acta Palaeontologica Polonica. 2003, 48: 559-568.
Google Scholar
Salamin N, Hodkinson TR, Savolainen V: Building supertrees: an empirical assessment using the grass family (Poaceae). Systematic Biology. 2002, 51: 136-150. 10.1080/106351502753475916.
PubMed
Google Scholar
Baum BR: Combining trees as a way of combining datasets for phylogenetic inference, and the desirability of combining gene trees. Taxon. 1992, 41: 3-10. 10.2307/1222480.
Google Scholar
Ragan MA: Phylogenetic inference based on matrix representation of trees. Molecular Phylogenetics and Evolution. 1992, 1: 53-58. 10.1016/1055-7903(92)90035-F.
CAS
PubMed
Google Scholar
Lloyd GT, Davis KE, Pisani D, Tarver JE, Ruta M, Sakamoto M, Hone DWE, Jennings R, Benton MJ: Dinosaurs and the Cretaceous terrestrial revolution. Proceedings of the Royal Society of London B. 2008, 275: 2483-2490. 10.1098/rspb.2008.0715.
Google Scholar
Ruta M, Pisani D, Lloyd GT, Benton MJ: A supertree of Temnospondyli: cladogenetic patterns in the most species-rich group of early tetrapods. Proceedings of the Royal Society of London B. 2007
Google Scholar
Ross HA, Rodrigo AJ: An assessment of matrix representation with compatibility in supertree construction. Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life. Edited by: Bininda-Emonds ORP. 2004, Dordrecht: Kluwer Academic Publishers, 35-63.
Google Scholar
Lapointe F-J, Cucumel G: The average consensus procedure: combination of weighted trees containing identical or overlapping sets of taxa. Systematic Biology. 1997, 46: 306-312.
Google Scholar
Wilkinson M, Thorley JL, Pisani D, Lapointe F-J, McInerney JO: Some desiderata for liberal supertrees. Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life. Edited by: Bininda-Emonds ORP. 2004, Dordrecht: Kluwer Academic Publishers, 227-246.
Google Scholar
Wilkinson M, Pisani D, Cotton JA, Corfe I: Measuring support and finding unsupported relationships in supertrees. Systematic Biology. 2005, 54: 823-831. 10.1080/10635150590950362.
PubMed
Google Scholar
Bininda-Emonds ORP: Novel versus unsupported clades: assessing the qualitative support for clades in MRP supertrees. Systematic Biology. 2003, 52: 839-848.
PubMed
Google Scholar
Price SA, Bininda-Emonds ORP, Gittleman JL: A complete phylogeny of the whales, dolphins and even-toed hoofed mammals (Cetartiodactyla). Biological Reviews. 2005, 80: 445-473. 10.1017/S1464793105006743.
PubMed
Google Scholar
Baker WJ, Savolainen V, Asmussen-Lange CB, Chase MW, Dransfield J, Forest F, Harley MM, Uhl NW, Wilkinson M: Complete generic-level phylogenetic analyses of palms (Arecaceae) with comparisons of supertree and supermatrix approaches. Systematic Biology. 2009, 58: 240-256. 10.1093/sysbio/syp021.
PubMed
Google Scholar
Davis RB, Baldauf SL, Mayhew PJ: Many hexapod groups originated earlier and withstood extinction better than previously realized: inferences from supertrees. Proceedings of the Royal Society of London B.
Nee S, May RM, Harvey PH: The reconstructed evolutionary process. Philosophical Transactions of the Royal Society London B. 1994, 344: 305-311. 10.1098/rstb.1994.0068.
CAS
Google Scholar
Farris JS: Expected asymmetry of evolutionary rates. Systematic Zoology. 1976, 25: 196-198. 10.2307/2412748.
Google Scholar
Moore B, Chan KMA, Donoghue MJ: Detecting diversification rate variation in supertrees. Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life. Edited by: Bininda-Emonds ORP. 2004, Dordrecht: Kluwer Academic Publishers, 487-533.
Google Scholar
Townes H: The genera of Ichneumonidae 1. Memoirs of the American Entomological Institute. 1969, 11: 1-300.
Google Scholar
van Achterberg C: Essay on the phylogeny of Braconidae. Entomologisk Tidskrift. 1984, 105: 41-58.
Google Scholar
Parker SP: Synopsis and Classification of Living Organisms. 1982, New York: McGraw-Hill
Google Scholar
Naumann ID: Hymenoptera. The Insects of Australia. Edited by: Naumann ID. 1991, Carlton: Melbourne University Press, 2: 916-1000.
Google Scholar
Schmidt S, Smith DR: An annotated systematic world catalogue of the Pergidae (Hymenoptera). Contributions of the American Entomological Institute. 2006, 34 (3):
Kristensen NP: Phylogeny of endopterygote insects, the most successful lineage of living organisms. European Journal of Entomology. 1999, 96: 237-253.
Google Scholar
Wheeler WC, Whiting M, Wheeler QD, Carpenter JM: The phylogeny of the extant hexapod orders. Cladistics. 2001, 17: 113-169. 10.1111/j.1096-0031.2001.tb00115.x.
Google Scholar
Ayme-Southgate AJ, Southgate RJ, Philipp RA, Sotka EE, Kramp C: The myofibrillar protein, projectin, is highly conserved across insect evolution except for its PEVK domain. Journal of Molecular Evolution. 2008, 67: 653-669. 10.1007/s00239-008-9177-2.
PubMed Central
CAS
PubMed
Google Scholar
Savard J, Tautz D, Richards S, Weinstock GM, Gibbs RA, Werren JH, Tettelin H, Lercher MJ: Phylogenomic analysis reveals bees and wasps (Hymenoptera) at the base of the radiation of holometabolous insects. Genome Research. 2006, 16: 1334-1338. 10.1101/gr.5204306.
PubMed Central
CAS
PubMed
Google Scholar
Wiegmann BM, Trautwein MD, Kim J-W, Cassel BK, Bertone MA, Winterton SL, Yeates DK: Single-copy nuclear genes resolve the phylogeny of the holometabolous insects. BMC Biology. 2009, 7: 34-10.1186/1741-7007-7-34.
PubMed Central
PubMed
Google Scholar
Gibson GAP, Heraty JM, Woolley JB: Phylogenetics and classification of Chalcidoidea and Mymarommatoidea - a review of current concepts (Hymenoptera, Apocrita). Zoologica Scripta. 1999, 28: 87-124. 10.1046/j.1463-6409.1999.00016.x.
Google Scholar
Castro LR, Dowton M: Molecular analyses of the Apocrita (Insecta: Hymenoptera) suggest that the Chalcidoidea are sister to the diaprioid complex. Invertebrate Systematics. 2006, 20: 603-614. 10.1071/IS06002.
CAS
Google Scholar
Schulmeister S: Simultaneous analysis of basal Hymenoptera (Insecta): introducing robust-choice sensitivity analysis. Biological Journal of the Linnean Society. 2003, 79: 245-275. 10.1046/j.1095-8312.2003.00233.x.
Google Scholar
Dowton M, Austin AD: Increased genetic diversity in mitochondrial genes is correlated with the evolution of parasitism in the Hymenoptera. Journal of Molecular Evolution. 1995, 41: 958-965. 10.1007/BF00173176.
CAS
PubMed
Google Scholar
Hennig W: Insect Phylogeny. 1981, Chichester: John Wiley & Sons
Google Scholar
Wharton RA, Vilhelmsen L, Gibson GAP: Characterizing basal apocritans (Hymenoptera: Apocrita). Proceedings of the Russian Entomological Society St Petersburg. 2004, 75: 17-23.
Google Scholar
Powell JA, Turner WJ: Observations on oviposition behavior and host selection in Orussus occidentalis (Hymenoptera: Siricoidea). Journal of the Kansas Entomological Society. 1975, 48: 299-307.
Google Scholar
Ward PS: Ants. Current Biology. 2006, 16: R152-R155. 10.1016/j.cub.2006.02.054.
CAS
PubMed
Google Scholar
Day MC: The enigmatic genus Heterogyna Nagy (Hymenoptera: Sphecidae; Heterogyninae). Systematic Entomology. 1984, 9: 293-307. 10.1111/j.1365-3113.1984.tb00054.x.
Google Scholar
Arévalo HA, Frank JH: Nectar sources for Larra Bicolor (Hymenoptera: Sphecidae), a parasitoid of Scapteriscus mole crickets (Orthoptera: Gryllotalpidae), in Northern Florida. Florida Entomologist. 2005, 88: 146-151. 10.1653/0015-4040(2005)088[0146:NSFLBH]2.0.CO;2.
Google Scholar
Carpenter JM, Wheeler WC: Towards simultaneous analysis of morphological and molecular data in Hymenoptera. Zoologica Scripta. 1999, 28: 251-260. 10.1046/j.1463-6409.1999.00009.x.
Google Scholar
Whiting MF: Phylogeny of the holometabolous insect orders: molecular evidence. Zoologica Scripta. 2002, 31: 3-15. 10.1046/j.0300-3256.2001.00093.x.
Google Scholar
Olmi M: The Dryinidae and Embolemidae (Hymenoptera: Chrysidoidea) of Fennoscandia and Denmark: Chrysidoidea) of Fennoscandia and Denmark. 1994, Leiden: Brill Academic Publishers
Google Scholar
Almeida EAB, Danforth BN: Phylogeny of colletid bees (Hymenoptera: Colletidae) inferred from four nuclear genes. Molecular Phylogenetics and Evolution. 2009, 50: 290-309. 10.1016/j.ympev.2008.09.028.
CAS
PubMed
Google Scholar
Zhang H, Rasnitsyn AP: Two new anaxyelid sawflies (Insecta, Hymenoptera, Siricoidea) from the Yixian Formation of western Liaoning, China. Cretaceous Research. 2006, 27: 279-284. 10.1016/j.cretres.2005.11.001.
Google Scholar
Ortega-Blanco J, Rasnitsyn AP, Delclòs X: First record of anaxyelid woodwasps (Hymenoptera: Anaxyelidae) in Lower Cretaceous Spanish amber. Zootaxa. 2008, 1937: 39-50.
Google Scholar
Shcherbakov DE: Fern sawfly larvae Blasticotoma filiceti Klug 1834 (Hymenoptera: Blasticotomidae) are visited by ants: a new kind of trophobiosis. Russian Entomological Journal. 2006, 15: 67-72.
Google Scholar
Carpenter FM: Arthropoda: Superclass Hexapoda. 1992, Boulder: The Geological Society of America
Google Scholar
Signor PW: Patterns of diversification. Palaeobiology, A Synthesis. Edited by: Briggs DEG. 1990, Crowther PR: Blackwell, 130-135.
Google Scholar
Connell JH: Diversity and the coevolution of competitors or the ghost of competition past. Oikos. 1980, 35: 131-138. 10.2307/3544421.
Google Scholar
Hurd PD, Linsley EG: The bee family Oxaeidae with a revision of the North American species (Hymenoptera: Apoidea). Smithsonian Contributions to Zoology. 1976, 220: 1-75.
Google Scholar
Michez D, Patiny S, Rasmont P, Timmermann K, Vereecken NJ: Phylogeny and host-plant evolution in Melittidae s.l. (Hymenoptera: Apoidea). Apidologie. 2008, 39: 146-162. 10.1051/apido:2007048.
Google Scholar
Winston ML: The Biology of the Honey Bee. 1991, Cambridge, MA: Harvard University Press
Google Scholar
Quicke DLJ: Parasitic Wasps. 1997, London: Chapman & Hall
Google Scholar
Oelrichs PB, MacLeod JK, Seawright AA, Grace PB: Isolation and identification of the toxic peptides from Lophyrotoma zonalis (Pergidae) sawfly larvae. Toxicon. 2001, 39: 1933-1936. 10.1016/S0041-0101(01)00144-1.
CAS
PubMed
Google Scholar