Skip to main content

Table 4 The models used to analyze the data from the 22 pairs of taxa from the Philippines ( M ), and a subset of nine of those pairs from the Islands of Negros and Panay ( M )

From: An improved approximate-Bayesian model-choice method for estimating shared evolutionary history

Model Priors
M m s B a y e s tD U{1,…,Y} τU(0,34.64 [ 17.3 M G A]) θ A U(0,0.01) θD1,θD2B e t a(1,1)×2×U(0,0.01) ζD1U(0,1) ζD2U(0,1)
M U n i f o r m tD U{a(Y)} τE x p(m e a n=10 [ 5 M G A]) θ A E x p(m e a n=0.005) θD1E x p(m e a n=0.005) θD2E x p(m e a n=0.005)
  ζD1B e t a(5,1) ζD2B e t a(5,1)
M D P P tD P(χG a m m a(1.5,18.1)) τE x p(m e a n=10 [ 5 M G A]) θ A E x p(m e a n=0.005) θD1E x p(m e a n=0.005)
  θD2E x p(m e a n=0.005) ζD1B e t a(5,1) ζD2B e t a(5,1)
M DPP inform tD P(χ G a m m a(1.5,18.1)) τ E x p(m e a n=6 [ 3 M G A]) θ A E x p(m e a n=0.005) θD1 E x p(m e a n=0.005)
  θD2 E x p(m e a n=0.005) ζD1B e t a(5,1) ζD2B e t a(5,1)
M DPP simple tD P(χG a m m a(1.5,18.1)) τE x p(m e a n=10 [ 5 M G A]) θ A =θD1=θD2E x p(m e a n=0.005) ζD1=ζD2=1.0
M DPP tD P(χG a m m a(1.5,5.0)) τE x p(m e a n=10 [ 5 M G A]) θ A E x p(m e a n=0.005) θD1=θD2E x p(m e a n=0.005)
  ζD1=ζD2=1.0
  1. In addition to the n 1 coalescent times, the M DPP simple has only a single θ parameter for each taxon pair. The remaining M models have three θ, two ζ D , and one τ B parameter. The distributions of divergence times are given in units of 4N C generations followed in brackets by units of millions of generations ago (MGA), with the former converted to the latter assuming a per-site rate of 1 × 10−8 mutations per generation. The M DPP model (and its M DPP counterpart that samples over ordered divergence models) has only two θ parameters (the descendant populations of each pair share the same θ parameter, and there are no bottleneck parameters).