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contraction of gene families with putative 
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pathogens Calonectria henricotiae and C. 
pseudonaviculata
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Abstract 

Background: Boxwood blight disease caused by Calonectria henricotiae and C. pseudonaviculata is of ecological and 
economic significance in cultivated and native ecosystems worldwide. Prior research has focused on understanding 
the population genetic and genomic diversity of C. henricotiae and C. pseudonaviculata, but gene family evolution 
in the context of host adaptation, plant pathogenesis, and trophic lifestyle is poorly understood. This study applied 
bioinformatic and phylogenetic methods to examine gene family evolution in C. henricotiae, C. pseudonaviculata and 
22 related fungi in the Nectriaceae that vary in pathogenic and saprobic (apathogenic) lifestyles.

Results: A total of 19,750 gene families were identified in the 24 genomes, of which 422 were rapidly evolving. 
Among the six Calonectria species, C. henricotiae and C. pseudonaviculata were the only species to experience high 
levels of rapid contraction of pathogenesis-related gene families (89% and 78%, respectively). In contrast, saprobic 
species Calonectria multiphialidica and C. naviculata, two of the closest known relatives of C. henricotiae and C. pseudo-
naviculata, showed rapid expansion of pathogenesis-related gene families.

Conclusions: Our results provide novel insight into gene family evolution within C. henricotiae and C. pseudonavicu-
lata and suggest gene family contraction may have contributed to limited host-range expansion of these pathogens 
within the plant family Buxaceae.
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Background
Boxwood blight is an emerging invasive disease of 
broadleaf evergreen shrubs and trees in the plant fam-
ily Buxaceae [15]. Due to the widespread commercial 

production and negative impact of boxwood blight in 
native ecosystems, this disease poses a major threat to 
the worldwide ornamental horticulture industry and 
native Buxus populations in Asia and Europe [47]. Box-
wood blight was first discovered in the United Kingdom 
in 1994 and subsequently identified in the United States 
in 2011, where it occurs in 30 states and the District of 
Columbia [27, 29, 32]. Symptoms of boxwood blight 
begin as dark lesions on leaves of infected plants that 
eventually lead to extreme leaf blighting, stem lesions, 
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and defoliation under conducive environmental condi-
tions. Few effective boxwood disease management prac-
tices have been identified and current research efforts are 
focused on developing host–plant resistance strategies as 
multiple fungicide applications are costly and unsustain-
able for the year-round occurrence of this disease [15].

Boxwood blight is caused by the ascomycete fungi 
Calonectria henricotiae (Che) and C. pseudonaviculata 
(Cps), two closely related sister species in the family Nec-
triaceae. Cps also infects two additional genera in the 
plant family Buxaceae, Pachysandra and Sarcococca [7]. 
When boxwood blight disease was first discovered in the 
1990s in Europe, Cps was the only known causal agent. 
However, in 2005, a second species—Che was identi-
fied from diseased boxwood in the UK and continental 
Europe [24]. Several studies have shown limited genetic 
diversity from natural populations of Che and Cps, con-
sistent with the hypothesis of predominant asexual 
reproduction and introduced clonal lineages [8, 37, 38]. 
Malapi-Wight et  al. (2019) determined that populations 
of Cps have a single mating type idiomorph (MAT1-
1) compared to populations of Che which possess the 
MAT1-2 idiomorph [44]. Separate studies demonstrated 
that pathogen populations have low genetic diversity and 
no evidence of sexual recombination, suggesting lim-
ited opportunities for mating with predominately clonal 
asexual reproduction [8, 37]. Despite possessing oppo-
site mating types and a sympatric geographic distribu-
tion in Europe and the UK, successful mating between 
Che and Cps has not been observed in nature or under 
laboratory conditions [7, 37, 44]. Additional population 
genomic analyses of Che and Cps have also shown limited 
gene flow between the two species and absence of shared 
genetic polymorphisms [38].

The genus Calonectria includes more than 160 
described species that inhabit a broad range of ecologi-
cal habitats and lifestyles globally [41]. In addition to Che 
and Cps, several other species of Calonectria are plant 
pathogens and the causal agents of diseases on approxi-
mately 335 plant species across 100 plant families [13, 
42]. For example, C. ilicicola infects at least 70 plant spe-
cies in multiple families while C. gordoniae is a pathogen 
of a single host plant species native to the southeastern 
US, loblolly bay (Gordonia lasianthus) [21]. Despite the 
incredible diversity of lifestyles employed by Calonectria 
species, little is known about the mechanisms that these 
fungi utilize to successfully infect their hosts and extract 
nutrients. Two comparative genomic and transcrip-
tomic studies were recently conducted on the Eucalyptus 
pathogen C. pseudoreteaudii (Cpr) to elucidate patho-
genesis mechanisms. In these studies, enzymes involved 
in secondary (specialized) metabolite biosynthesis were 
up-regulated in Cpr mycelia grown in Eucalyptus tissue 

culture medium [75]. These authors identified expanded 
gene families of Major Facilitator Superfamily (MFS) 
transporters that enhance pathogenicity suggesting that 
MFS proteins may provide an adaptive mechanism for 
degrading and transporting compounds produced by 
Eucalyptus that are toxic to the fungus. Ye et  al. (2017) 
analyzed Cpr gene expression profiles at three tempo-
ral stages of Eucalyptus infection and disease symp-
tom development. The authors identified differentially 
expressed genes involved in plant cell wall degradation, 
detoxification of phytoalexins, toxin synthesis, iron 
uptake, and reactive oxygen species scavenging. Genes 
encoding cutinase enzymes, which are crucial for plant 
pathogenic fungi that penetrate through the host cuticle, 
were also up-regulated during plant pathogenesis and 
expressed earlier than other cell wall degrading enzymes 
[76]. An additional report of secondary metabolites as 
virulence factors was observed in C. iliciola and pro-
duction of the PF1070A phytotoxin was correlated with 
increased disease symptom expression in 17 isolates 
examined [49]. The extracellular proteomes of Che and 
Cps were recently examined and revealed 124 putative 
effectors produced by both species which are hypothe-
sized to be involved in plant pathogenesis [74]. However, 
to date, gene expression profiles of Che and Cps during 
boxwood blight disease development have not been the 
subject of comprehensive investigation in a gene family 
evolution framework.

During genome evolution, gene duplication and gene 
loss events can contribute to contraction and expansion 
of gene families [17]. Genome changes can be linked to 
evolutionary processes that result in environmental niche 
adaptation [17]. Studying changes in gene family con-
traction and expansion can provide useful insight into 
organismal, ecological, and lifestyle transitions of plant 
pathogenic fungi. In many disease-causing fungal species, 
changes in gene family size have been linked to observed 
variation in host adaptation, pathogenesis, and viru-
lence [54, 61]. Rapid expansion of gene families in plant 
pathogenic fungi associated with host cell wall degrada-
tion, secondary, and carbohydrate metabolism is pro-
viding insight into pathogenesis and virulence processes 
[40, 48, 64]. Rapid contraction of gene families involved 
in similar processes have also been linked to biotrophy 
(obligate parasitism) and ecological lifestyle [65, 78]. For 
example, in insect and plant pathogenic fungi, contrac-
tion of gene families was associated with cuticle and cell 
wall degradation and limited (narrow) host range [3, 71]. 
In plant and insect systems, analysis of gene family evo-
lution has elucidated different aspects of pathogen biol-
ogy and ecology. In the Northern California black walnut 
(Juglans hindsii), a plant species native to the western US, 
contraction of gene families involved in abiotic stress and 
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disease were associated with resistance to Armillaria root 
rot disease [69]. In another recent study, identification of 
rapidly evolving gene families led to the development of 
novel strategies for managing blood-feeding insects [23].

In this study, we deployed comparative phylogenomic 
tools to characterize and identify rapidly evolving gene 
families within the genomes of Che, Cps, and 22 addi-
tional fungal taxa. Using multiple analytical meth-
ods, we generated annotations for protein sequences 
within rapidly evolving gene families to determine puta-
tive functional classes. Further annotation of putative 
pathogenicity factors and secreted effectors within rap-
idly evolving gene families of Che, Cps, closely related 
plant pathogenic and saprobic (apathogenic) species of 
Calonectria, and less-aggressive pathogens of hosts in 
Buxaceae Pseudonectria buxi (Pbu), P. foliicola (Pfo), and 
Coccinonectria pachysandricola (Cpa), were conducted 
to identify shared patterns in gene family evolution 
associated with fungal-host plant adaptation, pathogen-
esis, and virulence. We hypothesized that gene fami-
lies important for host infection and pathogenesis have 
expanded in Che and Cps, relative to other pathogenic 
and saprobic species of Calonectria and closely related 
non-Calonectria Buxaceae pathogens. Here we report on 
(1) the quantity and predicted functional classes of rap-
idly contracting and expanding gene families in 24 fun-
gal taxa in the Nectriaceae that vary in pathogenic and 
saprobic lifestyle; and (2) the predicted functional anno-
tation and comparison of putative pathogenicity factors 
and secreted effectors within rapidly evolving gene fami-
lies of Che, Cps, and closely and distantly related species 
of Calonectria and non-Calonectria pathogens of hosts 
in Buxaceae.

Results
Gene family identification based on time‑calibrated 
phylogenetic analyses
Genome assemblies and predicted proteomes for each 
of the 24 fungal taxa showed high levels of completeness 
based on BUSCO scores of 95% or higher (Additional 
file  1). Overall, 95% of the predicted protein sequences 
across all the taxa were assigned to a gene family, with a 
total of 19,750 gene families identified. The average num-
ber of proteins in a gene family was 16.7 and 2154 gene 
families had single copy proteins found in all 24 taxa. 
Construction of a maximum likelihood phylogenetic tree 
using protein sequence data from 2154 single copy genes 
showed 100% confidence in tree topology (Additional 
file 2).

Identification of rapidly evolving gene families
Across the time-calibrated phylogeny of the 24 fungal 
taxa examined in this study, CAFE4 identified 422 gene 

families evolving at a non-random rate (rapidly evolv-
ing) (p ≤ 0.01; Additional file 3, Additional file 4). In total, 
17,596 gene families experienced a change in size across 
the phylogeny, either through expansion or contraction. 
To provide a measure of rapid gene family evolution 
that each species experienced relative to total changing 
(both rapidly evolving and randomly evolving) gene fami-
lies, calculations of the percent of rapidly evolving gene 
families per total changing gene families were performed 
(Fig.  1). For 17 species, rapidly expanding gene families 
accounted for ≥ 1% of total expanding gene families. 
Rapidly contracting gene families accounted for ≥ 1% of 
total contracting gene families in seven species. However, 
randomly contracting gene families were more numer-
ous than randomly expanding gene families across the 
24 taxa and may partially explain the generally lower 
observed percentages.

The percentage of rapidly evolving gene families 
showed variation among the 24 fungal taxa. For example, 
Cpa, which has the smallest assembled genome among 
the 24 taxa (26.4  Mb), contained the largest number of 
total contracting gene families (11,967 gene families) and 
mean gene losses (-8.4 genes) but was one of five spe-
cies to have < 10 total rapidly evolving gene families (six 
gene families) (Fig.  1, Additional file  1, and Additional 
file 5). Surprisingly, Che exhibited the highest and second 
highest percentages of rapidly contracting and expand-
ing (respectively) gene families, despite having the sec-
ond and first smallest totals (contracting and expanding, 
respectively) (Fig.  1). Similar to Che, Cps experienced 
comparable trends in both total changing and total rap-
idly evolving gene families (Fig. 1 and Additional file 5). 
The proportion of rapidly expanding gene families com-
pared to rapidly contracting gene families for each spe-
cies showed that each of the 24 taxa exhibited distinct 
patterns of gene family evolution directionality, with 
either more rapid gene family contraction or more rapid 
gene family expansion (Fig. 2).

Among species of Calonectria, Che and Cps were the 
only species to undergo more rapid gene family contrac-
tions than expansions and had considerably fewer total 
expanding and contracting gene families than Cmu, Cna, 
Cle, and Cpr (Figs. 1, 2, and Additional file 5). The sap-
robic species Cmu and Cna exhibited nearly exclusive 
rapid gene family expansion. For example, Cna had the 
greatest number of total expanding gene families across 
all 24 taxa (Figs.  1, 2, and Additional file  5). Compared 
to the non-Calonectria Buxaceae pathogens (Cpa, Pbu, 
and Pfo), Che and Cps experienced more rapid gene fam-
ily expansions and contractions than Cpa, Pbu, and Pfo. 
However, Che and Cps had a similar number of total 
contracting and expanding gene families compared to 
the two species of Pseudonectria examined in this study. 
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For example, Pseudonectria species had ~ 11,000 fewer 
total contracting gene families than Cpa, which had the 
most total contracting gene families among the 24 taxa 
examined (Figs.  1, 2, and Additional file  5). The non-
Calonectria pathogens of plants in the family Buxaceae 
consistently placed in the bottom five species with the 
fewest total rapidly evolving gene families (Pbu, Pfo, and 
Cpa had one, two and six total rapidly evolving gene fam-
ilies, respectively; Additional file 5).

To identify rapidly evolving gene families shared 
between Che and Cps and the other Calonectria spe-
cies and non-Calonectria pathogens of species in Bux-
aceae (Cpa, Pbu, and Pfo), a series of UpSet plots were 
generated (Additional file  6). For rapidly contracting 
and expanding gene families, Che and Cps shared two or 
fewer gene families with saprobic Calonectria species, 
pathogenic Calonectria species, and non-Calonectria 
pathogens of plants in the family Buxaceae (Additional 
file 6). Che and Cps shared the most rapidly contracting 
and rapidly expanding gene families with the pathogenic 
Calonectria species (Cle and Cp) (Additional file 6). Che 
and Cps did not share any rapidly evolving gene fami-
lies within the “rapidly expanding” or “rapidly contract-
ing” categories but did share three gene families that 

were rapidly evolving in opposite directions in each spe-
cies (OG0000649, OG0001150, and OG0007608). Indi-
vidually, Che and Cps experienced rapid expansion and 
rapid contraction of three gene families (OG0000150, 
OG0000440, and OG0000796 in Che, and OG0000026, 
OG0000101, and OG0000854 in Cps) that were not rap-
idly evolving in any of the other 22 additional fungal taxa.

Annotation of rapidly evolving gene families
While 422 gene families were identified by CAFE4 as 
rapidly evolving across the phylogeny, only those rapidly 
evolving at terminal taxa were characterized (403 gene 
families). Of the 7221 protein sequences grouped into the 
403 extant gene families, 5912 received a COG annota-
tion (sequences that received an ‘NA’ or not annotated 
designation by eggNOG were removed from subsequent 
analyses) (Table 1). The 5912 annotated sequences were 
used to classify 332 rapidly evolving gene families into a 
putative functional category which were annotated with 
between one and 11 (1.56 ± 1.09; Mean ± SD) COG cat-
egories based on the annotations of protein sequences 
within each gene family. Approximately 68% (225 gene 
families) of the COG-annotated gene families were anno-
tated with a single COG category. For Pfam annotation, 
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5294 of the 7221 protein sequences received a Pfam hit 
with an e-value ≤ 1e−5 and spanned 317 of the 403 rap-
idly evolving gene families with between one and 207 
(16.700 ± 22.616) sequences per gene family. Protein 
sequences that received both a COG and Pfam annota-
tion (4468 out of the 7221 protein sequences) spanned 
304 of the 403 rapidly evolving gene families in extant 
species.

Among the 24 fungal taxa, 101 annotated gene families 
(~ 33%) were of the unknown function COG category (S 
category; Table  1). Of the 115 Pfam targets (13.6 ± 27.4 
proteins per target) spanning the S-categorized gene 
families, heterokaryon incompatibility protein (HET; 
PF06985.12; 253 proteins) was the most frequently 
observed and was found in seven S-categorized gene fam-
ilies. The second most frequently observed Pfam target 
was NACHT domain (PF05729.13; 97 protein sequences), 
which is associated with programmed cell death and het-
erokaryon incompatibility (HET) loci. Together, HET and 
NACHT domain Pfam targets spanned 13 S-categorized 

gene families which were rapidly evolving in 14 of the 
24 taxa (Che, Cmu, Cna, Cps, Cp, Dactylonectria mac-
rodidyma, Fusarium fujikuroi, F. oxysporum 4287, F. 
oxysporum Fo47, F. solani, Neonectria hederae, N. puni-
cea, Stachybotrys chartarum, and S. chlorohalonata) 
(Fig.  3). Excluding F. oxysporum 4287 and Fo47, and S. 
chlorohalonata, each species experienced either exclusive 
rapid expansion or contraction of these gene families. 
After S-categorized gene families, Q-categorized gene 
families (secondary metabolism, biosynthesis, and catab-
olism) were the second most frequently observed COG 
category with 40 gene families (709 protein sequences). 
Pfam targets within Q-categorized gene families spanned 
a narrower range than in S-categorized gene families 
of 56 targets (12.7 ± 35.1 proteins per target) with the 
most frequently observed targets being cytochrome 
P450 (PF00067.23; 243 protein sequences), short-chain 
dehydrogenase (PF00106.26; 88 protein sequences), and 
enoyl-(acyl carrier protein) reductase (PF13561.7; 76 pro-
tein sequences). Combined, these Pfam-targets spanned 
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23 of 40 Q-categorized gene families which were rapidly 
evolving in 18 of the 24 taxa (Cp, Cmu, Cna, Cps, Cori-
nectria fuckeliana, D. macrodidyma, F. oxysporum 4287, 
F. fujikuroi, F. graminearum, F. oxysporum 47, F. solani, 
Ilyonectria destructans, N. ditissima, N. hederae, N. 
punicea, Pbu, S. chartarum, S. chlorohalonata) (Fig.  3). 
These gene families were exclusively expanding in half 
of the species and either both expanding and contract-
ing or exclusively contracting in the remaining species. 
Combined with the S- and Q-categorized gene families, 
G-categorized gene families (carbohydrate transport and 
metabolism; 19 gene families; 240 protein sequences) 
represented more than 50% of the COG-annotated gene 

families. Pfam targets within G-categorized gene families 
spanned 33 Pfam targets (7.27 ± 8.71 proteins per target) 
with the most frequently observed being major facilita-
tor family (PF07690.17; 39 protein sequences), tannase 
and feruloyl esterase (PF07519.12; 36 protein sequences), 
and glycoside hydrolase family 18 (PF00704.29; 15 pro-
tein sequences). These three Pfam targets spanned seven 
of the 19 G-annotated gene families which were rapidly 
evolving in eight of 24 taxa and exclusively expanding or 
contracting in each species (Cmu, Cna, Cps, F. fujikuroi, F. 
oxysporum Fo47, F. solani, N. hederae, S. chartarum). The 
remaining 27 COG categories contained ≤ 17 gene fami-
lies per category and were represented by 304 annotated 

Table 1 Number of rapidly evolving gene families and proteins assigned to each Clusters of Orthologous Groups (COG) category 
across the genomes of the boxwood blight pathogens Calonectria henricotiae and C. pseudonaviculata, and 22 fungal taxa in the 
Nectriaceae

COG 
abbreviation

COG category Number of rapidly 
evolving gene 
families

Number of 
proteins

S Function unknown 101 1566

Q Secondary metabolite biosynthesis, transport, and catabolism 40 709

G Carbohydrate transport and metabolism 19 240

E Amino acid transport and metabolism 17 228

C Energy production and conversion 16 207

K Transcription 16 229

L Replication, recombination, and repair 12 114

T Signal transduction mechanisms 12 118

I Lipid transport and metabolism 8 118

P Inorganic ion transport and metabolism 8 99

U Intracellular trafficking, secretion, and vesicular transport 8 105

Z Cytoskeleton 7 131

M Cell wall/membrane/envelope biogenesis 6 39

O Post-translational modification, protein turnover, chaperones 6 252

B Chromatin structure and dynamics 4 45

H Coenzyme transport and metabolism 3 9

J Translation, ribosomal structure, and biogenesis 3 37

V Defense mechanisms 3 48

A RNA processing and modification 2 26

D Cell cycle control, cell division, chromosome partitioning 2 30

OT Post-translational modification, protein turnover, chaperones/signal transduction mechanisms 2 24

AT RNA processing and modification/signal transduction mechanisms 1 17

CG Energy production and conversion/carbohydrate transport and metabolism 1 13

CH Energy production and conversion/coenzyme transport and metabolism 1 8

DK Cell cycle control, cell division, chromosome partitioning/transcription 1 15

FQ Nucleotide transport and metabolism/secondary metabolite biosynthesis, transport, and catabo-
lism

1 5

IQ Lipid transport and metabolism/secondary metabolite biosynthesis, transport, and catabolism 1 10

KL Transcription/replication, recombination, and repair 1 1

TZ Signal transduction mechanisms/cytoskeleton 1 13

UY Intracellular trafficking, secretion, and vesicular transport/nuclear structure 1 12
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gene families (Table 1). The comprehensive range of Pfam 
functional targets within each COG-annotated gene fam-
ily are presented in Additional file 7.

Identification of putative pathogenicity factors 
and secreted effectors
To further screen rapidly evolving gene families in the 
genus Calonectria and non-Calonectria pathogens of 
hosts in Buxaceae for potential roles in plant patho-
genesis, protein sequences in these gene families were 
compared to accessions in the Pathogen Host Inter-
actions (PHI) database. The PHI database catalogues 
pathogenicity, virulence, and effector genes that have 
been experimentally tested in pathogen-host interac-
tions of fungal, oomycete, and bacterial pathogens with 
animal, plant, fungal, and insect hosts [70]. In total 2682 
sequences were searched against the PHI database and 
1566 sequences spanning 112 rapidly evolving gene fami-
lies received hits with e-values ≤ 1e−5. Protein sequences 
from all species except the non-Calonectria Buxaceae 
pathogen Pfo received PHI hits. To identify PHI-anno-
tated sequences putatively involved in virulence and 
pathogenicity, sequences homologous to proteins with 
annotated mutant phenotypes of reduced virulence 
(RV), loss of pathogenicity (LOP), or effector (E) in other 

pathogens were identified from the dataset. Of 1566 
sequences with similarity to sequences in the PHI data-
base, 738 sequences matched these criteria and spanned 
64 rapidly evolving gene families (Fig.  4 and Additional 
file 8). The same set of sequences used for PHI annota-
tion were also classified into secreted and other (no signal 
peptide identified) protein categories using SignalP v5.0 
[1]. Of 2682 sequences, 123 sequences were classified as 
secreted proteins and spanned 35 rapidly evolving gene 
families (Fig. 5 and Additional file 8). All species except 
for Pbu and Cpa had sequences classified as secreted pro-
teins in rapidly evolving gene families. Sequences clas-
sified as secreted proteins were further classified into 
effector and non-effector categories using EffectorP v2.0 
(Fig. 5) [66].

The predominant PHI phenotype for annotated 
sequences within rapidly evolving gene families was 
RV followed by LOP and E (Fig.  4 and Additional 
file 8). Several shared gene families identified with the 
UpSet plots between Che, Cps, sapbrobic Calonec-
tria species, non-Buxaceae Calonectria pathogens, 
and non-Calonectria pathogens of species in Bux-
aceae also contained PHI-annotated sequences (Fig.  4 
and Additional file  6). Of 123 sequences classified as 
secreted proteins by SignalP, seven were classified as 
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effectors and spanned five gene families which were 
rapidly expanding in Cmu, Cna, Cle, and Cpr and rap-
idly contracting in Cps and Cpr (Fig. 5). Gene families 
containing secreted effectors were not rapidly evolv-
ing in Che. Gene families rapidly evolving within sap-
robic Calonectria species Cmu and Cna that contained 
PHI-annotated and/or predicted secreted effectors 
experienced exclusive rapid expansion, while gene 
families rapidly evolving in Che and Cps that contained 
sequences with similar annotations experienced pre-
dominant rapid contraction (Figs. 4, 5). COG and Pfam 
annotation information for gene families that contained 
PHI annotated sequences and/or secreted effectors that 
were rapidly evolving in Che and Cps are presented 
in Table  2. These data showed that 10 gene families 
belonged to the secondary metabolism (Q), carbohy-
drate metabolism (G), and intracellular trafficking and 
secretion (U) COG categories. Among the 10 families, 

Che and Cps experienced rapid contraction in eight 
gene families within these categories (Table 2).

Discussion
Since the global emergence of boxwood blight disease 
in the 1990s, research on the evolution of Che and Cps 
has focused primarily on understanding factors influenc-
ing pathogen population genetic and genomic diversity. 
However, gene family evolution in Che and Cps and its 
putative role in plant pathogenesis has not been studied. 
For this study, we identified and annotated rapidly evolv-
ing gene families in the genomes of Che and Cps, and 22 
related fungal taxa representing taxonomic and trophic 
diversity in the family Nectriaceae to examine gene fam-
ily contraction and expansion. Previous studies that have 
investigated gene family evolution in plant pathogenic 
fungi demonstrated that gene families important for 
pathogen-host interactions tend to expand rapidly [40, 
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48, 64]. Here, we tested the hypothesis that gene families 
important for plant host infection and pathogenesis have 
expanded in Che and Cps, relative to other pathogenic 
and saprobic species of Calonectria and distantly related 
non-Calonectria Buxaceae pathogens.

Among the pathogenic and saprobic species of 
Calonectria examined in this study, only Che and Cps 
exhibited predominant rapid contraction of gene families 
with putative involvement in host plant infection based 
on combined use of multiple annotation analyses. Gene 
families were assumed to play putative roles in plant 
pathogenesis based on examination of proteins that dis-
played similarity to proteins documented in the PHI 
database or contained predicted secreted effectors. While 
rapid expansion of gene families involved in pathogenesis 
has been reported for fungal plant pathogens, rapid con-
traction of pathogenesis-related gene families has been 
linked to biotrophy (obligate parasitism) and a restricted 

host range [3, 62, 65, 71, 78]. Given that infection by Che 
and Cps results in necrosis of diseased leaves and stems 
and because Che and Cps can be readily cultured on arti-
ficial nutrient medium, it is unlikely that they are obli-
gate biotrophs. However, it remains unknown whether 
Che and Cps possess an initial biotrophic phase to obtain 
nutrients from living cells upon entry into plant tissues 
during infection, and whether these fungi exhibit hemibi-
otrophic or necrotrophic behaviors. Better studied fungal 
plant pathogens in the Nectriaceae including Neonec-
tria spp. and Fusarium spp. have been characterized as 
hemibiotrophs [43, 57, 68]. Without knowledge of the 
trophic behavior and lifestyle of Che and Cps, it is chal-
lenging to interpret how the mechanism(s) of nutrient 
acquisition influence gene family evolution in these spe-
cies. Future comprehensive investigation on the trophic 
behaviors and lifestyles of Che and Cps is warranted to 
provide additional insight into the relative contribution of 
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these behaviors on contraction of gene families involved 
in plant pathogenesis in these species.

To date, Cps has been isolated and identified from envi-
ronmental samples of diseased leaves on plants in three 
genera in the family Buxaceae: Buxus, Pachysandra, and 
Sarcococca [21]. This restricted host range provides at 
least one plausible explanation for predominant rapid 
contraction of pathogenesis-related gene families. Che 
causes disease primarily on species of Buxus in nature, 
although artificial inoculation experiments in the labora-
tory indicate that Pachysandra terminalis ‘var. Compacta’ 
is a host [4]. Differences in Che and Cps host range may 
explain observed differences in gene family evolution 
between these closely related species. Interestingly, con-
traction of gene families involved in trophic behavior and 
plant/animal host recognition among 45 fungal genomes 
sampled in the order Hypocreales were associated with 
a restricted host range [78]. Comparative genomic anal-
yses of fungal insect pathogens in the Ophiocordyceps 
unilateralis species complex also revealed contraction of 
gene families involved in cuticle degradation and other 
insect-host interactions and specificity [71]. The contrac-
tion of gene families involved in cell-wall degradation 
and secondary metabolite biosynthesis associated with 
plant pathogenesis in fungal plant pathogens is also well 

documented [65]. In other plant pathogens, the absence 
or presence of pathogenicity-related genes have been 
shown to be strong determinants of plant host range for 
lineages of Magnaporthe oryzae, Verticillium dahliae, 
Leptosphaeria maculans—Leptosphaeria biglobosa spe-
cies complex, and closely related Zymoseptoria species 
[12, 16, 25, 26]. For example, effector genes were hypoth-
esized to have emerged after speciation and contributed 
to differences in host specificity in the closely related sis-
ter species Zymoseptoria pseudotritici and Z. ardibiliae 
[25]. Perhaps this is the case for Che and Cps and explains 
the limited overlap in rapidly evolving, pathogenesis-
related gene families between these species. Based on 
these observations, our hypothesis that gene families 
involved in plant pathogenesis are expanding in Che and 
Cps was rejected.

Three gene families were rapidly evolving in both Che 
and Cps, but none had putative roles in plant pathogen-
esis. Instead, these gene families received COG annota-
tions of unknown function, coenzyme transport, and 
cytoskeleton and did not contain proteins that received 
PHI annotations or secreted effector classifications. Indi-
vidually, Che and Cps contained three rapidly evolving 
gene families each that were not rapidly evolving in any 
of the additional 22 fungal taxa investigated. In Cps, one 

Table 2 Rapidly evolving gene families in the genomes of the boxwood blight pathogens Calonectria henricotiae (Che) and C. 
pseudonaviculata (Cps) that contain predicted proteins with pathogen host interactions (PHI) annotations and/or putative secreted 
effectors

(C) and (E) indicate rapid contraction and expansion of each gene family, respectively

Gene family ID Rapidly 
evolving in 
Cps

Rapidly 
evolving in 
Che

COG category Top Pfam target Contains PHI 
annotated 
sequences

Contains putative 
secreted effectors

OG0000000 (C) S NACHT (PF05729.13) Yes No

OG0000003 (C) O CHAT (PF12770.8) Yes No

OG0000008 (C) U Sugar transporter (PF00083.25) Yes No

OG0000012 (C) Z Phosphorylase superfamily (PF01048.21) No Yes

OG0000013 (C) S NACHT (PF05729.13) Yes No

OG0000029 (C) Q Short-chain dehydrogenase (PF00106.26) Yes No

OG0000036 (C) G Glycoside hydrolase family 18 (PF00704.29) Yes Yes

OG0000041 (C) G Carboxylesterase family (PF00135.29) Yes No

OG0000049 (C) D Protein kinase domain (PF00069.26) Yes No

OG0000069 (C) U Trichothecene efflux pump (PF06609.14) Yes No

OG0000091 (C) G LysM domain (PF01476.21) Yes Yes

OG0000157 (C) Q Amine oxidase (PF01179.21) Yes No

OG0000187 (C) U Sugar transporter (PF00083.25) Yes No

OG0000321 (E) Q AMP-binding enzyme (PF00501.29) Yes No

OG0000702 (C) E Aminotransferase class III (PF00202.22) Yes No

OG0000852 (C) S Major facilitator family (PF07690.17) Yes No

OG0001175 (E) K Fungal specific transcription factor domain 
(PF04082.19)

Yes No

OG0001226 (E) IQ AMP-binding enzyme (PF00501.29) Yes No
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of three uniquely evolving and rapidly contracting gene 
families contained a top Pfam target of CFEM domain 
(PF05730.12) which has a proposed role in fungal patho-
genesis and contained putative secreted proteins [34]. 
In Che, none of the three uniquely evolving gene fami-
lies had putative roles in pathogenesis. Che and Cps are 
closely related sister species with minor genetic and 
genomic differences, but exhibit phenotypic differences 
in thermotolerance, fungicide sensitivity, and secretome 
composition [24, 37, 74]. Additionally, the geographic 
distribution of Cps is more widespread than Che which 
has not expanded its range beyond the UK and continen-
tal Europe [38]. Differences in geographic range may con-
tribute to the rapid evolution of different gene families in 
these species. However, the relationship between genetic 
diversity and biogeography are not well documented in 
fungal species except in certain pathogenic, mushroom-
forming, and arbuscular mycorrhizal fungi [2, 18, 60, 
79]. One isolate genome of Che and Cps was included 
for comparing rapidly evolving gene families between 
these species since pathogen populations of Che and Cps 
have been shown to be clonal in nature and display lim-
ited genetic diversity [37]. However, complete genome 
analyses of asexual pathogens like Verticillium dahliae 
have revealed that this plant pathogenic species can har-
bor substantial numbers of accessory genes, which can 
be enriched in candidate effectors not shared between 
strains [58]. Future studies should confirm similar trends 
in gene family evolution across genetically different iso-
lates of Che and Cps.

Two of the closest known relatives of Che and Cps 
included in this study were the apathogenic soil sap-
robes, Calonectria multiphialidica (Cmu) and C. navic-
ulata (Cna), which exhibited nearly exclusive rapid 
gene family expansion and had the greatest number 
of rapidly evolving gene families among Calonectria 
species investigated. The greatest number of rapidly 
expanded gene families in Cmu and Cna were classified 
into the unknown function, secondary metabolite bio-
synthesis, and carbohydrate metabolism COG catego-
ries. Expanded gene families involved in plant cell wall 
degradation and secondary metabolite biosynthesis are 
commonly observed in saprobic fungal genomes due to 
their involvement in nutrient degradation and defense 
against competing microorganisms, respectively [36, 
39]. Mutualistic ecto- and endomycorrhizal fungi are 
also known to produce a variety of secreted PCWDEs 
and effectors known as mycorrhiza-induced small 
secreted proteins (MiSSPs) that allow them to initiate 
their symbiotic association with plants [45]. Interest-
ingly, many rapidly expanding gene families in Cmu and 
Cna contained proteins similar to those characterized 
in pathogen-host interactions and were the same gene 

families rapidly contracting in Che and Cps. While there 
are no published reports of plant diseases caused by 
Cmu and Cna, rapid expansion of pathogenesis-related 
gene families suggests that these species may be evolv-
ing in a similar manner to plant pathogenic fungi [40, 
48, 64]. Saprobic fungi have been shown to produce and 
secrete large repertoires of effectors similar in sequence 
to those produced by plant pathogenic fungi. However, 
the function of these effectors in a saprobic lifestyle 
remains unclear [22]. Functional annotation of gene 
families involved in pathogenesis in plant pathogenic 
Calonectria species of non-Buxaceae hosts, Calonectria 
leucothoes (Cle) and Calonectria pseudoreteaudii (Cp), 
were also performed in this study. Cle and Cpr are well 
documented pathogens of Leucothoe spp. and Eucalyp-
tus spp. in the Ericaceae and Myrtaceae plant families, 
respectively [21]. Based on these reports, Cle and Cpr 
have a similar size and restricted host range to Che and 
Cps. However, the same observation of predominant 
rapid contraction of gene families involved in plant 
pathogenesis was not observed. Compared to Che and 
Cps, Cle and Cpr had fewer total rapidly evolving gene 
families and experienced predominant expansion of 
rapidly evolving gene families including those involved 
in plant pathogenesis. Based on these observations, 
Cle and Cpr displayed the most typical trends in gene 
family evolution observed in other fungal plant patho-
gens compared to the other Calonectria species exam-
ined [40, 48, 64]. A valuable and future comparison 
of gene family evolution between the restricted plant 
host range Calonectria species examined in this study 
and a species of Calonectria with a broader host range 
is warranted. At the time of initiating our study, rela-
tively few Calonectria genomes were publicly available 
for this comparison. Lastly, we compared rapidly evolv-
ing gene families in Che and Cps to non-Calonectria 
Buxaceae pathogens Pseudonectria buxi (Pbu), P. folii-
cola (Pfo), and Coccinonectria pachysandricola (Cpa). 
Pbu, Pfo, and Cpa are the causal agents of Volutella leaf 
blight on different hosts in the family Buxaceae and 
are considered non-aggressive pathogens that typically 
occur on plants experiencing abiotic stress compared 
to Che and Cps [56, 73]. Pbu causes disease on species 
of Buxus, while Pfo causes disease on both Buxus and 
Sarcococca spp., and Cpa causes disease on Sarcococca 
and Pachysandra spp. [21]. Pbu, Pfo, and Cpa clustered 
with Aquanectria penicillioides and Thelonectria rubi 
with the fewest total rapidly evolving gene families 
while Cpa shared two rapidly contracting gene families 
involved in pathogenesis with Che. Because of the rela-
tively low quantity of rapidly evolving gene families in 
Pbu, Pfo, and Cpa comparisons with Che and Cps were 
limited. However, the relatively low number of rapidly 
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evolving gene families may suggest that these species 
are experiencing different selective pressures than Che 
and Cps [17].

In addition to the functional annotation analyses of 
pathogenesis-related gene families within Calonectria 
species and non-Calonectria Buxaceae pathogens, we 
performed broad functional annotation of gene fami-
lies rapidly evolving across all 24 fungal taxa selected. 
Approximately, one third of rapidly evolving gene fami-
lies across the 24 taxa were classified into the unknown 
function COG category. Within unknown function gene 
families, the predominant Pfam targets were heter-
okaryon incompatibility protein (HET; PF06985.12) and 
NACHT domain (PF05729.13). Both HET and NACHT 
domains are subunits of proteins commonly found in 
the HNWD gene family that allow fungi to recognize self 
from non-self for successful cell and cytoplasmic fusion 
[10]. Cell and cytoplasmic fusion are essential and fun-
damental processes in fungi that allows them to transi-
tion from unicellular to multicellular organisms and 
form hyphal networks for maximizing nutrient acquisi-
tion. HET genes have been shown to be highly polymor-
phic and contribute to the rapid evolution of members 
within HNWD gene families [10, 33, 53]. Constant rapid 
evolution of HET genes and their associated gene fami-
lies allows fungi to maintain genome integrity and evade 
mycoparasitic exploitation or mycovirus infection, which 
is critical for fungal species success, irrespective of 
trophic behavior and lifestyle [52]. This would partially 
explain why the greatest number of rapidly evolving gene 
families contained proteins important for heterokaryon 
(vegetative) incompatibility across the 24 taxonomically 
diverse taxa examined in this study. Among species of 
Calonectria, heterokaryon incompatibility and HET loci 
have not been well studied. However, HET loci in Che 
and Cps likely have a similar function to other previously 
examined fungi in the Ascomycota where an incompat-
ible (cell death) reaction is initiated when there are allelic 
differences at HET loci of two interacting fungal isolates 
of the same species.

Conclusions
In this study, we used comparative phylogenomic meth-
ods to identify and characterize gene families that are 
rapidly evolving in Che and Cps and other closely related 
fungi to better understand adaptation and pathogenesis 
mechanisms for infection of hosts in the plant family 
Buxaceae by these pathogens. Our work highlights and 
provides new information on the evolutionary trajecto-
ries of Che and Cps and their close relatives that suggest a 
restricted host range in Che and Cps and gene family evo-
lution trends in saprobic species Cmu and Cna that are 
analogous to many plant pathogenic fungi. Our results 

serve as a framework for future studies examining Che 
and Cps during infection and pathogenesis on Buxaceae 
hosts that may be used to develop novel disease manage-
ment strategies. This research also raises new questions 
about the complex involvement of gene family evolution 
in the trophic lifestyles of Calonectria species and pro-
vides further evidence for an evolutionarily relevant role 
of pathogenesis-related gene families in fungi with sapro-
bic lifestyles.

Materials and methods
Genome selection and assembly quality assessment
Twenty-four fungal taxa representing 10 genera in the 
family Nectriaceae and two outgroup species of Stachy-
botrys (Stachybotryaceae) were selected for this study 
(Additional file  1). Genome assemblies were obtained 
from NCBI GenBank for all taxa except Calonectria 
multiphialidica. References and accession numbers 
for genome assemblies are shown in Additional file  1. 
Genome data for C. multiphialidica were generated 
using Illumina sequencing technology and assembled as 
previously described [38]. Predicted protein sequence 
data were also downloaded from NCBI GenBank where 
available; otherwise, proteins were predicted using the 
Funannotate v1.8.1 pipeline [51]. Completeness of all 
predicted proteomes and underlying genome assemblies 
were assessed using BUSCO v3.1.0 using the fungal-
specific gene set ‘Fungi odb9’ [63]. No plant material was 
used in this study.

Estimation of gene families and construction 
of time‑calibrated phylogeny
Clusters of orthologous genes were identified with 
OrthoFinder v2.2.7 using the “diamond” option for 
sequence alignment and “msa” option for gene-tree 
inference [20]. Single copy orthologs identified using 
OrthoFinder were concatenated into an alignment and 
poorly conserved regions were filtered with Gblocks v0.91 
[6]. The best-fit model of protein evolution was identi-
fied using ProtTest v3.4.2 [14]. The protein sequence 
alignment was used to construct a maximum-likelihood 
phylogeny with RAxML v8.2.12 using the JTT model of 
protein evolution and 100 bootstrap replicates to assess 
confidence in tree topology [67]. The program r8s v1.81 
was used to generate a time-calibrated ultrametric tree 
from the RAxML phylogeny using an estimated 244 MYA 
median divergence between Stachybotrys chartarum and 
Fusarium graminearum determined from the TimeTree 
database [35, 59]. The time-calibrated phylogeny and 
orthogroup data were used to measure changes in gene 
family size and identify rapidly evolving gene families.
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Identification and annotation of rapidly evolving gene 
families
Rapidly evolving gene families were identified using 
CAFE v4.2.1 which models gene family evolution through 
time using a stochastic birth and death model and iden-
tifies gene families that have experienced a significant 
change in size [28]. Input data were represented by the 
orthogroups (gene families) identified with OrthoFinder 
and the time-calibrated phylogeny representing evolu-
tionary relationships among the 24 fungal taxa. A birth–
death parameter (lambda, -s option) of 0.00353252 was 
estimated for the phylogeny using an optimization algo-
rithm that maximizes the log likelihood of the data for 
all gene families. A default significance level of 0.01 (-p 
option) was used to calculate Viterbi p-values to assess 
rapid (significant) contraction or expansion of gene 
families along each branch. A custom Python script 
was developed to extract gene families that were rapidly 
evolving in extant species to perform additional analyses 
(Additional file 5).

Protein sequences within rapidly evolving gene fami-
lies for each species were annotated to determine puta-
tive functional classes of gene families. Broad functional 
annotation was performed using eggNOG-mapper v2 
which identifies Clusters of Orthologous Groups (COG) 
functional categories for each sequence using an e-value 
threshold of 1e−3 [30, 31]. The most frequently observed 
COG category within rapidly evolving gene families was 
used to categorize the gene families for further analysis. 
Gene families with equivalent frequencies of more than 
one COG category were classified to the first of the tied 
categories, which were ordered alphabetically for a given 
gene family. Protein sequences from Aquanectria penicil-
lioides (20 total protein sequences) and Pfo (eight total 
protein sequences) did not receive COG annotations and 
were not used in gene family characterization. Additional 
annotation of protein sequences within gene families was 
performed by searching sequences against the Pfam-A 
database v33.1 using HMMER 3 with an e-value thresh-
old of 1e−5 [19, 46]. For each annotation procedure, 
hits with the lowest e-value were selected for annota-
tion of protein sequences that matched multiple subject 
sequences. Interspecific gene family annotation summa-
ries and analyses were conducted in R v4.0.3 [55] using 
the following packages: tidyverse v1.3.0, UpSetR v1.4.0, 
ggtree v2.4.1, seqinr v4.2–5, Biostrings v2.58.0 [9, 11, 50, 
72, 77].

Identification of putative pathogenicity factors 
and secreted effectors
Protein sequences within rapidly evolving gene fami-
lies from Che, Cps, two saprobic Calonectria species (C. 

multiphialidica [Cmu] and C. naviculata [Cna]), two 
Calonectria species pathogenic to non-boxwood hosts 
(C. leucothoes [Cle] and C. pseudoreteaudii, [Cpr]), and 
non-Calonectria pathogens of hosts in Buxaceae (Pbu, 
Pfo, and Cpa) were used to identify putative pathogenic-
ity factors in the Pathogen Host Interactions (PHI) data-
base v4.10 [70]. Searches were conducted using blastp 
v2.10.0 with an e-value threshold of 1e−5 [5]. Putative 
secreted proteins were identified (probability > 0.5) from 
protein sequences described above using SignalP v5.0 
[1]. Predicted secreted proteins were further classified 
(probability > 0.5) as effectors using EffectorP v2.0 [66]. 
Unspecified parameters for all programs discussed were 
left as default values.
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