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Abstract 

Background:  Mendelian inheritance is a fundamental law of genetics. When we consider two genomes in a diploid 
cell, a heterozygote’s phenotype is dominated by a particular homozygote according to the law of dominance. Classi-
cal Mendelian dominance is concerned with which proteins are dominant, and is usually based on simple genotype–
phenotype relationship in which one gene regulates one phenotype. However, in reality, some interactions between 
genes can exist, resulting in deviations from Mendelian dominance. Whether and how Mendelian dominance is 
generalized to the phenotypes of gene expression determined by gene regulatory networks (GRNs) remains elusive.

Results:  Here, by using the numerical evolution of diploid GRNs, we discuss whether the dominance of phenotype 
evolves beyond the classical Mendelian case of one-to-one genotype–phenotype relationship. We examine whether 
complex genotype–phenotype relationship can achieve Mendelian dominance at the expression level by a pair of 
haplotypes through the evolution of the GRN with interacting genes. This dominance is defined via a pair of haplo-
types that differ from each other but have a common phenotype given by the expression of target genes. We numeri-
cally evolve the GRN model for a diploid case, in which two GRN matrices are added to give gene expression dynam-
ics and simulate evolution with meiosis and recombination. Our results reveal that group Mendelian dominance 
evolves even under complex genotype–phenotype relationship. Calculating the degree of dominance shows that 
it increases through the evolution, correlating closely with the decrease in phenotypic fluctuations and the increase 
in robustness to initial noise. We also demonstrate that the dominance of gene expression patterns evolves concur-
rently. This evolution of group Mendelian dominance and pattern dominance is associated with phenotypic robust-
ness against meiosis-induced genome mixing, whereas sexual recombination arising from the mixing of genomes 
from the parents further enhances dominance and robustness. Due to this dominance, the robustness to genetic 
differences increases, while optimal fitness is sustained to a significant difference between the two genomes.

Conclusion:  Group Mendelian dominance and gene-expression pattern dominance are achieved associated with 
the increase in phenotypic robustness to noise.
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Background
Mendelian inheritance is a keystone of genetics. Men-
del’s law [1] concerns binary traits and consists of three 
laws: the law of gene segregation, the law of independent 

assortment, and the law of dominance.
First, the law of segregation is explained by meiosis 

from a modern viewpoint. The law is mainly discussed 
with regards to the genetic segregation of alleles, whereas 
segregation of phenotypes is not intensively studied.

Second, the law of independent assortment is explained 
by the “independent” expression of different genes 
[2]. Mendel’s law of independence has been reinter-
preted regarding the independence of genes and the 

Open Access

BMC Ecology and Evolution

*Correspondence:  kaneko@complex.c.u-tokyo.ac.jp
2 Center for Complex Systems Research, Universal Biology Institute, 
University of Tokyo, Tokyo, Japan
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12862-021-01841-6&domain=pdf


Page 2 of 14Okubo and Kaneko ﻿BMC Ecol Evo          (2021) 21:110 

independence of traits. Originally, Mendel conjectured 
independent segregation of genes, but later, the depend-
ence of segregation was known to occur frequently. Traits 
can be independent when determined by genes that seg-
regate independently. Such independence, however, does 
not always hold as will be discussed below.

Third, Mendel’s law of dominance assumes a pair of 
alleles of a gene for the same locus, which involves a non-
linear interaction between them. A binary trait (pheno-
type) is given by A and a. If the two alleles at the given 
locus are homozygote and AA (aa), the trait is A (a). 
For a heterozygote, i.e., Aa, the trait is A if A is domi-
nant. Indeed, by creating a pure line of a genotype with 
AA and aa, Mendel showed that F1, a hybrid of AA or 
aa, expresses only the dominant character A, whereas 
the next generation from F1 shows the character A or a 
according to a 3:1 ratio. In the classical Mendelian law, 
the phenotype of concern is which protein from different 
alleles exists or functions dominantly.

In reality, there are many genes at different loci. Nev-
ertheless, their independence is assumed in the classi-
cal Mendelian inheritance. Even if there are many genes, 
when the expression is independent, each trait is deter-
mined by the corresponding gene according to simple 
genotype–phenotype relationship [3]. However, if several 
genes contribute to each trait as in complex and quanti-
tative traits, it is unlikely that they will be independent. 
Note that correlations between traits can arise because 
the genetic content is correlated, as in linkage disequi-
librium. Furthermore, “genetic interactions” often exist 
between genes because gene products work together to 
produce phenotypes.

In general, multiple genes at different loci often inter-
act with each other, resulting in complex genotype–phe-
notype relationship. Recent studies have demonstrated 
that genes often constitute a gene regulatory network 
(GRN). Although it is possible to establish a pure line for 
the genes that correspond to a specific trait, other “hid-
den genes” at different loci may influence the trait. Con-
sequently, the law of dominance can be violated, with the 
traits of F2 deviating from the Mendelian ratio of 3:1, as 
is measured by the interaction deviation [4, 5]. Further-
more, even in the homozygous case, the phenotype can 
be perturbed by noise [6, 7]. This can also result in a devi-
ation from the Mendelian ratio.

In contrast, the possibility of generalizing Mendelian 
dominance beyond the simple single-gene case has been 
discussed previously. Fisher posited that Mendelian dom-
inance could arise because of evolutionary benefits con-
cerning robustness [8]. Alternatively, Wright argued that 
metabolic stability could lead to dominance [9]. However, 

to date, both arguments remain hypothetical, and any 
quantitative relationship linking the robustness in gene 
expression or metabolic dynamics to Mendelian domi-
nance remains elusive.

In general, the degree of deviation and robustness 
depend on the nature of gene expression dynamics gov-
erned by the GRN, shaped through evolution. Indeed, in 
the haploid case, extensive studies have been conducted 
on the nature of gene expression dynamics governed by 
gene–gene interactions under the influence of stochastic-
ity. The evolution of genotype–phenotype relationship 
has been investigated numerically using the GRN model, 
thus elucidating the evolution of robustness to noise and 
mutations [10–13].

In fact, recent studies have revealed that the regula-
tory interactions (promoters, transcription factor bind-
ing sites, and enhancers) change through evolution more 
often than each gene that codes a specific protein itself. 
Hence, the evolution of GRN with rewriting of the net-
work has been extensively investigated. Now, it is essen-
tial to extend these studies of gene expression dynamics 
to the diploid case [14, 15]. For it, we consider gene 
expression dynamics as a result of two GRNs in two 
genomes in diploid organisms, and we seek a possibility 
that this dominance is extended to the gene expression 
levels as phenotypes.

Recall that the classical Mendelian dominance con-
cerns which proteins of two alleles are dominant, i.e., 
which protein from the alleles at the same locus is domi-
nant due to protein–protein interaction or the protein’s 
function. Here, in contrast, we are interested in gene 
espression levels determined by GRNs. Depending on 
the two GRNs as two genomes in diploid organisms, the 
expression levels of proteins are different. One protein is 
synthesized from one of the genomes, whereas it is not 
expressed from the other, and instead, another protein 
can be expressed. Then, for the protein expression level 
as phenotype, one may discuss the dominance similarly 
to in the Mendelian case, even though the two alleles 
do not determine the phenotype of concern at the same 
locus. Instead, it is determined collectively as a group of 
genes constituting a GRN.

There are two possibilities for considering such an 
extension of dominance. One straightforward way is 
seeking the possibility of dominance between expres-
sion patterns from two genomes in diploid organ-
isms. Let us first compute the gene expression pattern 
for one group of genes, for homozygotes ÃÃ or B̃B̃ 
with the same genome groups. Next, we compute the 
gene expression pattern of heterozygotes ÃB̃ . Then, 
we examine whether the expression pattern of the 
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heterozygote is biased dominantly toward one of the 
homozygote expression patterns. If the expression 
of each gene is independent, such bias would not be 
expected. In contrast, if genes regulate with each other 
properly through the GRN, such bias, i.e., the domi-
nance of homozygote gene expression pattern, might 
exist.

This is a fundamental question, especially consider-
ing that quantitative traits are explained by pleiotropic 
expression and are the results of multiple genes. Hence, 
in this study, we introduce such expression-pattern 
dominance as a pattern of genes and numerically exam-
ine whether such dominance appears due to the evolu-
tion of GRN.

Even though the above pattern dominance could be 
a theoretically natural measure, it may not be easy to 
measure experimentally. As a natural extension of sin-
gle-gene Mendelian dominance, it may be desirable to 
measure the dominance for the expression of a single 
gene within a genome. However, in this case, we need 
to introduce a group of population of genomes because 
many possible genomes produce the same expression 
for a given gene. In this study, we introduce group 
Mendelian dominance (GMD) for a group of popula-
tion of genomes generated by applying the procedure to 
make a pure line. Here, each group can share the cor-
responding expression, even if their GRNs are differ-
ent. This GMD is in contrast to the classical Mendelian 
dominance described between alleles.

First, we study both the pattern dominance and GMD, 
whereas we pay more attention to the latter, as it can be 
comparable with the Mendelian dominance. Here, by 
simulating the evolution of diploid GRNs, we seek to 
determine whether the degree of GMD evolves beyond 
the classical Mendelian dominance for each gene. Spe-
cifically, we examine whether complex genotype–phe-
notype relationship can achieve GMD through the 
evolution of the GRN with interacting genes. We adopt 
a computational model of the GRN and adapt it to the 
diploid case, noting that proteins can be transcribed 
from the two genes in the diploid case. We introduce a 
mode of inheritance to account for sexual recombina-
tion and meiosis in the diploid cell, where the expres-
sion dynamics result from the superposition of two 
GRNs through meiosis segregation, sexual recombi-
nation, and mutation. Next, the results of the evolu-
tion simulation demonstrate the evolution of GMD via 
groups of interacting genes in the GRN. The condition 

for the evolution of GMD and its possible relationship 
with robustness to noise and mutation is explored.

Then, we define dominance of gene expression pat-
tern as collective behavior of genes and demonstrate 
that such dominance also evolves. Additionally, the 
importance of meiosis-based genome mixing in estab-
lishing this dominance is revealed. Finally, we dis-
cuss the possible connection of GMD to experimental 
observations.

Results
Evolution simulation based on a diploid GRN model
First, we introduce the theoretical model of the 
GRN. Here, we consider the gene expression level 
xi ( −1 < xi < 1 ) for the genes i = 1 , ..., k. Each gene 
i(= 1, 2, ...,N ) has an expression level xi(t) at time step 
t. In the model, xi is scaled such that it takes a value 
between 0 (non-expression) and 1 (expression). Each 
gene interacts with others and itself, with the interac-
tion of the jth gene with the ith gene described by the 
matrix Jij [3, 11, 12, 16, 17]. Jij can take three values: +1 , 
−1 , and 0, which represent the activation of gene i by 
gene j, the corresponding inhibition, and no interaction, 
respectively.

We adopt a discrete-time model [3, 6, 18, 19], in which 
the expression level xi(t + 1) in the next time step deter-
mined by 

∑N
j=1 Jijxj(t) represents the GRN. A small 

Gaussian noise, N (0, σ) , is added to the dynamics to 
account for stochasticity in the gene expression. By using 
the sigmoid function f [x] = 1/(1+ exp[−βx]) with large 
β(= 100) , the expression dynamics are given by

which is the discrete-time version of the continuous-time 
model for gene expression dynamics [10, 17], where θ is 
the threshold for the expression level. The initial expres-
sion levels {xi(0)} take a value of 0 for i from 1 to N − 1 
and 1 for i in N. These {xi(0)} are fixed for all individuals 
over generations. After a certain time T, xi(t) reaches a 
fixed point for most cases, where xi is 0 or 1 depending 
on the structure of the network Jij . Thus, after sufficient 
time steps (T), the expression pattern xi(t) determines 
the phenotype. Note that there are some cases in which 
the expression pattern xi(t) cannot reach a stable state; 
however, these are rare.

(1)xi(t + 1) = f





N
�

j=1

Jij(xj(t)− θ)



+
√
xη(0, σ),
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Diploid cells have two genomes that correspond to two 
matrices, J (1)ij  and J (2)ij  [14, 15, 19, 20]. The gene expres-
sion dynamics of diploid GRN are determined by the 
sum of the products from two genomes such that the 
dynamics are given by modifying f [

∑N
j=1 Jij(xj(t)− θ)] 

to 1
2
(f [

∑N
j=1 J

(1)
ij (xj(t)− θ)] + f [

∑N
j=1 J

(2)
ij (xj(t)− θ)]):

The threshold θ is set at 0.5 unless otherwise mentioned. 
This threshold value makes the states 0 and 1 symmet-
ric. Here, we mainly study this case as we intend to 
investigate the Mendelian dominance without prior bias 
between the dominant and recessive states. Genetic 
changes take three main forms: asexual, meiosis only 
(i.e., without recombination), and the standard sexual 
mode, including meiosis and recombination. This paper 
defines these as asexual, meiosis only (MO), and meiosis 
and recombination (MR). In the asexual mode, the two 
genomes are not mixed, i.e., J (1)ij  and J (2)ij  are copied. The 
other two modes involve sexual reproduction. In MO, 
one genome from parent-1 becomes a new J (1)ij  (gamete) 
and one genome from parent-2 becomes a new J (2)ij  . In 
MR, two genomes from parent-1 (parent-2) are mixed 
by recombination to provide a gamete, that is, a new J (1)ij  
( J (2)ij  ). In recombination, J (1)ij  and J (2)ij  are mixed by a row 
vector in both parents to produce a gamete. Recall that 
mutation is included as a change in the matrix element Jij 
with 0 or ±1 in all three modes. A fourth mode, involv-
ing recombination only (RO), is included as a reference 

(2)xi(t + 1) = 1

2



f





N
�

j=1

J
(1)
ij (xj(t)− θ)



+ f





N
�

j=1

J
(2)
ij (xj(t)− θ)







+
√
xη(0, σ).

to elucidate whether meiosis or recombination is more 
critical for GMD (see "Methods" for details). MO and MR 
correspond to the case in which a single pair of homolo-
gous chromosomes is used in diploid cells. On the other 
hand, asexual and RO correspond to the case with a sin-
gle chromosome.

Here, fitness is defined by how closely the expres-
sion pattern {xi} matches a prescribed target. After the 
above modes and mutation, those with higher fitness 
are selected for the next generation. (See "Methods" for 
details of the selection procedure.)

Evolution of fitness
The simulated evolution of the fitness is shown in Fig. 1, 
with the evolution of the average fitness of the popula-
tion plotted for the asexual, MO, and MR modes. In each 
case, fitness increased beyond 90% of the maximum, 
within 500–1000 generations (Fig. 1), with MR and MO 
exhibiting the fastest and slowest increase, respectively.

Figure 2 shows the mutation rate dependence of the fit-
ness. For each mode, as the mutation rate increases, the 
increase in fitness stops. A drop begins at a mutation rate 
of approximately 10−3 . For MR, this decline is slightly 
suppressed and is initiated at a slightly higher mutation 
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Fig. 1  Fitness as a function of evolutional generation for the asexual 
(black line), MR (blue line), and MO (green line) modes. The mutation 
rate per edge = 4× 10

−4 and the strength of noise = 0. The increase 
in fitness was saturated within 2000 generations. The average of over 
50 samples is plotted. The error bar represents the standard deviation 
(SD) over them
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Fig. 2  Mutation rate dependence of the average fitness. The average 
fitness was computed for 100 individuals representing the last 
generation in the evolution of over 10,000 generations for the asexual 
(black circles), MR (blue triangles), and MO (green diamonds) modes. 
The noise amplitude σ was 0.0. For increasing mutation rates, error 
catastrophe occurs, which prevents the average fitness from rising 
through evolution over 10,000 generations. The recombination-only 
reference case is also plotted (orange triangles). The average over 50 
samples is plotted. The error bar represents the SD over them
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rate. This decline is caused by the loss of information at 
higher fitness values owing to the accumulation of muta-
tions in the network, as discussed in the context of error 
catastrophe [21]. Although the recombination process in 
MR slightly suppresses this error catastrophe, the effect is 
not significant.

Group Mendelian dominance
Next, we investigated whether and how GMD evolves. 
As mentioned in the Background, the inter-gene interac-
tions result in deviation from the 3:1 ratio of Mendelian 
dominance [4, 5]. Here, we rename the phenotypes +1 
and 0 with p and m with normal font. The corresponding 
genomes are written in italics, i.e., p1 and m1.

We create a pure line for a homozygous case in which 
two genomes have the same Jij [22]. There are a vari-
ety of matrices (genes) that produce p (m) for a spe-
cific xi , which are given by p1p1, p2p2, p3p3 , ..., pnppnp 
( m1m1,m2m2,m3m3 , ..., mnmmnm ). From the p ( p1, p2 , 
..., pnp ) and m ( m1,m2 , ..., mnm ) sets, we generate Nsample 
homozygotes, pp and mm, and 2Nsample heterozygotes, 
pm, the phenotypes of which can be examined. Then, we 
count the number of each case, denoted by Npp

p  , Npm
p  , and 

Nmm
m  , respectively (here, we can assume that the num-

ber of Npm
p  is larger than Npm

m  and that p is dominant, by 
renaming p and m if Npm

m > N
pm
p  ). When Mendel’s law 

of dominance is perfect, Npp
p = Nsample , N

pm
p = 2Nsample , 

and Nmm
m = Nsample . However, in general, the genes are 

not independent: within the groups p and m chosen as 
a group of genomes that produce each trait, each frac-
tion can deviate from a ratio of 1:2:1. Therefore, we 
define the group Mendelian ratio (GMR) as the fraction 

(N
pp
p + N

pm
p + Nmm

m )/4Nsample . The deviation of the 
GMR from unity corresponds to the interaction devia-
tion in quantitative genetics [4, 5] (see "Methods" for the 
detailed algorithm).

Evolution of group Mendelian ratio
This GMR increased through evolution. Here, the GMR 
depends on each gene, and hence, we computed the 
frequency distribution of GMR over all genes. In Fig. 3, 
this frequency distribution is plotted for the three gen-
erations. In the 0th generation, the peak of GMR fre-
quency is approximately 0.5 because for the random 
GRN chosen at the 0th generation genes the expression 
levels are distributed symmetrically for [0,1]. The aver-
age and maximum GMRs increase with the evolution. At 
the 1499th generation, the peak around 0.75 means that 
their expression levels are always 0 or 1, whereas there is 
another peak at 1, which implies complete GMD, as will 
be explained later.

Condition for the increase of the group Mendelian ratio
We studied the dependence of the GMR on the muta-
tion rate (Fig. 4). In the MO and MR modes, the aver-
age value of the GMR almost exceeds 0.75 for mutation 
rates less than 10−3 (note that this is an average for 
all genes i: for xi of some gene GMRs reaching 1). 
For mutation rates exceeding 10−3 , the average GMR 
decreased, and the value for MR was higher than that 
for MO. In contrast, for the asexual case, the GMR 
remained at a much lower level ( ∼0.7). Note that, in the 
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case of recombination without meiosis, GMR remained 
at the same low level as in the asexual case. 

Recall that GMR is 0.5 if all the GRNs are random 
(see "Methods" for details). If the GMR is sufficiently 
high, GMD at a group level occurs . Specifically, we 
regard GMD to be achieved when the average GMR 
in the population is over 0.75. Therefore, GMD is real-
ized for the MO and MR modes, i.e., when meiosis is 
considered.

Correlation between group Mendelian ratio 
and robustness to noise
According to Wright, Mendelian dominance might 
have some correlation to the robustness of the 

phenotype shaped by the dynamics. As the present 
GRN model contains the change in phenotype by noise, 
we investigated the robustness of the phenotype against 
noise. Note that as the robustness of the fitness, i.e., its 
insensitivity, increases, the fitness variance decreases. 
Hence, we computed the SD of fitness.

Phenotypic fluctuation and group Mendelian ratio
We have shown that the mutation-rate dependence of the 
GMR for the MR and MO cases is highly correlated with 
that of the fitness, as is evident upon comparing Fig.  2 
with Fig. 4. Therefore, we plotted the correlation between 
the GMR and the fitness in Fig.  5a. As shown, the two 
exhibit a strong correlation. Nevertheless, the plot in 

Fig. 5  Correlation between the GMR, average fitness, and SD of the fitness. Each variable was computed as the value of the 104-th generation for 
the MR case. The points were obtained across different mutation rates from 2× 10

−4 to 2× 10
−2 , as indicated by the color of the data, while the 

noise level satisfied 0.0 ≤ σ ≤ 0.1 . a GMR as a function of the average fitness, b GMR as a function of the SD of the fitness, c SD of the fitness as a 
function of the average fitness. Note that aand ceach have three branches corresponding to different noise levels, whereas (b) does not, implying 
that the GMR is dominantly correlated with the fluctuation of the fitness rather than its average. The average over 50 samples is plotted. The error 
bar represents the SD over them. Correlation coefficient is (a) 0.952, b −0.973 , c −0.926
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Fig. 5a (and Fig. 5c) shows slight deviations depending on 
the three different noise levels adopted here.

As the noise level varies, the variances of the pheno-
type and fitness also vary. Therefore, to examine the 
relationship between the GMR and noise-induced phe-
notypic variances, we plotted the GMR against the SD 
of the fitness. In this case, the correlation is more promi-
nent (correlation coefficient = 0.97), with the data not 
exhibiting noise-level-related branches. All data from dif-
ferent mutation rates and noise levels were well fitted by 
a single curve, as shown in Fig. 5b. Indeed, the difference 
between Fig. 5a and b is further explained by the plot of 
the fitness variance against the average fitness (Fig.  5c), 
which, again, shows three branches. Together, these three 
plots indicate that the GMR shows a better correlation 
with the fitness variance than the fitness itself.

Robustness to initial noise and the GMR
To further confirm the correlation between the GMR 
and noise robustness, we computed the variance of fit-
ness against the distribution of initial conditions by 
imposing the noise on xi(0) (Fig.  6). We computed the 
SD of fitness against the perturbed initial condition 
{xi(0)× (1− η(0, 0.1))} for a given GRN selected after 
the evolution, the GMR of which was computed already. 
The GMR clearly shows a negative correlation with the 
SD, implying that GMR is positively correlated with the 
robustness to noise.

Group Mendelian ratio and distance between two genomes
As the phenotype is shaped according to genotype–phe-
notype relationship by the GRN, it is also essential to 
study the correlation of the GRN with genetic variance. 
In diploid cells, the distance between two genomes can 
provide a measure of genetic variation. Figure  7 shows 
the relationship between the GMR and the genetic dis-
tance between two genomes in a diploid cell. As shown, 
the GMR begins declining at a certain distance, with the 
fitness also dropping. Additionally, if the genetic differ-
ence between the two genomes is too high, the GMD is 
not sustained.

In Fig. 7, the GMR can exceed 0.75 when the distance is 
under 150. Note that the total number of matrix elements 
(genes) is 20 × 20, which ensures that the fitness or GMR 
is maintained, even if over half the elements are differ-
ent between two genomes. Furthermore, high robust-
ness is achieved to maintain fitness against meiosis. This 
implies that the fitness of the diploid cell (with meiosis) 
is remarkably robust against genetic differences between 
the two genomes. Recall that meiosis mixes genomes in 
the diploid cells. However, the fitness should be robust to 
such mixing, which explains the insensitivity of the fit-
ness to meiosis.  We added a file of the diploid distance 
for comparison among the genetic modes (Additional 
file 1: Fig. S1).

Fig. 6  GMR plotted against the isogenetic SD of fitness due to 
initial noise, i.e., perturbation to the initial conditions. The GMR was 
computed following the same procedure as in Fig. 5, for the MR case, 
whereas the fitness variance was computed by distributing the initial 
condition for xi with the variance σ , which is either 10−2 or 10−1 . The 
data correspond to the equivalent mutation rates as used in Fig. 5. 
The average over 50 samples is plotted. The error bar denotes the SD 
over them
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maintains a high value until half the elements have been changed. 
The average over 50 samples is plotted. The error bar represents the 
SD over them



Page 8 of 14Okubo and Kaneko ﻿BMC Ecol Evo          (2021) 21:110 

Pattern dominance
So far, we have studied GMD between a pair of groups of 
genomes by focusing on the expression of a single gene. 
As discussed in the Background, another measure for 
dominance will be between expression patterns over a 
group of genes that constitute a GRN.

First, from each of the N individuals in the evolutionary 
simulation we extract 2N genomes J (n)ij (n = 1...2N ) . For 
each of the 2N genomes, we make a complete copy and 
create a population of 2N complete homozygotes. Then, 
we compute the expression dynamics in each of the 2N 
complete homozygotes and obtain the expression pat-
tern xññi  . Next, from the 2N genomes, we randomly select 
two J (l)ij  , J (m)

ij  , to make a diploid cell consisting of the two 
heterozygous genomes. Then, we compute the expres-
sion dynamics of the heterozygous genomes to obtain the 
expression pattern of the heterozygote xl̃m̃i .

From the homozygotes l̃ l̃ , m̃m̃ and the heterozygote l̃m̃ , 
we compute the dominance of the expression pattern 
from xl̃l̃i  , xm̃m̃

i  and xl̃m̃i  . Here, we compare the expression 
of such genes that are expressed differently between the 
two homozygotes: We compute xl̃l̃i  and xm̃m̃

i  , and choose 
such genes i in which xl̃l̃i �= xm̃m̃

i  . Let the number of i that 
is xl̃l̃i �= xm̃m̃

i  be Nllmm
dif  . Among these i, we examine 

whether the |xl̃l̃i − xl̃m̃i | > |xm̃m̃
i − xl̃m̃i | , i.e., the expression 

of the heterozygote is close to that of the homozygote of 
m, and count the number of such genes, Nlm

m  . Because l 
and m are arbitrarily chosen numbers, we define the 

degree of dominance by max(Nlm
m /Nllmm

dif ,Nlm
ℓ /Nllmm

dif ) . If 
the pattern dominance is complete (i.e., xl̃m̃i  agrees either 
xl̃l̃i  or xm̃m̃

i  in the genes whose expression levels are differ-
ent between xl̃l̃i  and xm̃m̃

i  ), this degree is closer to 1, 
whereas if the heterozygote expression pattern matches 
one parent with half the probability, it takes 1/2. The pat-
tern dominance is larger as this degree approaches 1.

Note that, in the present model, the expression level of 
each gene xi is mostly 0 or 1. Then, when there is only 
a single gene that expresses differently between two 
homozygotes, the dominance that is computed is always 
1, whereas, if the number of differently expressing genes 
is only 2, the probability of having dominance 1 is 50%, 
even if the two expressions are totally uncorrelated. To 
remove such bias, we computed pattern dominance only 
for pairs of homozygotes xl̃l̃i  and xm̃m̃

i  , in which more than 
three genes show different expressions.

The change in frequency of the pattern dominance 
computed in this way through evolution is shown in 
Fig.  8. In generation 0, before evolution, pattern domi-
nance is uniformly distributed between 0.5 and 1. This 
is because the interaction between the two genomes in 
GRN heterozygotes is random.

At the 9999th generation, complete dominance is 
observed for more than 40% of heterozygotes, and 
approximately 80% of heterozygotes show a dominance 
value beyond 0.8. This indicates that pattern dominance 
is evolved.

Fig. 8  Increase in pattern dominance and evolution. Frequency 
of pattern dominance in the 0th, 1000th, and 9999th generation. 
For each generation, this frequency is computed over ten samples. 
Pattern dominance is increased along with the evolution, and over 
50% of heterozygotes reach complete pattern dominance. The 
mutation rate per edge = 10−4 and the strength of noise = 10−4 . This 
frequency is measured in the MR mode. The bin is 0.05
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Case with distinct protein synthesis from each gene
In this model, xi(t) is the protein expression (concentra-
tion) in a given cell. Once proteins are expressed from 
either each or both of the genes, one cannot distinguish 
which of the genes each protein comes from. In contrast, 
in the classical Mendelian dominance, distinct proteins 
are synthesized from each gene. Even though the moti-
vation of our study is different, it may also be possible 
to combine the present study with the classical one. We 
consider the case in which a certain protein is expressed 
only from one gene but not from the other. Indeed, such 
a situation can be included in this model by sorting that 
J
(1)
ij = 0 from ∀j . As an example, we carried out the simu-

lation by setting J (1)9j = 0 for ∀j in genome 1 and J (2)10j = 0 
for ∀j . The increase in GMR was observed again (Fig. 9).

Case with asymmetric model
The model with θ = 0.5 is symmetric with respect to 
0 and 1. In reality, it is not always symmetric. Hence, 
we have employed the present model by changing the 
threshold θ from 0.5 to 0.3. Our main result (achieve-
ment of high GMR and fitness) is not changed by these 
modifications (Additional file 2: Fig. S2). In the asymmet-
ric model, however, GMR in the 0th generation is already 
larger than 0.5, so that the degree of increase in GMR is 
smaller than in the symmetric model because the asym-
metry of dynamics causes dominance in the heterozygote 
and increases GMR.

Discussion
In this study, we have investigated a diploid GRN model 
by extending the model described by Omholt et al. [14]. 
In our model, two GRNs work concurrently to yield the 
phenotype as a group of gene expressions. By evolv-
ing the GRN with mutations, meiosis, and recombina-
tion, we have shown that GMD evolves. This dominance 
is achieved via a pair of groups of various genomes that 
share a common phenotype determined by the expres-
sion of target genes. The degree of dominance increases 
(corresponding to the decrease of interaction deviation 
[4, 5]) through evolution, exhibiting a strong correla-
tion with the decrease in phenotypic fluctuations. This 
evolution of GMD is prominent in the presence of mei-
osis, which mixes two genomes, whereas, under sexual 
recombination, the mixing of genomes from the parents 
further enhances this dominance and robustness. GMD 
increases the robustness to genetic differences, and 
the fitness is maintained against significant differences 
between two genomes.

Indeed, a possible connection between Mendelian 
dominance and robustness has been posited previously. 

Fisher discussed the advantages of dominance for the 
evolutionary robustness of phenotypes [8], while Wright 
emphasized the relationship between dominance and 
stability in metabolic networks [9]. However, these dis-
cussions were primarily qualitative. Our study has the 
possibility of extending these qualitative arguments to a 
quantitative dimension by using gene expression dynam-
ics and a quantitative definition of the GMR.

The GMD at the GRN level in the present study is dif-
ferent from the classical mechanism of Mendelian domi-
nance. In the classical framework, Mendelian dominance 
is explained by protein–protein interactions and the 
magnitude of the influence of proteins on the phenotype. 
However, as shown in this study, the dominance of one 
phenotype at the expression level can exist at the GRN 
level. In this case, it is not necessary to consider protein 
behavior to explain the dominance. Hence, the Men-
delian dominance at an individual molecule level can 
be extended to the pattern level of expressions of many 
genes that interact with each other through a GRN.

For Mendelian dominance in individuals, the het-
erozygote advantage has been argued by Goldstein [23] 
and Poter et al. [24]. Moreover, the relationship between 
Mendelian dominance and mutational robustness has 
been investigated by Bagheri, and Wagner [25], whereas 
the influence of ploidy or recombination on robustness 
has also been discussed [15, 19, 20].

The degree of group dominance introduced in our 
model follows the classical method of establishing pure 
lines and can be measured by proper experiments. For 
example, Hou et al. [26] tested the degree to which Men-
del’s dominance law holds in yeast while also measuring 
the phenotypic variation. Accordingly, the validity of the 
negative correlation between Mendelian dominance and 
the phenotypic fluctuation revealed in our theoretical 
models can be verified by measuring the degree of domi-
nance in phenotypes and the fluctuations across genes 
or between different strains, and examining the negative 
correlation between the two.

We also computed pattern dominance, which is the 
dominance of the expression patterns of genes that 
mutually interact through GRN, and found that the pat-
tern dominance is achieved through evolution. If the 
expression of genes were independent, this would not 
be expected. The pattern dominance is achieved as a 
result of interacting genes that evolved to have high fit-
ness. Note that quantitative and complex traits are often 
formed by the complex interaction of transcribed and 
translated proteins. The present study suggests that com-
plex quantitative traits may show dominance akin to 
Mendel’s. In the future, it will be important to explore 
this possibility beyond the scope of the present study on 
the evolution of abstract GRN.
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For the simulation presented herein, we compared 
the outcomes of different modes of inheritance, namely 
asexual, MO, and MR. Our analysis in Fig.  4 concludes 
that the existence of meiosis is essential to realize GMD. 
Although the fitness is only slightly changed from in the 
MR case, the GMR (and genome distance in Additional 
file  1: Fig. S1) is reduced drastically relative to the MR 
and MO cases. Therefore, meiosis-induced genome mix-
ing is essential for GMD. Genome mixing between two 
genomes in the diploid cell requires the GRN to ensure 
that high fitness is sustained following gene alterations in 
the other gene. This suggests that the phenotype between 
two genes in the heterozygote case is identical to that 
in the “homozygote” case, leading to GMD and pattern 
dominance as well. From a contemporary viewpoint [2], 
meiosis is often regarded as consistent with segrega-
tion in Mendel’s law. Based on our study, one can con-
clude that Mendelian dominance stems from Mendelian 
segregation.

Mendelian dominance in plants has been studied by 
Huber et  al. [27] and Govindaraju [28]. Note that poly-
ploidy is more common in plants. Extending our model 
to consider ploidy is straightforward, enabling the rela-
tionship between dominance and phenotypic fluctuations 
to be examined and testable predictions to be made. Even 
though these experimental data have been discussed in 
the classical Mendelian context, in the future, it may also 
be essential to look at these and other experimental data 
from this “extended” Mendelian viewpoint.

Conclusion
To conclude, we have demonstrated that, through evo-
lution, group Mendelian dominance in a diploid gene 
regulatory network is achieved at a group level and pat-
tern dominance for the expression over multiple genes 
interacting with the gene regulatory network. These 
dominances are evolved to achieve robustness of the fit-
ted state to genetic changes by meiosis and are associated 
with the increase in phenotypic robustness to noise.

Methods
Reasoning of the model
Let us define ymi (t) as a concentration of mRNA i from 
each homologous chromosome ( m = 1, 2 ) and xi(t) as 
the concentration of protein in a cell. Note that the pro-
teins are synthesized from both of the homologous chro-
mosomes, so that superfix in xi(t) is not needed. Now the 
transcription is regulated through GRN, with activation 
or inhibition from the protein. By replicating the regula-
tion in the diploid cell by J (m)

ij  (m = 1, 2) for each gene,

where f[x] is a sigmoid-type function that approaches 1 as 
x is increased and 0 as x is decreased, and θ is the thresh-
old level for the expression. Here, we choose the function 
f [x] = 1/(1+ exp[−βx]) specifically. As protein i is syn-
thesized from the corresponding mRNA, we obtain

We assume that genes refer to those for which mRNA 
contributes the construction of the same type of pro-
tein even if their mRNA is different. The case in which 
one of the genes m lacks the transcription of mRNA i is 
described by J (m)

ij = 0 for ∀j.

Case with a null allele
For further investigation of J (m)

ij = 0 for the ∀j case 
above, we have conducted the simulation on the case 
with a null allele in each gene. In this simulation, one (the 
other) gene lacks the 9th (10th) gene and is represented 
by J (1)9j = 0 ( J (1)10j = 0 ), respectively.

Asymmetric dynamics case
When the threshold level is set to θ = 0.5 , a symmetry 
exists between the expressed ( xi = 1 ) and non-expressed 
( xi = 0 ) states. We have also investigated the asymmetric 
type of dynamics, by setting θ < 0.5 . Specifically, we pre-
sented the case with θ = 0.3.

Fitness for evolution
After the expression pattern xi(t) reaches the stable 
state xi(T ) , the fitness is determined by the distance 
between the gene expression of the individual and 
the prescribed target pattern. This target pattern Pi is 
defined for a part of the genes, namely the “target genes” 
i = 1, ...,M(< N ) and each value of Pi is 1 (there is only 
a single target). Pi is fixed throughout the evolution for 
all four modes. Here, the phenotype is defined as the 
time average of xi(t) for the last ten steps, x̄i . Setting the 
maximum fitness for x̄i − Pi = 0 (i = 1, ...,< M) , the fit-
ness is defined as 

∑M
i=1 |x̄i − Pi|/2 . According to this fit-

ness landscape, a stable expression pattern xi = Pi can 

(3)
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



N
�
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be more advantageous than an oscillatory state. Then, 
the selection pressure is set as S, such that the prob-
ability of obtaining the phenotype x̄i is proportional to 
w = exp[−S

∑M
i=1 |x̄i − Pi|/2].

Modes of inheritance
Using fitness, a diploid GRN can be produced in the next 
generation. To introduce genetic variation, we adopted 
four modes of inheritance: asexual, MO, MR, and RO.

In the asexual mode, offspring are generated as a copy 
of a parent. One individual, k, is chosen as a parent with 
probability wk/W  , where W =

∑L
k=1 wk . The matrices 

[J (1)ij ]k and [J (2)ij ]k of this parent are copied for the next 
generation.

In MO, two individuals, k1 and k2 , become parents with 
probabilities wk1/W  and wk2/W  , respectively; k1 and k2 
must be different. Next, a gamete, G(1)

ij  , is produced from 
the genome of one parent, k1 . One of the two genomes in 
k1 becomes G(1)

ij  here. The other gamete, G(2)
ij  , is produced 

from k2 following the same procedure. These two gam-
etes, G(1)

ij  and G(2)
ij  , become J (1)ij  and J (2)ij  for an individual 

in the next generation.
In MR, the genome mixing process is same as in MO 

but gametes are generated by a different mode includ-
ing recombination. Forming a single gamete, G(1)

ij  ( G(2)
ij  ), 

[J (1)ij ]k1 ( [J (1)ij ]k2 ), and [J (2)ij ]k1 ( [J (2)ij ]k2 ) are mixed via row 
vectors with equal probabilities from k1 ( k2 ). In RO, 
which was investigated as a comparison, there are two 
parents (parent-1 and parent-2). The ith rows of both the 
J
(1)
ij  and J (2)ij  matrices in the next generation are gener-

ated from the ith row of those from one of the parents. In 
contrast to MO or MR, this mode does not mix genomes. 
The RO case would be biologically unrealistic and was 
added purely to examine the importance of meiosis.

In all four cases, the mutation is added after the off-
spring are produced. Mutations are implemented by 
renewing one connection of network J (1)ij  or J (2)ij  by +1 , 

−1 , or 0 according to the probability µ per edge (muta-
tion rate).

The evolutionary simulation was conducted using a 
mutation rate ( µ ) of [2× 10−4 , 2× 10−2] , with the SD 
of noise ( σ ) being [10−4 , 10−1] . The number of genes (N) 
was set at 20, the ratio of non-zero elements in Jij was not 
less than 0, the selection pressure S was set at 1, and the 
number of target genes (M) was 5. The relaxation time to 
test the fitness (T) was 30.

Group Mendelian ratio
The GMR was computed by adopting the following pro-
cedure. Here, the expression level itself is regarded as 
phenotype because we consider the situation in which a 
phenotype is given by the expression of proteins xi . Here, 
we call a single genome from a diploid cell as a haplotype. 

1	 Making homozygous

	 After evolution, the individuals are usually het-
erozygotes (e.g., Jij(1, 1)Jij(1, 2) , Jij(2, 1)Jij(2, 2) , 
..., where Jij(n,m) = J

(m)
ij  for the nth individual) 

because it is rare that two genomes are completely 
identical. Homozygotes are made using the complete 
copies (e.g., Jij(1, 1)Jij(1, 1) and Jij(2, 1)Jij(2, 1) , ...).

2	 Rename haplotypes (Fig. 10)
	 The phenotypes xi(T ) in one gene i of the homozy-

gote are computed to check whether xi ≈ 1 or xi ≈ 0 . 
Accordingly, the phenotypes are divided into p or m 
(e.g., Jij(1, 1)Jij(1, 1) expresses the p phenotype). 
Note that these signs do not indicate dominance or 
recessiveness. Haplotypes are renamed according to 
which phenotype is expressed in the homozygote, p 
or m (e.g., Jij(1, 1) is renamed p1 ) .

3	 Forming a pair of groups of genomes to test the 
“homozygote” and heterozygote cases (Fig. 11)

	 Genome groups are defined as a group of genomes 
that express the same phenotype (e.g., p1 , p2 , ...). To 

Fig. 10  Renaming of haplotypes
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test Mendel’s law, we made two genome groups, p 
and m. From these, we made sufficient homozygote 
and heterozygote samples to test whether GMD was 
achieved.

	 To test the homozygote case, Nsamples of homozy-
gotes were generated from one genome group by 
choosing two haplotypes at random. Note that the 
homozygote here does not necessarily contain the 
same Jij . Then, the phenotypes of the “homozygote” 
were computed. The number of samples for which 
the phenotypes were the same as the phenotype of 
the original genome group was counted. This num-
ber was defined as Npp

p  and Nmm
m  for the phenotypes 

p and m, respectively.
	 To test the heterozygote case, heterozygotes are 

made by two haplotypes chosen from different 
genome groups. We chose 2Nsamples of the heterozy-
gote to perform a rigorous comparison with classic 
Mendelian dominance. By computing the pheno-
type of each heterozygote, we obtained the number 
of dominant phenotypes, which was defined as Npm

p  
when p is dominant. Here, the samples producing the 
dominant phenotype were defined as the phenotype 
that frequently appears in the heterozygote result .

4	 Calculating the GMR

	 Following the GMD, the GMR was computed by 

When the GMR is 1, complete GMD is achieved. Con-
versely, when the GMR is 0.5, the phenotype is deter-
mined at random without any dominance.

Note that Npm
p  is sampled in the doubled population 

2Nsample so that the maximum value of Npm
p  is also double 

the value of that of Npp
p  or Nmm

m  . Therefore, the maximum 
value of H is 1. When the dynamics produce a phenotype 
randomly, Npp

p = Nmm
m = 0.5Nsample and Npp

p = Nsample , 
so H = 0.5 . When the dynamics always produce the 
same phenotype, for instance p, Npp

p = Nsample , Nmm
m = 0 

and Npp
m = 2Nsample , so H = 0.75 . Hence, a GMR value 

beyond 0.75 indicates the emergence of GMD beyond the 
trivial case with just a single phenotype.

Note that the frequency of genes may be biased by fol-
lowing Hardy–Weinberg equilibrium. By using the above 
method of sampling, one can focus only on the pheno-
typic distribution, as Mendel originally did.

(5)H =
(N

pp
p + N

pm
p + Nmm

m )

4Nsample
.

Fig. 11  Testing the homozygote and heterozygote cases
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Robustness against initial noise
We computed the SD of fitness over (20) different initial 
conditions by setting {xi(0)× (1− η(0, 0.1))} , for a given 
individual chosen from an evolved population. We then 
computed the average of isogenic SD over 100 individu-
als in the evolved population. The averaged SD thus com-
puted is displayed in Fig. 6.

Distance between two genomes
To measure genetic variance, the distance between 
two genomes was calculated. The distance 
( 
∑N

i=1

∑N
j=1 |J

(1)
ij − J

(2)
ij | ) was calculated for two genomes, 

J
(1)
ij  and J (2)ij  , in the diploid cell. Then, the average distance 

over all individuals was computed.
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Additional file 1: Fig. S1.  Two-genome distance as a function of muta-
tion rate (including the recombination-only case). The distance was 
computed as the Euclidean distance between the matrix elements in two 
genomes, J1

ij and J2
ij. We simulated GRNs with 20 genes, such that the 

number of matrix elements, that is, the maximal Hamming distance (i.e., 
the number of different elements), was 20 × 20 = 400. Consequently, the 
GMR (and the fitness) maintains a high value until half the elements have 
been changed. The value of the 104-th generation is shown. Two-genome 
distances are shown for the RO case (orange triangle), asexual case (black 
dot), MO case (green diamond), and MR case (blue triangle). The noise 
amplitude was 104. The RO case behaves along with the asexual case.

Additional file 2: Fig. S2. Increase of GMR along the evolution in the 
asymmetric dynamics case. Frequency of group Mendelian ratio in the 
0th, 100th, and 1499th generation. Each focused gene calculates this 
frequency in 30 samples. GMR is increased along with the evolution, and 
over 10% of them reach complete group Mendelian dominance. Note that 
the distribution is shifted because of the asymmetry, and the peak of the 
distribution of GMR in the 0th generation reaches 0.75 even though their 
GRNs are random networks. This indicates that this asymmetry promotes 
GMD. The mutation rate per edge = 104 and the strength of noise = 104. 
This frequency is measured in the MR mode. The bin is 0.05.
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