
Scarsbrook et al. BMC Ecol Evo           (2021) 21:67  
https://doi.org/10.1186/s12862-021-01808-7

RESEARCH

Skeletal variation in extant species enables 
systematic identification of New Zealand’s large, 
subfossil diplodactylids
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Abstract 

New Zealand’s diplodactylid geckos exhibit high species-level diversity, largely independent of discernible osteologi-
cal changes. Consequently, systematic affinities of isolated skeletal elements (fossils) are primarily determined by 
comparisons of size, particularly in the identification of Hoplodactylus duvaucelii, New Zealand’s largest extant gecko 
species. Here, three-dimensional geometric morphometrics of maxillae (a common fossilized element) was used 
to determine whether consistent shape and size differences exist between genera, and if cryptic extinctions have 
occurred in subfossil ‘Hoplodactylus cf. duvaucelii’. Sampling included 13 diplodactylid species from five genera, and 
11 Holocene subfossil ‘H. cf. duvaucelii’ individuals. We found phylogenetic history was the most important predictor 
of maxilla morphology among extant diplodactylid genera. Size comparisons could only differentiate Hoplodactylus 
from other genera, with the remaining genera exhibiting variable degrees of overlap. Six subfossils were positively 
identified as H. duvaucelii, confirming their proposed Holocene distribution throughout New Zealand. Conversely, five 
subfossils showed no clear affinities with any modern diplodactylid genera, implying either increased morphological 
diversity in mainland ‘H. cf. duvaucelii’ or the presence of at least one extinct, large, broad-toed diplodactylid species.
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Background
New Zealand’s lizard fauna is characteristic of isolated 
archipelagos, exhibiting high species endemism, exten-
sive in  situ radiations [1, 2] and insular gigantism [3]. 
Despite this diversification, the New Zealand Diplodac-
tylids (compared with the New Caledonian radiation) are 
relatively conserved in form; exhibiting reduced morpho-
logical divergence at a similar evolutionary depth [2, 4].

Formal taxonomic descriptions of New Zealand diplo-
dactylid species [5, 6], similar to those of Australian [7, 8] 
and New Caledonian representatives [9–11], have been 
based exclusively on external morphological characters 

(e.g. coloration and scalation), with interspecific skeletal 
variation rarely analysed. Early anatomical studies [12], 
however, noted osteological differences between the two 
then recognized genera: Hoplodactylus (‘brown geckos’) 
and Naultinus (‘green geckos’); focussing on the neotenic 
condition of Naultinus and the ‘primitive’ osteology 
of the New Zealand Diplodactylidae. Despite these in-
depth comparisons, re-examination of generic level skel-
etal variation in the context of current nomenclature is 
required, given considerable taxonomic fluidity over the 
last 65 years [13–15].

For example, allozyme [15, 16] and mitochondrial DNA 
[17, 18] analyses recognized three species complexes 
within the genus Hoplodactylus, corresponding to two 
broad morphological groupings: narrow-toed (H. granu-
latus and H. pacificus) and broad-toed (H. maculatus) 
clades [19]. Further taxonomic revision [2] separated 
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multiple Hoplodactylus species complexes into five gen-
era (Dactylocnemis, Mokopirirakau, Toropuku, Tuku-
tuku and Woodworthia), with Hoplodactylus reserved 
for H. duvaucelii and the extinct giant H. delcourti [12]. 
Conversely, the monophyletic genus Naultinus has been 
historically over-split, separated into North and South 
Island genera (Naultinus and Heteropholis respectively; 
[13]), with Heteropholis later synonymised with Naulti-
nus [19].

Descriptions of these revised genera were based exclu-
sively on external morphology [2]; with osteological dif-
ferences only recognized for the frontal [21, 22], which 
has led to assertions of skeletal uniformity at the species-
level [23, 24]. In comparison, the identification of inter-
specific skeletal variation in cranial elements of New 
Zealand’s large eugongyline skinks has enabled both dif-
ferentiation from smaller congeners [25], and description 
of the extinct ‘giant’ Oligosoma northlandi [26, 27] from 
Holocene subfossil remains. Classification of isolated dip-
lodactylid remains however, has been restricted to size 
comparisons with extant representatives (in reference to 

now outdated taxonomy; [23]), particularly in the identi-
fication of ‘H. cf. duvaucelii’, New Zealand’s largest extant 
diplodactylid.

Hoplodactylus duvaucelii (‘Duvaucel’s gecko’) is a large, 
nocturnal species, with a pseudoendemic (realized) dis-
tribution on predator-free islands in the Cook Strait and 
off the north-eastern coast of the North Island (Fig. 1A; 
[28]). Prior to Polynesian (~ 1280 AD; [29]) and Euro-
pean (effectively the late 1700s) arrival, ‘H. cf. duvaucelii’ 
was widely distributed throughout the North Island [25], 
and the northwest and eastern South Island (Fig. 1a; [23, 
30–33]), evidenced by the presence of large, isolated dip-
lodactylid remains in Holocene predator (laughing owl 
and falcon) middens. Subsequent range contractions 
occurred as a result of the synergistic effects of competi-
tive exclusion, direct predation by introduced mammals, 
and degradation of forest habitat [25, 34]. This extensive 
distribution across multiple biogeographic regions [23, 
35], given pronounced regional endemism recognised 
(or proposed) in other New Zealand diplodactylid genera 
[1, 2], combined with the extinction of other large lizards 

Fig. 1  a Assumed Holocene distribution (red fill) of Hoplodactylus duvaucelii, showing extant modern northern/southern populations (circles, 
crosses and triangles) and subfossil collection localities (stars). Numbers denote sampled Holocene subfossil collection localities (1–7), with letters 
corresponding to subfossil specimens (A-J): Little Lost World, Waitomo (1—A); Companionway Cave, Waitomo (2—K); Mataikona River, Wairarapa 
(3—I); Gouland Downs, Tasman (4—G); Takaka Hill, Tasman (5—H); Ardenest, North Canterbury (6 – B/C/D/E/F); Earthquakes, North Otago (7—J). b 
Surface models of a diplodactylid maxilla in lateral (top), dorsal (middle) and medial (bottom) views demonstrating placement of fixed landmarks 
(black circles) and equally spaced semilandmarks (white circles). Numbers and C-prefixed numbers correspond to anatomical landmark descriptions 
(Additional file 1: Table S2.3)
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in New Zealand [26, 27] implies unrecognized diversity 
may exist within ‘H. cf. duvaucelii’; perhaps detectable 
through fine-scale osteological analysis. Geometric mor-
phometrics [36], a method of statistical shape analysis 
that enables improved detection and visualisation of sub-
tle morphological differences (compared with traditional 
linear-based morphometrics [37, 38]), has been widely 
applied in herpetofaunal studies; including the success-
ful discrimination of closely-related species [39–41] and 
classification [42–44] of isolated cranial elements. We 
therefore predict osteological differences, if examined 
appropriately (using geometric morphometrics), will be 
sufficient for discriminating between extant diplodactylid 
genera (and potentially species), enabling the identifica-
tion of isolated subfossil material, or reveal unidentified 
taxa that require description and diagnosis.

Herein, three-dimensional geometric morphomet-
rics is used to characterise and quantify both shape and 
size variation in the maxilla of modern New Zealand 

diplodactylid genera (Dactylocnemis, Hoplodactylus, 
Mokopirirakau, Naultinus and Woodworthia), for com-
parison with Holocene ‘H. cf. duvaucelii’ subfossils. Three 
main research questions are tested: (a) can recognised 
diplodactylid genera be distinguished based on maxilla 
shape; (b) is size a reliable method for generic-level iden-
tification of isolated cranial elements; and (c) have cryp-
tic extinctions occurred in the Diplodactylidae (with a 
focus on ‘H. cf. duvaucelii’)?

Results
Principal axes of diplodactylid maxilla variation
Principal component (PC) analysis of landmarked max-
illae (Fig. 1b) reveals the majority (71.5%) of shape vari-
ability among extant New Zealand diplodactylids is 
concentrated in four dimensions (Fig.  2a; Additional 
file  1: Figure S3). Subsequent PC contributions (PC5—
PC54) are either small or negligible (< 5.0%), and thus not 
considered further.

Fig. 2  a Principal component (PC) analysis of maxilla shape showing PC1 versus PC2 (representing 56.4% of variation in maxilla shape). b Surface 
warps representing the maxima and minima shape differences of PC1/PC2 axes (see A). c Canonical variates (CV) analysis showing CV1 versus CV2 
(representing 83.9% of the total among-group variance) with 95% confidence ellipses plotted for each genus. d Phylogenetic tree of described/
undescribed diplodactylid species analysed (adapted from [2, 18]). Points in (A) and (C) are modern individuals (symmetric component of left–right 
maxilla shape) coloured by genus (Dactylocnemis: blue-grey, Hoplodactylus: red, Mokopirirakau: yellow, Naultinus: green, Woodworthia; purple) and 
bounded by convex hulls, with shapes (circle, diamond, triangle) corresponding to species shown in (D). Holocene subfossil individuals are shown 
as red circles (A-J): Waitomo (A: AU7700, K: WO333), Wairarapa (I: S.46528.1), Tasman (G: S.38813.2; H: S.39086), North Canterbury (B: S.33703.2, C: 
S.33703.3, D: S.33703.4, E: S.33703.7, F: S.33703.8) and North Otago (J: VT791a)
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PC1, the primary axis of maxilla shape variation 
(39.7%), largely pertains to differences in shape of the 
nasal and orbital margins (Fig. 2b; Additional file 1: Fig-
ure S4). Negative PC1 values are associated with an 
elongate nasal margin and adjacent medial flange; more 
concave prefrontal and orbital margins; and a more con-
vex palatal shelf. Naultinus and Mokopirirakau granu-
latus (i.e. excluding the M. ‘southern North Island’ 
specimen—see below) form distinct clusters in the nega-
tive region of PC1, whereas Dactylocnemis, Hoplodac-
tylus and Woodworthia primarily occupy overlapping 
intermediate regions of the positive zone (Fig. 2a).

PC2 (16.7% of variance) describes differences associ-
ated with overall element robustness, with dorsoventrally 
shallow, laterally slender maxillae along the negative sec-
tor of the axis, contrasting with dorsoventrally deep, lat-
erally broad maxillae along the positive region of the axis 
(Fig.  2b; Additional file  1: Figure S4). Two morphologi-
cally distinct generic clusters form along this axis: robust 
maxillae (Naultinus-Woodworthia) and gracile maxillae 
(Dactylocnemis-Hoplodactylus-Mokopirirakau; Fig. 2a).

PC3 (8.0% of variance) describes shape differences 
in both the anterolateral lappet and prefrontal margin 
(Additional file  1: Figure S4); with dorsoventral thick-
ening (and lateral thinning) of the anterolateral lappet 
and plateauing of the prefrontal margin at negative val-
ues. Conversely, at positive values, the prefrontal margin 
forms a near continuous curve with the adjacent orbital 
margin (Additional file  1: Figure S4). Shape differences 
along PC4 (7.2%) are primarily associated with increased 
curvature of the tooth row along the negative sector of 
the axis (Additional file 1: Figure S4).

Visually, Holocene subfossil specimens cluster in the 
intermediate region of the positive zones of PC1, PC2 
and PC4; overlapping the morphospaces of extant genera 
(Fig.  2a; Additional file  1: Figure S3). Conversely, Holo-
cene subfossil specimens (excluding H) occupy increas-
ingly positive regions of PC3, with some individuals (B, E, 
I, J) exhibiting no overlap with extant genera (Additional 
file  1: Figure S3). Procrustes distances of the Holocene 
subfossil specimens (Additional file 1: Table S4) across all 
PC axes suggest shape similarities with Dactylocnemis (E, 
K), Hoplodactylus (A, C, D, G, I, J) and Woodworthia (B, 
F, H), with no shape similarities with Mokopirirakau or 
Naultinus.

Predictors of shape and size
Procrustes ANOVA (Additional file 1: Table S5) revealed 
that phylogenetic affiliation (i.e. genus) is a highly sig-
nificant predictor (F(4,38) = 9.01, p < 0.001) of maxilla 
shape, accounting for 45.2% of the shape variation. 
Multivariate pairwise post-hoc tests indicate differ-
ences to be significant between most genera (p < 0.05), 

excluding Dactylocnemis-Hoplodactylus (p = 0.229), 
and Hoplodactylus-Mokopirirakau (p = 0.056) compari-
sons (Additional file 1: Table S6). A weak but significant 
relationship also exists between maxilla shape and cen-
troid size (F(1,41) = 5.39, p = 0.020), and their interaction 
(F(4,38) = 1.35, p = 0.023; Additional file 1: Table S5), sug-
gesting a small proportion of the shape diversity (6.8%) is 
due to allometry.

One-way ANOVA (Additional file  1: Table  S7) iden-
tified significant differences in maxilla centroid size 
between genera (F(4,38) = 32.22, p < 0.001), with Hoplodac-
tylus (1690 ± 228.1; mean ± sd) being significantly larger 
under all HSD post-hoc comparisons (Additional file  1: 
Table  S8). Additionally, Woodworthia (968 ± 100.9) is 
significantly smaller than most other genera (Additional 
file  1: Figure S5; Table  S8), excluding the Naultinus-
Woodworthia comparison (p = 0.253). Conversely, Dac-
tylocnemis (1198 ± 142.9), Mokopirirakau (1241 ± 115.6) 
and Naultinus (1093 ± 104.0) are indistinguishable 
from each other based on centroid size alone. Subfossil 
specimens show no overlap with the error bars of non-
Hoplodactylus maxillae, with some (G = 2042, H = 2086, 
I = 2024, K = 2316) extending beyond the maximum 
extant Hoplodactylus maxilla centroid size (Additional 
file 1: Figure S5).

Phylogenetic shape differences
Phylogenetic signal in maxilla shape is statistically signifi-
cant (Kmult = 0.828, p < 0.001); however, species resemble 
each other less than expected under a model of Brown-
ian motion (given Kmult is less than 1). This is reflected 
in the distribution of species throughout the phylomor-
phospace (Additional file 1: Figure S6), with several over-
lapping branches (e.g. Dactylocnemis and Hoplodactylus) 
and non-adjacent closely related species (e.g. M. granula-
tus and M. ‘southern North Island’).

Canonical variate (CV) analysis (Fig. 2c) and Mahalano-
bis distance probabilities (Additional file  1: Table  S9) 
show all genera form significantly different groups, with a 
cross-validation accuracy of 100%. Canonical function 1 
(CV1; 53.9% among-group variance) clearly distinguishes 
Naultinus and Woodworthia, which occupy opposite 
extremes of the morphospace (Fig. 2c). The positive sec-
tor of CV1 describes shortening of the nasal margin and 
adjacent medial flange, with corresponding shortening in 
the prefrontal margin (similar to PC1; Additional file  1: 
Figure S7). Hoplodactylus occupies the extreme positive 
region of canonical function 2 (CV2; 30% among-group 
variance), characterized by a relative slope decrease 
of the nasal margin and consequent shortening of the 
orbital margin (Fig. 2c; Additional file 1: Figure S7).

The Holocene subfossil specimens are broadly dis-
tributed throughout the positive zones of CV1 and CV2 
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(Fig. 2c), with some individuals visually falling within the 
95% confidence-interval of the morphospaces of extant 
genera (Hoplodactylus: D, E, J, K; Woodworthia: B). Typi-
cality probabilities of Mahalanobis distances across all 
CVs (Table 1) show that while many Holocene subfossil 
specimens strongly associate with Hoplodactylus (A, D, 
E, F, J, K), other specimens (B, C, G, H, I) show no clear 
phylogenetic affinities, indicating that Holocene subfos-
sil specimens display greater variation in maxillary form 
than that encompassed by the extant genera. Conversely, 
despite posterior probabilities (Table 1) showing similar 
significant support for Holocene subfossil Hoplodactylus 
classification (A, C, D, E, F, H, J, K), specimens with lower 
typicality probabilities were assigned to Woodworthia (B, 
G, I).

Discussion
Variation and morphological convergence in diplodactylid 
maxillae
Phylogenetic position is a significant predictor of maxilla 
shape diversity in New Zealand diplodactylids, with all 
genera (Dactylocnemis, Hoplodactylus, Mokopirirakau, 
Naultinus and Woodworthia) being morphologically 
distinct. Identification of taxonomically informative 
morphological variation within a single skeletal element 
contrasts with previous assertions of skeletal uniformity 
in New Zealand’s geckos (e.g. [23, 26]).

Variation in diplodactylid maxilla shape is predomi-
nantly explained by two characters, described by the 
first two axes of both PCA and CVA: (a) posterior exten-
sion/reduction of the nasal margin; and (b) increase/
decrease in dorsoventral extent of the facial process. 
Separation of genera along PC1 appears correlated with 
broad habitat use of New Zealand diplodactylids, with 

terrestrial-arboreal (Dactylocnemis, Hoplodactylus and 
Woodworthia) and exclusively arboreal (Naultinus) gen-
era occupying positive and negative regions respectively 
[45, 46]. This morphological signature of habitat use 
extends to species-level comparison, most notably for 
discrimination of the terrestrial-arboreal M. ‘southern 
North Island’ from the arboreal M. granulatus [47], char-
acterized by a shift to more positive values.

In lizards, arboreal forms tend towards broad, pointed 
skulls, and, similar to saxicoline species, tend to be dor-
soventrally flattened, presumably enabling faster climb-
ing speeds on non-horizontal surfaces [48–50]. While 
cranial modifications associated with habitat use are 
undocumented for New Zealand diplodactylids, exten-
sion of the nasal margin in arboreal species appears to be 
linked to two superficial morphological changes in the 
adjacent prefrontal margin: (a) a reduction in anterior 
extent (observed in other Gekkota; [51]); and (b) forma-
tion of a thickened ridge along the prefrontal orbital mar-
gin (Additional file  1: Figure S8). While the function of 
these features remains unclear, association with arboreal-
ity may indicate ecomorphological convergence between 
phylogenetically independent lineages. Despite describ-
ing similar shape change, separation of genera along CV1 
reflects broad phylogenetic relationships, distinguishing 
broad (Hoplodactylus, Woodworthia) and narrow (Dacty-
locnemis, Mokopirirakau, Naultinus) toed clades by posi-
tive and negative values respectively; supporting previous 
morphological classification [16].

In addition to habitat use, skull-shape evolution in 
lizards is strongly influenced by diet, with shape varia-
tion concentrated in the premaxilla, nasal and jaw joint, 
reflecting their roles in jaw-based prehension and feed-
ing biomechanics [48, 52]. Herbivorous lizard skulls tend 

Table 1  Typicality and posterior probabilities of Holocene subfossil specimens belonging to extant genera, calculated using 
Mahalanobis distances

Highest typicality (p > 0.20) and posterior probabilities for each Holocene subfossil specimen are indicated in bold

Typicality probabilities Posterior probabilities

D H M N W D H M N W

A AU7700 0.026 0.215 0.020 0.018 0.033  < 0.001 1  < 0.001  < 0.001  < 0.001

B S.33703.2 0.013 0.030 0.021 0.013 0.041  < 0.001  < 0.001  < 0.001  < 0.001 0.999
C S.33703.3 0.031 0.110 0.046 0.026 0.070  < 0.001 0.999  < 0.001  < 0.001  < 0.001

D S.33703.4 0.257 0.688 0.096 0.046 0.122  < 0.001 1  < 0.001  < 0.001  < 0.001

E S.33703.7 0.570 0.819 0.133 0.072 0.120  < 0.001 0.999  < 0.001  < 0.001  < 0.001

F S.33703.8 0.157 0.557 0.125 0.060 0.286  < 0.001 0.999  < 0.001  < 0.001  < 0.001

G S.38813.2 0.031 0.060 0.054 0.024 0.061  < 0.001 0.019 0.004  < 0.001 0.809
H S.39086 0.041 0.167 0.043 0.020 0.114  < 0.001 0.999  < 0.001  < 0.001  < 0.001

I S.46528.1 0.028 0.091 0.044 0.016 0.090  < 0.001 0.049  < 0.001  < 0.001 0.512
J VT791a 0.078 0.205 0.027 0.022 0.038  < 0.001 1  < 0.001  < 0.001  < 0.001

K WO333 0.177 0.742 0.088 0.050 0.105  < 0.001 1  < 0.001  < 0.001  < 0.001
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towards reduced snout lengths and high temporal regions 
relative to carnivorous lizards, contributing to increased 
bite strength required for processing fibrous and tough 
foliage [53–55]. Conversely, omnivorous gekkotans rep-
resent intermediate forms not specialized for particular 
feeding behaviors, and consequently lack unique mor-
phological adaptations [56]. New Zealand geckos are 
predominantly omnivorous, consuming a wide variety of 
food items, including plant matter (fruit, honeydew and 
nectar) and arthropods [46]. Such extensive dietary over-
lap affects the use of diet as a variable of maxilla shape, 
given that the categories (omnivorous and insectivorous) 
are not discrete.

Finally, as lizard maxillae are evolutionarily conserved, 
exhibiting reduced disparity relative to rate of evolution 
(compared with other cranial elements; [52]); similar 
analyses of elements critical to cranial biomechanics (e.g. 
quadrate, which also supports the auditory system) may 
enhance detection of stronger species-level morphologi-
cal signals in the New Zealand Diplodactylidae.

Efficacy of size‑based discrimination
Maxilla size is significantly correlated with phylogenetic 
affinity; however, only Hoplodactylus can be fully differ-
entiated (under post-hoc comparisons), with the remain-
ing diplodactylid genera exhibiting variable degrees of 
overlap. This highlights the inefficiency of previous size-
based taxonomic identification of non-Hoplodactylus 
Holocene subfossil geckos, especially intermediate-sized 
genera (Dactylocnemis, Mokopirirakau and Naultinus), 
which exhibit complete size overlap. Similarly, while 
large size proves reliable in discriminating extant H. 
duvaucelii, application to Holocene subfossil identifica-
tion requires assumptions of temporal taxonomic homo-
geneity (or “covert biases”; [57]).

Previous analyses of squamate genera including Anolis 
[58, 59] and Iguana [60] have shown maxillae to be effec-
tive predictors of snout-vent length (SVL). Our results 
exhibit similar trends both between and within diplodac-
tylid genera, with mean genus centroid size reflecting rel-
ative SVL [61], and larger species (N. punctatus, D. ‘Three 
Kings’) having increased centroid sizes relative to smaller 
congeners (N. elegans, D. pacificus; [62, 63]).

Increased Holocene diversity of large geckos
Our results provide evidence for increased morphologi-
cal diversity of large geckos during the Holocene in New 
Zealand, with declines in both shape and size variation 
following Polynesian and European colonization. This 
suggests that well-characterized biodiversity reductions 
(and extinctions) observed across insular avifauna [64, 
65] extend to lineages comprised of taxa of smaller body 
size, including herpetofauna.

Combined Procrustes and Mahalanobis distance com-
parisons provide support for previous size-based assign-
ment of five Holocene subfossils (A, D, E, J, K) to H. 
duvaucelii, confirming assumed prehuman distribution 
of this species across both the North and South Islands. 
The remaining six Holocene subfossil specimens (B, 
C, F, G, H, I) exhibit classificatory discrepancies and/or 
reduced assignment probabilities (below relevant thresh-
olds), reflected by their unique position across CV1/CV2. 
These distinct Holocene subfossil maxillae (“unknown 
taxa”) do not reflect differential adaptation of H. 
duvaucelii to mainland and island habitats (given shape 
overlap of mainland and island populations) but reflect 
either increased morphological diversity of mainland 
large species (not encompassed by extant populations) or 
the presence of at least one extinct, large, broad-toed dip-
lodactylid species.

Based on digit morphology, the extinct giant H. del-
courti was positioned within the broad-toed clade, sister 
to H. duvaucelii [20], suggesting these “unknown taxa” 
could potentially represent small or even juvenile H. del-
courti. However, this seems unlikely given the paucity of 
reported subfossil remains of H. delcourti [66], despite 
extensive collections of other diplodactylid taxa [26]. 
More precise phylogenetic affinities of both H. delcourti 
and “unknown taxa” could be determined through future 
ancient DNA analysis.

During the Holocene, mainland H. duvaucelii (and 
“unknown taxa”) reached larger sizes than extant popula-
tions, reflected in a reduction in maximum maxilla size (a 
proxy for body size; e.g. [58]). Such sized-biased extinc-
tion is well-documented for Quaternary insular lizards 
globally [59, 67–69], including the extinction of two large-
bodied eugongyline skink species (Oligosoma northlandi 
and Oligosoma sp.) in northern New Zealand [25, 27, 70]. 
This reflects the inherent vulnerability of New Zealand’s 
large-bodied, nocturnal herpetofauna to high predation 
rates and ecological displacement by exotic mammals 
(including the Pacific rat Rattus exulans (kiore); [71, 72]), 
particularly in forest-cleared environments [73]. Smaller 
lizards can escape predation during periods of inactivity 
through utilizing narrow retreats, given limited overlap 
in body diameter with small mammalian predators [45]. 
Conversely, refugia utilized by large-bodied lizards can 
be accessed by mammalian predators, as evidenced by 
reductions in body weight, tail width and recruitment of 
H. duvaucelii on kiore-inhabited islands [34, 74].

Similarly to extant H. duvaucelii populations [75], Hol-
ocene subfossil H. duvaucelii also exhibit a latitudinal 
cline in maxilla size, in opposition to Bergmann’s rule (i.e. 
increased size at higher latitudes), with individuals from 
northern localities being noticeably larger than those 
from southern localities. For diurnal lizards, reduced 
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body size appears to be an advantageous thermoregula-
tory strategy in cooler climates, with high surface-area 
to volume ratio permitting rapid heat gain whilst sun-
basking [76, 77]. Despite being nocturnal, Duvaucel’s 
gecko occasionally emerges from retreats to thermoregu-
late through cryptic sun-basking [78, 79], suggesting that 
small body size provides an adaptive advantage at high 
latitudes.

Conclusions
The majority of New Zealand diplodactylid genera can be 
differentiated from each other based exclusively upon the 
shape of the maxilla, which exhibits strong correlations 
with phylogenetic relationships. Additional species-level 
discrimination based on ecomorphological adaptations 
highlights the potential application of geometric mor-
phometrics to the morphological characterization of 
highly functionally variable elements (or whole skulls) in 
taxonomic descriptions of extant diplodactylid species. 
Previous sized-based identification of Holocene subfos-
sils is ineffective and underestimates extinct diversity, 
suggesting global assemblages of insular reptiles are dep-
auperate in comparison to their prehuman diversity.

Methods
Specimen selection
To capture extant morphological variation, we examined 
both left and right maxillae (sensu [80]) from 43 adult 
skeletal specimens (Additional file 1: Table S1) represent-
ing 13 species from five diplodactylid genera: Dactyloc-
nemis, Hoplodactylus, Mokopirirakau, Naultinus and 
Woodworthia (Additional file  1: Figure S1, Table  S1). In 
addition, we examined 11 well-preserved Holocene sub-
fossil maxillae identified as ‘Hoplodactylus cf. duvaucelii’, 
covering the majority of their (assumed) prehuman range 
(Fig.  1a; Additional file  1: Table  S1). Maxillae were uti-
lized primarily due to their relative abundance in subfos-
sil deposits (Scarsbrook pers. obs.), compared with more 
osteologically informative elements (e.g. quadrate; [81, 
82]). For additional specimen selection details see Addi-
tional file 1: Methods.

Geometric morphometrics
Geometric morphometric analyses were performed 
on a total of 94 maxillae (see Additional file  1: Meth-
ods for additional analytical details). Three-dimensional 
rendered surface models were generated from micro-
CT reconstructions of maxillae, with shape character-
ized by 15 landmarks and 40 sliding semi-landmarks 
(Fig. 1b; Additional file 1: Figures S2, Table S2) digitized 
in Checkpoint (Stratovan Corporation, Davis, CA). 
Landmark coordinates were aligned using a general-
ized least-squares Procrustes superimposition [38], with 

semi-landmark position optimized using the Procrustes 
distance criterion [83] and paired elements symmetrized 
(following mirroring of left maxillae coordinates; Addi-
tional file 1: Table S3).

Shape variation in maxillae of the extant species was 
assessed using principal component analysis (PCA); with 
intergeneric differences (shape ~ genus * size) tested using 
a Procrustes analysis of variance (ANOVA; [84]), and vis-
ualized using canonical variate analysis (CVA; [85]) with 
cross-validations, based on a reduced set of PC scores 
[86, 87]. Three-dimensional surface warps [88] represent-
ing minimum and maximum shapes along both principal 
component (PC) and canonical variate (CV) axes were 
generated using the thin-plate spline (TPS) method [87, 
89]. Phylogenetic signal in maxilla shape was calculated 
using Kmult [90, 91], with statistical significance deter-
mined using phylogenetic permutation (tree inferred 
from [2, 18]; Fig. 2d) with 1000 iterations [92]. Interspe-
cific phylogeny-associated shape variation was visualized 
across the first two PC axes [92].

Holocene subfossil maxillae were then projected into 
these two-dimensional morphospaces (i.e. PCA and 
CVA) through matrix multiplication with respective 
eigenvectors (e.g. [93]). Phylogenetic classification of 
Holocene subfossil specimens was performed through 
Procrustes and Mahalanobis distance comparisons (to 
the mean maxilla shape of each genus), with the latter 
used to calculate typicality [94, 95] and posterior [96] 
probabilities Variation in size of the maxilla (represented 
as centroid-size of the landmark configuration) between 
genera was examined using a one-way ANOVA and Tuk-
ey’s honestly significant difference (HSD) post-hoc tests 
[97], and visualised using a barplot. All statistical analy-
ses were performed in the R statistical environment v. 
3.6.1 [98] using the packages geomorph v. 3.1.2 [92] and 
Morpho v. 2.7 [99].
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