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Abstract 

Background:  Asexually reproducing populations of single cells evolve through mutation, natural selection, and 
genetic drift. Environmental conditions in which the evolution takes place define the emergent fitness landscapes. 
In this work, we used Avida—a digital evolution framework—to uncover a hitherto unexplored interaction between 
mutation rates, population size, and the relative abundance of metabolizable resources, and its effect on evolutionary 
outcomes in small populations of digital organisms.

Results:  Over each simulation, the population evolved to one of several states, each associated with a single domi-
nant phenotype with its associated fitness and genotype. For a low mutation rate, acquisition of fitness by organisms 
was accompanied with, and dependent on, an increase in rate of genomic replication. At an increased mutation rate, 
phenotypes with high fitness values were similarly achieved through enhanced genome replication rates. In addition, 
we also observed the frequent emergence of suboptimal fitness phenotype, wherein neighboring organisms signaled 
to each other information relevant to performing metabolic tasks. This metabolic signaling was vital to fitness acquisi-
tion and was correlated with greater genotypic and phenotypic heterogeneity in the population. The frequency of 
appearance of signaling populations increased with population size and with resource abundance.

Conclusions:  Our results reveal a minimal set of environment–genotype interactions that lead to the emergence of 
metabolic signaling within evolving populations.
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Background
Populations of mitotically dividing cells and unicellular 
organisms evolve under the complex regulation of their 
environments. This regulation can be exerted through 
variations in abundance of metabolizable resources 
available to the population. Elegant experiments using 
unicellular budding yeast grown in low density sucrose-
containing environments show that multicellularity can 
evolve under resource-poor conditions with coopera-
tion between incompletely separated cell populations [1]. 

Extending such observations, resource availability is the-
orized to have played a key role in determining the evo-
lution of developmental mechanisms with resource-rich 
environments considered more ideal for the evolutionary 
stabilization of uniclonal, rather than polyclonal popula-
tions [2].

  Upper bounds on population size have also been sug-
gested to play a contextual role in evolution: small pop-
ulations are more susceptible to random genetic drift 
with frequent fixation of deleterious mutations. Above 
a certain threshold of population size, additional ben-
eficial mutations could rescue such populations [3]. On 
the other hand, LaBar and Adami [4]  show that smaller 
populations can evolve robustness against genetic drift 
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by adapting to lower but more stable peaks on the fit-
ness landscape—i.e. those with lesser probability of 
small-effect deleterious mutations. Another exploration 
of a similar problem under an evolutionary game theory 
framework suggests that small population sizes, con-
sisting of participants that can memorize strategies and 
interaction outcomes, evolve to cooperate easier than 
memory-less populations by storing these outcomes and 
using them to guide future interactions [5].

The role of mutation rates in the evolution of asexual 
populations has been theoretically explored by sev-
eral works [6–8]. Individual mutations may have a del-
eterious, neutral or beneficial effect on the fitness of the 
populations within which they arise; fitness-enhancing 
mutations constitute only a small proportion within this 
possible set [9]. However, the rate of adaptation has been 
shown to increase under high mutation rates [10], but 
this is not without a limit: very high mutation rates can 
lead to a catastrophic decline in fitness (mutational melt-
down) [11]. Increased mutation rates within heterogene-
ous populations result in the evolution of populations to 
lower fitness values while attaining higher robustness: 
a hypothesis known as the “survival of the flattest” [12, 
13]. Furthermore, in experimental models, increased 
mutagenesis has been shown to be a genotypic response 
to environmental stresses [14–16] and can in turn 
increase evolvability [17].

Organisms inhabiting the natural world evolve within 
their diverse and often variable environments, with 
all the above factors simultaneously constraining and 
biasing their phylogeny. In this article, we examine the 
interplay between the three factors—mutation rate, 
resource availability and maximum population size and 
ask whether these factors amplify or offset each other’s 
effects in determining the likelihood of populations 
evolving specific strategies. This examination is relevant 
to the evolution of discrete populations of cancer cells 
such as within spheroids and multicellular circulating 
tumor clusters that inhabit, and transit through, micro-
environments with varying resource abundances. Such 
populations have been shown to comprise of cells with 
heterogeneity in genotype and phenotype, although the 
cues that engender the emergence of heterogeneity are 
unclear [18–20]. We use the Avida artificial life platform, 
wherein mutating, reproducing, and resource-metaboliz-
ing digital organisms are allowed to evolve under distinct 
values of these variables. This platform has been used by 
a large number of groups to address important questions 
pertaining to evolutionary dynamics of asexually repro-
ducing organisms. For example, Wilke and coworkers 
have shown that high mutation rates bias the emergence 
of low fitness genotypes that lie in a region of relatively 
high stability on the fitness landscape rather than more 

fragile, high-fitness genotypes [13]. Labar and Adami 
[4] have highlighted the appearance of drift robustness 
in small populations of digital organisms [4]. Goldsby 
and coworkers show that an increase in mutation rates 
induced by metabolic processes (like DNA damage and 
repair due to reactive oxygen species) can induce differ-
entiation of cell clusters into soma and germline—with 
the somatic cells performing the majority of the meta-
bolic processes [21]. In this paper, using this framework, 
we analyze the constitution and frequency of predomi-
nant genotypes emerging from the evolutionary runs for 
ancestral organisms that begin with a basic reproduction 
machinery and the ability to perform a simple metabolic 
task. Our work sheds light on the necessary conditions 
for the emergence of distinct fitness landscapes for small 
populations in different environments.

Methods
Avida computational model
The Avida digital evolution platform is a computational 
framework that allows simulation of self-replicating 
organismal populations in a fixed-size, lattice-based 
virtual world [22]. The organisms in Avida consist of 
a genome sequence composed of a series of genotypic 
instructions (similar to genes on chromosomes). In our 
simulations, the sequence size is limited to 120 instruc-
tion-sites (analogous to loci) and each instruction-site 
can contain one of 32 instructions chosen from an 
instruction-set. The instruction-set is Turing-complete 
and allows these organisms to copy the genome, replicate 
by division, perform logical/mathematical operations, 
control the flow of execution (using jumps and loops), 
perform input/output to interact with the environment 
or send information to neighbors (refer to Additional 
file  1: S2 for a complete list of Avida instructions). The 
environment provides 5-bit numbers as metabolic sub-
strates that the organisms can read and manipulate in 
order to generate a resultant output. If the genome is able 
to output a specific calculation on the inputs, the organ-
isms take up a certain fraction of an external resource 
and are rewarded a corresponding merit, a quantity that 
essentially determines the speed with which an organ-
ism genome is executed. This is similar to how real cells 
can convert simple molecules into more readily utilizable 
products like ATP or NADPH in order to increase their 
replication rate, which in turn increases fitness. These 
molecules also act as potent signaling molecules between 
cells [23, 24]. As an example, if the environment rewards 
performance of a logical AND task, an organism which 
can take two environmental inputs A and B (generated 
randomly when organisms execute an input instruction) 
and can output “A AND B” gets a merit reward. In turn, 
genomes that execute faster, copy faster and therefore 
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give rise to more offspring per unit time. These resources 
are implemented as a global chemostat that maintains a 
certain level of resources in each lattice-site in the world 
(each containing one organism) using fixed inflow and 
outflow rates. All offspring also inherit a basal merit from 
their parents and thus do not necessarily require the 
presence of metabolic tasks to survive if they can repro-
duce before the internal merit reserve is depleted.

To accomplish reproduction, the organisms also need 
to have a working copying-and-division mechanism 
that is implemented in the ancestral seed genome as a 
copy-loop. This ancestral copy-loop has two main func-
tions—(a) To copy the parent genome instruction-by-
instruction until the entire genome has been copied, and 
(b) to divide the offspring after the copying is complete 
and place this offspring in a new neighboring site in the 
world. The organisms have a faced direction in the world 
and can rotate in order to choose either the receiving 
neighbor (for metabolic signals) or to choose the direc-
tion in which to place an offspring. If there is already an 
organism in the site, it is replaced by the newly created 
offspring. The world is limited in size and thus cannot 
accommodate more than a fixed number of organisms.

Apart from sending generated task results to the envi-
ronment for verification and reward, the organisms are 
also able to send the numbers stored in their memory 
to their eight nearest neighbors by executing a set of 
instructions. This is again performed in a directional 
fashion, with the messages being sent to the organism 
being faced. These messaging instructions can either send 
intermediary metabolic information (the incomplete 
result of a task) or allow inter-cellular regulation by act-
ing as a signal for other genomic instructions. For exam-
ple, the OR task requires a smaller number of genomic 
instructions to execute than NOR and hence is more 
likely to appear randomly through mutations. An OR-
performing organism can share the result of this task with 
a neighbor, which can then perform a NOT operation on 
it to output NOR—a task with a much higher utility than 
NOT and OR combined. The cost of computation is thus 
shared between the two organisms. In return, the neigh-
bor can return this information (the NOR output given 
two inputs) to the initial sender and allow it to accrue a 
benefit. Note that there is no direct cost to messaging, 
except it decreases the available genomic space to evolve 
other metabolic mechanisms. A natural example of this 
can be seen in Dictyostelium discoideum, where signal-
ing between neighboring cells allows the cells to group 
together, undergo differentiation, and survive starvation 
[25, 26].

The Avida organisms are thus free to innovate in three 
major areas—metabolism, reproduction, and informa-
tion sharing (or signaling). The set of instructions that are 

relevant in our study and allow the organisms to innovate 
these mechanisms is given in Table  1. There are a total 
of nine tasks available in the environment, each with a 
corresponding resource. The list of these tasks and their 
relative payoffs to the merit (replication rate) are given in 
Table 2.

Experimental setup
For all the experiments presented here, a single ances-
tral organism is released in an Avida world with periodic 
boundaries (lattice sites on the leftmost boundary are 
neighbors of lattice sites on the rightmost boundary, and 
similarly for the top and bottom boundaries) and allowed 
to reproduce to give rise to a population that has evolved 
over 100,000 updates (update being the basic unit of 
time in Avida; On average, around 30 genomic instruc-
tions are executed in a single update for each organism 
in the population). Simulations are run with two values 
of the mutation rate, at different levels of resource avail-
ability, and population size conditions. The ancestral 
genotype consists of a simple copy-loop with a primitive 
task definition that allows it to perform the simplest task 
in the environment. It also has a single rotation instruc-
tion, which allows the organism to change the direction it 
faces in the world and thus can facilitate messaging and/
or dispersal of offspring after division (Fig. 1).

Mutation rates in Avida are denoted by probabili-
ties of mutation of an instruction in a particular site. 
As each instruction has a larger functional role in the 
genome than a single base-pair in DNA genomes, this 
can be considered as a per-locus mutation rate. Under 
the high mutation rate, there is a 7.5 × 10− 3 probability 
of a genomic instruction being substituted with another 
on divide. Under the low mutation rate, substitutions are 
made with a probability of 7.5 × 10− 4, an order of magni-
tude lower. The sequence length is restricted to 120 and 
mutations events are limited to substitutions to conserve 
this length. In our simulations there are a total of 32 such 
instructions that can be substituted in any genomic site 
during mutation. Other than nop-X (a null instruction), 
each instruction has a direct functional role. For example, 
substitution of a “nop-X” with a “send-msg” instruction 
will pass a message to the currently faced neighbor.

Each task in the Avida world has an associated resource 
that can be taken up by an organism and an increase in 
replication rate (merit) is awarded proportional to these 
resources. Resources are modelled to have an inflow and 
outflow rate for each site in the world but  can also dif-
fuse laterally. These inflow and outflow rates maintain a 
steady concentration of each resource like in a chemo-
stat. Resource heterogeneity in the world can arise if a 
certain localized cluster of cells is highly metabolically 
active. However, the small size of the world and high 
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rate of diffusion between sites ensures this heterogeneity 
does not persist over evolutionary time. The steady-state 
resource availability is varied between multiple values, 
each an order of magnitude higher than the previous one. 
The lowest of these is at an absolute value of 0.1 (per-
resource) and is chosen such that there are no secondary 

effects that restrict proper mutation and selection over 
the duration of the experiments (such as widespread 
extinctions). These values go all the way up to a value of 
10,000 resource per lattice site. The world size (or maxi-
mum population size) is varied from 50 to 500 lattice 
sites (each lattice site can accommodate one organism) 
in keeping with our motivation to uncover emergence fit-
ness landscapes of evolving discrete populations such as 
cancer spheroids and clusters. Each simulation condition 
is repeated for 100 replicate populations seeded with the 
same ancestral genome.

Fitness distribution analysis for major innovations
Avida has an internal measure of fitness that is calculated 
by taking a ratio of the metabolic rate (i.e. merit) to the 
gestation time of an organism (time required for replica-
tion from the start of genome execution). However, both 
these values are calculated with the organism in isolation 
and thus the definition does not account for benefits to 
fitness due to intercellular signaling. To remedy this, we 
use a slightly modified metric that places 200 copies of 
the organism in a world, lets the population stabilize for 
a hundred updates and then calculates the average num-
ber of births per update for the next 400 updates. The 
mutation rate is set to zero during the entire process and 
thus prevents the sequences from evolving. This met-
ric captures signaling between organisms with the same 

Table 1  Major instructions of interest in Avida and their functions

Note that this list consists of only nine of the most important instructions out of the 32 instructions in our simulations. For the complete list of instructions and their 
functions please refer to additional information. Some of the terminology used in this table requires an understanding of the Avida organism life-cycle (underlined) 
and is presented concisely in the additional information

Instruction Function

Flow-control: Control the flow during genome execution which is otherwise linear

 if-label (f ) Executes the next instruction in the genome sequence if the flow head is 
at a specified label. In the ancestral copy-loop, this instruction makes sure 
that the division instruction is executed only when the entire genome 
has been copied.

Reproduction (Biological): Assist in copying of genome sequence during replication

 h-copy (v) Copies a single instruction from parent genome to offspring genome

 h-divide (x) Separates offspring genome from parent and places the offspring organism 
in the cell faced by parent

 h-search (z) Finds a specified label in the genome and moves a specified head to this 
label. In the copy-loop, this instruction ensures the flow head returns to 
the start of the loop on reaching the end of the genome.

Messaging: Allow organisms to send and receive messages

 send-msg (B) Send a message (containing numbers stored in two of the registers) to the 
neighbor in the direction the organism currently faces.

 retrieve-msg (C) Retrieves messages into specified registers from the messaging buffer

 bcast1 (D) Sends a message to all the eight nearest neighbors

Rotation: Allow organisms to change the direction they are facing

 rotate-left-one (E) Rotates the organism by a unit in the anticlockwise direction

 rotate-right-one (F) Rotates the organism by a unit in the clockwise direction

Table 2  Metabolic tasks in the environment and their merit 
payoffs. Adapted from [52]

A particular task is performed when the organism outputs the operation 
corresponding to it after taking in two random inputs—A and B—from the 
environment. The merit reward denotes the relative magnitude of the addition 
to genome replication speed when a given task is performed. The symbols used 
in the table are: “~” denotes logical negation, “∨” denotes the logical-or function, 
and “∧” the denotes logical-and function. Some examples for these operations 
are given in Additional file 1: Table S1

Task Operation (Required output given two 
binary numbers A and B)

Merit reward

NOT ~A 1

NAND ~ (A ∧ B) 1

AND A ∧ B 2

ORN A ∨ ~B, ~A ∨ B 2

OR A ∨ B 4

ANDN A ∧ ~B, ~A ∧ B 4

NOR ~ (A ∨ B) 8

XOR (A ∧ ~B) ∨ (~ A ∧ B) 8

EQU (A ∧ B) ∨ (~ A ∧ ~B) 16
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genotypes and does not account for cooperation between 
widely differing sequences. Our population sizes are kept 
small in order to obtain unimodal populations containing 
single dominant genotypes. We hence assume that the 
benefits to fitness due to signaling are obtained by shar-
ing between homogeneous genotypes.

Each value of the mutation rate leads to a distinct set 
of major peaks that appear on the fitness distribution (as 
discussed in  "Results"). To generate this fitness distribu-
tion, we collect the genotypes from all the treatments 
and replicates under a mutation rate and plot the kernel 

density estimate (KDE) for the fitness values. The high-
density peaks that appear are taken as representatives of 
different mechanisms that emerge with a high probabil-
ity. As discussed later, resource levels and maximum pop-
ulation size do not alter the position of these peaks but 
rather determine the probability of finding a genotype 
within these states (Fig. 2).

The genotypes from each peak are sampled by consid-
ering a narrow region around the peak maxima (within 
two times the bandwidth of the kernel density estimate). 
These sampled genotypes are then analyzed for common 

Fig. 1   A schematic of the Avida world and its constituent organisms. a The Avida world consists of a 2D grid of lattice sites where organisms can 
reside. Each organism (e.g. the white dot) has eight nearest neighbors (and corresponding lattice sites, denoted by green dots) to whom it can 
send messages or replace with its offspring. The world is periodic, with the horizontal and vertical boundaries coinciding with their opposites (red 
boundary on red, yellow boundary on yellow). b Each organism consists of a genome containing 120 genomic instructions which are read and 
executed by a “virtual CPU”. c This virtual CPU reads the genome instruction by instruction, gets inputs from the environment and processes them 
using the genomic instructions to generate an output. It can also read and write instructions using the read (R) and write (W) heads in order to 
copy the genome before division

Fig. 2  Fitness distribution of genotypes obtained from simulation at low and high mutation rates of a population of an ancestral organism (Dark 
line: resource levels of 10 k and population size of 500; Light lines: all other combinations of these variables, see Additional file 1: Fig. S4). a At 
low mutation rate, five major peaks (labeled L0–4) are obtained in the distribution. b At a high mutation rate, the distribution becomes more 
heterogeneous and four major peaks (H0 to H3) are observed. The dotted vertical line for both spectra represents the fitness of the ancestral 
organism. Y axis represents density (calculated from a kernel density estimate with area under the curve normalized to 1) and X axis represents 
fitness (defined as the number of births/updates)
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features to deconvolute the underlying mechanisms that 
give rise to the corresponding peaks.

Marginal utility
We define a metric called the marginal utility of a pro-
cess—defined as the fractional loss in fitness when the 
process is perturbed. This metric is calculated as follows.

Fitness without the process instructions is calculated 
by substituting all the relevant instructions in the geno-
type sequence with a null instruction (nop-X) and meas-
uring the fitness of the resultant sequence.

Isolation of signaling positive populations
The marginal utility of signaling for a genotype is cal-
culated as the fractional loss in fitness when signaling/
messaging instructions are removed from the genome. 
Marginal utility of signaling for all genotypes obtained in 
all the runs classified under two major peaks on a den-
sity distribution (Additional file 1: Fig. S6). The first peak 
was centered at zero and did not acquire fitness through 
signaling. The second peak showed a positive shift and 
consisted of genotypes that acquired a part of their fit-
ness through signaling instructions. The midpoint of 
these peaks was chosen as a threshold to identify evolved 
populations as signaling or non-signaling populations. 
Populations with median marginal utility of messaging 
above this threshold were labelled as messaging positive 
populations.

Genotypic heterogeneity of the population
Each genome sequence is restricted to a length of 120 
sites (each containing an instruction) and this number is 
maintained through the mutation process by disallowing 
additions and deletions. To estimate the genetic hetero-
geneity in a population, we calculate the per-site entropy 
for the set of genomes in each of these populations and 
sum these values for all 120 genomic sites. For each posi-
tion i in the genotype sequence, the per-site entropy is 
given by,

where pij is the probability of instruction j appear-
ing at position i in the sampled genotypes. The value is 
estimated by dividing the total number of genotypes with 

Marginal utility = (Fitness− Fitness without instructions that allow the process)/Fitness

si = −

∑

instruction j

pij ln
(

pij

)

the given instruction j at the site by the total number of 
genotypes in the population.

Phenotypic heterogeneity of the population
The phenotype of an organism is the set of tasks it can (or 

cannot) perform when supplied with inputs. The nine dif-
ferent tasks available in our simulations can thus define 
a total of 512 (29) phenotypes—the number of possible 
combinations of these nine binary choices. To calculate 
the phenotypic heterogeneity of a population, the organ-
isms under each of these phenotypes were counted. The 
Shannon entropy of this distribution gives the pheno-
typic heterogeneity of the population. The minimum pos-
sible value of zero is attained when the entire population 
consists of a single phenotype. The maximum heteroge-
neity is achieved when the population is evenly distrib-
uted between all 512 phenotypes.

Software
Version 2.14.0 of Avida was used for these simulations. 
Automation of the analysis, data retrieval and cleanup 
were done using Python version 3.8.2 (with numpy 1.19.0 
and matplotlib 3.2.2). Data analysis, statistics and plot-
ting was performed using R version 4.0.2 and the ggplot2 
library (version 3.3.2). The details of the statistical tests 
are provided in Additional file  2. All these experiments 
were conducted on x86-64 machines running GNU/
Linux kernel 4.15.0.

Results
Mutation rate regulates diversity in fitness acquisition 
and associated genotypes
We began by comparing the genotypes obtained after 
100,000 updates of evolving the ancestral Avida organ-
isms and plotted the distribution of fitness for geno-
types obtained at high and low mutation rates (and at 
three resource availability values and three population 
sizes) in Fig.  2. For the low mutation rate, five major 
peaks were observed in the fitness distribution (Fig.  2a, 
peaks denoted as “L0”, “L1”, “L2”, “L3” and “L4”—labelled 
in ascending order of their median fitness). The peaks 
were found to be higher in fitness than that of the ances-
tral organism. For the high mutation rates, we observed 
four major peaks (Fig. 2b, denoted “H0”, “H1”, “H2”, and 
“H3”—labelled in ascending order of their median fit-
ness). Peak H0 was lower and peaks H1–4 were higher 

pij =
Number of genotypes with instruction j at genomic site i

Total number of genotypes in the population



Page 7 of 15Kumawat and Bhat ﻿BMC Ecol Evo           (2021) 21:52 	

in fitness compared to the ancestral type. We note that 
only a single dominant peak was observed for most runs 
(Additional file 1: Fig. S1). Therefore, each of the fitness 
peaks likely represented a stochastically chosen stable 
state and a population evolved into one of these states 
with different probabilities as the conditions were var-
ied. To verify this, we plotted the distribution of fitness 
at intermediate times and verified that the number of 
generations used here gave a stable, non-shifting distri-
bution by the end of the run (Additional file 1: Fig. S2). 
Larger world sizes (carrying capacities) gave a non-uni-
modal distribution of fitness indicating a mode of exist-
ence where multiple dominant genotypes can coexist. 
We tested for unimodality of the fitness distribution by 
calculating the Hartigan dip-test value with the alterna-
tive hypothesis that the distribution is multimodal [27]. 
Carrying capacities over 500 gave populations that were 
significantly multimodal (Additional file  1:  Fig. S3). In 
summary, the mutation rate determined the set of major 
genotypic fitness values that emerge at the end of evo-
lutionary runs. The resource availability and population 
size only affected the relative probability of genotypes 
attaining one of these values (Additional file  1: Fig. S4). 
The representative genotypes were isolated from a small 
region around the peak maxima as given in Additional 
file 1: Table S2.

Genomes that evolved at a low mutation rate exhibit 
differences in genome replication rate and metabolism
We examined the genotypes cognate to the peaks in the 
fitness distribution to identify the differences in sequence 
that accompanied their evolution. The predominant dif-
ference between the genomes from the corresponding 
peaks (evolved at low mutation rate) was found in their 
genome replicative machinery (Fig.  3a): the h-copy (v) 
instructions (which may be comparable to the prereplica-
tion complexes that regulate the speed of the replication 
fork movement [28]) were present in different numbers 
in the copy-loops of genomes across the peaks. These 
instructions are responsible for copying the genome 
instruction-by-instruction and a larger number in the 
copy-loop denotes increased replication rate per cycle.

Organisms from peaks L0 and L1 showed a copy-
loop identical to the ancestor, containing a single 
h-copy (v) instruction and an if-label instruction (f ) 
that validated the completion of the genome dupli-
cation process and only then allowed the offspring 
genome to segregate from the parent. Organisms from 
L2 peak used two h-copy instructions which allowed 
them to copy two genomic instructions every itera-
tion, but did not have a validation system, potentially 
allowing the birth of partially copied non-viable gen-
otypes. The overall effect was an increase in fitness, 

but organisms with these genotypes nevertheless had 
a lower fitness relative to the ones that retain the 
validating if-label instruction as found in L3 peak. 
L4 peak genomes (which showed the highest fitness) 
were able to evade this requirement by incorporating 
a large number of h-copy instructions (generally four), 
essentially allowing them to rapidly copy the entire 
genome without offspring sequence validation. The 
low mutation case thus contrasts the differences in 
genome-copying robustness that evolves under differ-
ent conditions.

In addition to differential replicative rates, we 
observed the duplication of elements present within 
the copy-loop and their transition to the non-copy-loop 
regions of the genotypes for all peaks except genomes 
of peak L4. However, measuring the marginal utility of 
these internalized elements showed that they did not 
contribute significantly to the fitness of the genotypes 
(Additional file 1: Fig. S5; median values for all L-peaks 
were found to be lesser than 0.05, indicating that the 
addition of these internalizations added less than 5% 
fitness advantage to the sequences).

The organisms from different peaks were also 
observed to exhibit differences in their capacity for uti-
lization of resources (metabolism). L0 and L1 organ-
isms acquired a lower cumulative median merit than 
those from peaks L2, L3, and L4 (Fig. 3b). The complex-
ity of tasks (We define complexity of a task as the mini-
mum number of NAND instructions required in the 
genome to execute the task) performed showed a pro-
gressive increase across organisms from peaks L0 to L4 
(Fig. 3c). Figures 3c and 4c plot the tasks in the order of 
increasing complexity along the x-axis.

These results led us to investigate whether changes in 
the copy-loop contributed to determination of fitness 
and merit for the evolved genotypes. Replacement of 
the copy-loop in a representative genome from peak L0 
with a copy-loop containing multiple h-copy instruc-
tions (from a L4 genotype) instantaneously increased 
the fitness to an intermediate value (Additional file  1: 
Fig. S7). Allowing the population to evolve, increased 
the fitness to L4 fitness levels. The merit on the other 
hand, increased instantaneously to the L4 value, con-
firming that the nature of the copy-loop determines the 
metabolic capacity of the organisms. A reverse experi-
ment (transplant of L0 copy-loop into L4 genomes) 
also showed a similar reliance of fitness and merit on 
the replicative region of the genome (Additional file 1: 
Fig. S8). Specific genomic ‘chimerization’ influenced the 
viability of the organisms: although all L4 organisms 
with L0 copy-loops were viable, addition of L4 copy-
loop to L0 organisms rapidly brought down the viability 
by 80% (viability is defined as the percentage of a set of 
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genotypes that are able to replicate under high resource 
conditions when release in an Avida world).

Genomes that evolved at a high mutation rate exhibit 
differences in evolutionary innovations
In keeping with the analysis above, genotypes associated 

Fig. 3  a Schematic depiction of key genomic elements from the ancestral organism (top) and representative organisms from L0–L4 peaks obtained 
from simulations at the low mutation rate (see Fig. 1a). The copy-loop (highlighted in green) is the major source of difference between these 
sequences. Some of the sample sequences from each of these peaks are given in Additional file 1: Fig. S13. The fitness ranges used to isolate these 
peaks are given in Additional file 1: Table S2. b Box plots depicting merits (speed of the organism’s virtual CPU, a proxy for metabolic activity of the 
genotype) of 100 genotypes sampled from each of L0–L4 on the fitness distribution of simulations performed at a low mutation rate. Genomes 
from L0 and L1 are metabolically less active compared to L2, L3, and L4 (statistical significance measured using the two-tailed unpaired Wilcoxon 
test; ***p < 0.001). c Task complexities for genomes (estimated roughly by the number of “NAND” instructions required to perform a task, increases 
from left to right) from L0–L4 peaks on the fitness distribution obtained from simulations at a low mutation rate. Higher fitness peaks are found to 
perform more complex metabolic tasks. The Y axis represents the number of times that a genotype belonging to these peaks performs a task over a 
single execution of the genome. The data for this figure is also given in Additional file 1: Table S3
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with the four fitness peaks observed for evolution under 
a high mutation rate were analyzed for inter-sequence 
differences (Fig.  4a). Peak H0 genotypes showed a loss 
of the ancestral copy-loop at the end of the genome 

and a relinquishment of copying activities to instruc-
tions in the interior of the genome (as was also observed 
in the fitness peaks of the low mutation rate runs). The 
change in fitness that two sample genotypes from this 

Fig. 4  a Schematic depiction of key genomic elements from the ancestral organism (top) and representative organisms from H0–H3 peaks 
obtained from simulations at the high mutation rate (see Fig. 1b). The copy-loop is the first point of difference between these sequences. H0 
genotypes have a copy-loop devoid of the ancestral copying functionality. Some of the sample sequences from each of these peaks are given in 
Additional file 1: Fig. S14. The fitness ranges used to isolate these peaks are given in Additional file 1: Table S2. b Box plots depicting merits (speed of 
the organism’s virtual CPU, a proxy for metabolic activity of the genotype) of 100 genotypes sampled from each of H0–H3 on the fitness distribution 
of simulations performed at a high mutation rate (statistical significance measured using the non-parametric Wilcoxon test). c Task complexities 
for genomes (estimated roughly by the number of “NAND” instructions required to perform a task, increases from left to right) from H0–H3 on the 
fitness distribution obtained from simulations at high mutation rate. The Y axis represents the number of times that a genotype belonging to these 
peaks performs a task over a single execution of the genome. Note that peak H3 does not perform any of the metabolic tasks but instead relies on 
a vastly improved replicative machinery (four h-copy per cycle) to acquire a very high fitness. The data for this figure is also given in Additional file 1: 
Table S3
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peak experienced over evolutionary time showed that 
the decline was concomitant with the occurrence of a 
mutation that removed the h-search instruction (Addi-
tional file  1: Fig. S9a). In spite of the breakdown of the 
vital ancestral copy-loop, these organisms survived due 
to the presence of replicative elements in the interior of 
their genome (removal of such copy-loop elements led to 
loss of fitness for these genotypes; Additional file 1: Fig. 
S9b). Interestingly, the appearance of internal copying 
instructions was found to temporally precede the loss of 
ancestral copy-loop functionality and is evidenced in the 
genomes of organisms from all fitness peaks except for 
the L4. Such instruction duplications may therefore be 
part of chromosomal changes that do not by themselves 
alter fitness but prevent extinctions due to copy loop-dis-
ruptions [29].

H1 genotypes retained a copy-loop consisting of only 
the basic replication instructions (h-copy and h-divide) 
required for copying but did not implement an if-label 
instruction that allows detection of complete copying. 
Genotypes from H2 and H3 showed progressively greater 
h-copy instruction numbers in their copy-loop suggest-
ing their higher fitness was a result of an enhanced rate 
of replication. Metabolically, peak H0, H1, H2 and H3 
genomes were found to be almost equivalent in merit to 
each other (Fig. 4b, note that the measurement of merit 
still takes place in a test CPU and thus cannot account for 
information sharing as is seen in H1 genomes). H0 and 
H1 performed a very large number of metabolic tasks per 
cycle (compared to the genomes obtained at a low muta-
tion rate). In H2 and H3, a large number of metabolic 
task executions were absent, but high replication rates 
were generated owing to the inclusion of h-copy instruc-
tions (Fig. 4c).

We observed that in addition to changes in copy-loop 
sequences and metabolic task elements, signaling (infor-
mation sharing) instructions were also found in geno-
types representative of peak H1, H2 and H3. On sampling 
and testing the utility of signaling in these genotypes (see 
"Methods"), we found that messaging contributed sig-
nificantly to the fitness acquired by genotypes associated 
with peak H1, but not H2 and H3 (Fig. 5). Interestingly, 
the increase in fitness over the ancestral type for these 
(H1) genomes was approximately equal to the contribu-
tion from signaling (~ 20%).

When the copy-loop of H0 genotypes was replaced 
with that of a peak H3 genotype, and the hybrid geno-
type was allowed to evolve, we did not observe an instan-
taneous increase in fitness: rather, the initial unchanged 
median fitness gave rise to multiple genotypes both lower 
and higher in fitness than the initial hybrid (Additional 
file  1: Fig. S10). H1 genotypes with their copy-loops 
replaced by H3 copy-loops showed an instant increase in 

fitness which diversified over evolutionary time (Fig. 6a). 
The viability, just as in the low mutation rate case, was 
affected as a result of the change and only 20% organisms 
survived. Removal of the cognate copy-loop from H1 and 
replacement with H3 copy-loop dropped the marginal 
utility of messaging to 0 (Fig. 6b). Consistent again with 
the low mutation rates, 100% of peak H3 genotypes, upon 
their copy-loops being replaced by the H1 counterpart, 
evolved to fitness levels congruent with H1 genotypes 
(Fig. 6c). To our surprise, an increased marginal utility of 
messaging was found to be conferred by the addition of 
the H1 copy-loop to genotypes from H3 (Fig. 6d). These 
transplant experiments indicated that the copy-loop 
played a major role in determining the benefits that an 
organism accrues through signaling.

Populations dominated by signaling genotypes are more 
genetically and phenotypically heterogeneous
We asked whether populations dominated by the sign-
aling positive peak H1 genotypes had greater genetic 
heterogeneity. Shannon entropic measurements made 
across sequence alignments of populations that evolved 
under high mutation rates showed that signaling pop-
ulations were genetically more heterogeneous com-
pared with populations from the other peaks associated 
with a high mutation rate (Fig.  7). This variation was 
seen to be almost invariant across resource levels and 
population sizes (Additional file  1: Fig. S11). To check 
whether this difference in genotypic heterogeneity was 
specific to the mechanism of fitness acquisition, we 

Fig. 5  Box plot showing marginal utility of signaling for genomes 
(fractional addition to fitness provided by messaging, see "Methods") 
sampled from peaks H0–H3 of the fitness distribution obtained from 
simulations at a high mutation rate (see Fig. 1b). Only peak H1 utilizes 
messaging as a facilitator for acquiring a higher fitness (significance 
measured using the two-tailed non-parametric Wilcoxon test 
***p < 0.001)
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transplanted copy-loops from H1 and H3 into each oth-
er’s genotypes. To ensure that the process of transplant 
itself does not introduce changes in heterogeneity, we 
performed a control run transplanting H1 popula-
tions with a H1 copy-loop (Additional file 1: Fig. S12). 
Addition of H3 copy-loop to H1 populations decreased 
the population heterogeneity to H3 levels over 5000 
updates of evolution (Fig. 7b). A reverse experiment of 
replacing H3 populations with H1 copy-loop signifi-
cantly increased the population heterogeneities as well 
(Fig. 7c).

Isolated signaling positive populations were also 
found to be phenotypically more heterogeneous than 
their non-signaling counterparts under all conditions 
(Fig. 8a). Interestingly, the spread in fitness was found 

to be smaller for signaling populations, indicating that 
the phenotypic heterogeneity did not manifest as a het-
erogeneity in fitness outcomes (Fig. 8).

Population size and resource levels affect the frequency 
of occurrence of signaling populations
We plotted the incidence of signaling positive popula-
tions for different population sizes and resource abun-
dances. We observed a steady increase in the probability 
of occurrence of the signaling populations as the popula-
tion size was increased from 50 to 500 (Fig. 9). Resource 
abundance also showed a positive effect on the emer-
gence of the signaling population for all population sizes 
(Fig. 9).

Fig. 6  Violin plots showing a fitness and b marginal utility of messaging of genomes sampled from H1 upon their endogenous copy loop being 
replaced with H3 copy-loop and evolution for 5000 updates. c Fitness and d marginal utility of messaging of genomes sampled from H3 upon their 
endogenous copy loop being replaced with H1 copy-loop and evolution for 5000 updates. Updates on the x-axis represent the evolutionary time 
for which the hybrid genotypes were evolved. “WT” denotes these measures for the recipient genomes without copy-loop replacement
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Fig. 7  a Box plots showing genomic heterogeneity within populations belonging to H0–H3 peaks of the fitness distribution obtained from 
simulations at a high mutation rate (see Fig. 2b). b Change in population heterogeneity when populations dominated by H1 are transplanted 
with H3 copy-loop and evolved for 5000 updates (Populations evolved under size 500 and 1000 k resource availability). c Change in population 
heterogeneity when populations dominated by H3 are transplanted with H1 copy-loop and evolved for 5000 updates. Population heterogeneity 
is measured by calculating the sum of per-site genomic entropies (see “Methods”, significance calculated using the non-parametric Wilcoxon test; 
**p < 0.01, ***p < 0.001). “WT” denotes heterogeneity of the recipient population without copy-loop replacement

Fig. 8  a Phenotypic heterogeneities for non-signaling and signaling populations. (significance calculated using the Welch’s t-test; ***p < 0.001). 
b Standard deviation in fitness for non-signaling and signaling populations
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Discussion
In this work, we have explored the interplay between the 
environment and the driving force of phenotypic variation: 
the mutation rate, in the exploration of an adaptive land-
scape by a population of digital organisms. It is increasingly 
being recognized that the effect of mutation rate on fitness 
needs to be examined in the context of the environment in 
which evolution takes place [30, 31]. In this manuscript, we 
consider two environmental parameters: the carrying capac-
ity and resource levels. A positive effect of population size on 
fitness can be explained by the higher probability of mutants 
appearing in the population; in fact under high mutation 
rate, bigger population size allows for greater exploration 
of the fitness landscape and fixation of genotypes that may 
otherwise never appear by mutational variation in a smaller 
population [32]. At the same time, larger populations are 
less susceptible to drift and can thus allow selective effects 
to dominate. We see that population size and resource 
abundance influence fitness in complex and distinct ways 
under high and low mutation rates. Higher values of both 
population size and resource abundance do favor greater 
frequencies of reproductively efficient high fitness genotypes 
(specifically L3 but also L2) over relatively inefficient coun-
terparts (L1). When the mutation rate is high, the frequency 
of suboptimal fitness genotype (H1), acquired through sign-
aling under high mutation rates, also shows a direct cor-
relation with population size and resource levels. These 
observations establish the importance of the interdepend-
ence between the three input variables we have chosen in 
the study and show how fitness levels, as well as the mode of 

fitness acquisition are nuanced multidimensional outputs of 
the genotype and the environment within which it evolves.

High mutation rates allow the acquisition of fitness 
through signaling between organisms (peak H1). Even 
in this case, messaging instructions that allow for signal-
ing appear in other genotypes but their contribution to 
fitness for such genotypes is minimal, compared to H1 
genotype whose fitness depends on such instructions. 
These observations are consistent with the robust-yet-
fragile hypothesis extended for complex adaptive systems, 
wherein fitness of genotypes could evolve robustness 
against a contingency while remaining sensitive to oth-
ers [33]. It is pertinent to note that signaling is associated 
with the presence within populations of greater genetic 
and phenotypic heterogeneity than the other three peaks: 
the suboptimal nature of fitness levels for the H1 signal-
ing positive state can be interpreted to be due to a weaker 
selection against fitness-impairing mutants when they 
arise in this population. Our results suggest how signaling 
may evolve within discrete transitory cancer populations, 
such as metastatic spheroids, wherein a tradeoff between 
fitness and replicative efficiency on the one hand, and the 
emergence of heterogeneity and signaling on the other, 
may likely influence therapeutic strategies [2, 18].

Whereas our evolutionary framework captures 
sequence evolution and its correlation with evolution 
of genotypes fairly well, we wish to emphasize a few 
notable limitations. An important one is the absence 
of a developmental time scale and phenotypic (mor-
phological and behavioral) traits associated with it. 

Fig. 9  Variation in incidence of signaling populations as resource abundance and population size is varied. Signaling positive populations (blue) 
are involved in metabolic signaling and their frequency is seen to increase as the population sizes are increased. An increase in resource abundance 
also increases the effect of population size on their incidence. Lower populations give way to signaling at lower resource abundances. A total of 
100 replicate populations were used for these experiments, the deficit below 100 indicates the number of extinctions before the populations could 
evolve to the end of the run



Page 14 of 15Kumawat and Bhat ﻿BMC Ecol Evo           (2021) 21:52 

Incorporation of this time scale would allow the testing 
of the effects of nonadaptive plasticity of the phenotype 
on its evolution within populations [34, 35] and in a 
broader context, the effect of development on the evo-
lution of phenotype [36–39]. Even if the developmental 
time scale is not explicitly incorporated in our frame-
work, our demonstration of a cellular-signaling depend-
ent mode of evolution under high mutation rates and 
environment-permissive conditions provide insights 
into how multicellular organization could have emerged 
from unicellular life-histories [40, 41]. In fact, efforts to 
explain evolutionary bursts within phyla or rapid spe-
ciation predict higher rates of mutation or genomic evo-
lution as causative to their occurrence [42–44].

The framework also implicitly assumes that the 
response to environmental changes is to be directly coded 
if at all within the genome—there is no secondary stor-
age of information like epigenetic modifications or devel-
opmental encoding of information such as real cells in a 
structure. This disallows the potential to test environmen-
tal effects on epigenetic (used in the classical Waddington 
sense [45]) mechanisms, such as phenotypic plasticity 
that contribute to phenotypic evolution [46–48]. The evo-
lutionary process in Avida can thus affect changes that 
take place at the scale of a single organismal lifetime to 
a greater extent than it does for real biological systems. 
We have also not allowed our simulations to run across 
huge population sizes: doing so may allow us to witness 
the dynamics of coexistent genotypic mutants, which we 
seldom see in our runs. However, our motivation in this 
study was to study evolution within smaller asexual popu-
lations, such as in the case of transitory metastatic niches 
of dividing cancer cells, and derive fundamental princi-
ples for their behaviors over long time scales [49]. It has 
not escaped our notice that high mutation rates engender 
the evolution of plastic, heterogeneous and cooperative 
populations, properties increasingly being attributed as 
fundamental to transitory malignant neoplasms [50, 51]. 
A more rigorous comparison between these two systems 
will be undertaken in the near future.

Conclusions
We conclude by pointing out that our observations 
reinforce the fact that specific environmental variables 
play an important role in determining both the variety 
and the probability of evolutionary outcomes that arise 
within finite populations. In the background of a higher 
rate of mutation, such variables even facilitate the evo-
lution of metabolic signaling within genetically hetero-
geneous organismal ensembles.
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