
Ritchie et al. BMC Ecol Evo           (2021) 21:39  
https://doi.org/10.1186/s12862-021-01770-4

METHODOLOGY ARTICLE

Inferring the number and position 
of changes in selective regime 
in a non‑equilibrium mutation‑selection 
framework
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Abstract 

Background:  Recovering the historical patterns of selection acting on a protein coding sequence is a major goal of 
evolutionary biology. Mutation-selection models address this problem by explicitly modelling fixation rates as a func-
tion of site-specific amino acid fitness values.However, they are restricted in their utility for investigating directional 
evolution because they require prior knowledge of the locations of fitness changes in the lineages of a phylogeny.

Results:  We apply a modified mutation-selection methodology that relaxes assumptions of equlibrium and time-
reversibility. Our implementation allows us to identify branches where adaptive or compensatory shifts in the fitness 
landscape have taken place, signalled by a change in amino acid fitness profiles. Through simulation and analysis of 
an empirical data set of β-lactamase genes, we test our ability to recover the position of adaptive events within the 
tree and successfully reconstruct initial codon frequencies and fitness profile parameters generated under the non-
stationary model.

Conclusion:  We demonstrate successful detection of selective shifts and identification of the affected branch on 
partitions of 300 codons or more. We successfully reconstruct fitness parameters and initial codon frequencies in 
simulated data and demonstrate that failing to account for non-equilibrium evolution can increase the error in fitness 
profile estimation. We also demonstrate reconstruction of plausible shifts in amino acid fitnesses in the bacterial β
-lactamase family and discuss some caveats for interpretation.
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Background
A growing number of genomes across the tree of life have 
now been sequenced, providing the genotypic under-
pinnings of a diverse array of species phenotypes (e.g. 
[1–3]). With this available data, there is a need to under-
stand which protein encoding genes have changed func-
tion under selective pressure, as the genomic basis of 

species-specific adaptive divergence [4]. Adaptive and 
compensatory purifying selection are important forces in 
the evolution of proteins and coding DNA. While debate 
persists regarding how frequent and influential adaptive 
episodes are in evolution [5], the study of these instances 
is of great interest in understanding the unique charac-
teristics and evolutionary histories of living systems. At 
individual sites, compensatory processes can also gener-
ate site-specific shifts in preference, sometimes referred 
to as an evolutionary Stokes Shift [6]. Although less stud-
ied, directional evolution involving compensatory change 
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is of great interest in understanding the long-term behav-
iour of coding sequences [7].

For protein-coding DNA, the effects of selection are 
most frequently studied through characterising the rate 
of non-synonymous substitutions (dN) in comparison to 
the background synonymous mutation rate (dS) [8, 9]. 
A dN/dS ratio > 1 is associated with positive selection. 
While originally these ratios referred to simple counts 
of nonsynonymous and synonymous base substitu-
tions, more recently they have largely been parameters 
estimated from sequence data under Markov models of 
codon evolution [10].

Sophisticated methods have been developed for infer-
ring episodes of elevated dN/dS across both sequence 
positions and lineages within the phylogeny. These 
include branch-and-site models of codon evolution, in 
which a proportion of sites may experience elevated dN/
dS across pre-specified foreground branches against a 
background of neutral or negative selection [11–13]. 
These models remain highly popular for their computa-
tional efficiency and the ability to estimate probability of 
positive selection on individual sites and branches [14]. 
More recent advances include removing the need for pre-
specified site classes by modelling parameter variation 
as random effects [15, 16] and the ability to incorporate 
variation in synonymous substitution rates [17].

Codon models estimating nonsynonymous/synony-
mous rate parameters are the most widely used methods 
for detecting positive selection, but suffer from several 
limitations. As inter-specific Markov models, they are 
divorced from the underlying substitution process [18]. 
Codon models ultimately rely on elevated counts of non-
synonymous changes over time. These can have multiple 
causes, including positive diversifying selection [19], fre-
quent small shifts in the fitness landscape, or shifting bal-
ance wherein multiple amino acids may occupy a site for 
long periods before reverting. As a result, codon mod-
els may detect dN/dS > 1 even in equilibrium situations 
where the fitness landscape is static [20]. Conversely, 
codon models may be less sensitive to shorter-term direc-
tional processes in which a temporary historical elevation 
in dN may be overwhelmed by long periods of negative 
selection [21]. The codon modelling framework treats 
each amino acid substitution as equivalent, without con-
sideration of the nature of the amino acid change or the 
site in which it occurred [22, 23]. Lastly, codon models 
are sensitive to saturation of synonymous sites over long 
or ancient branches of phylogenetic trees, limiting their 
applicability [24].

In view of the shortcomings of dN/dS, recent years 
have seen a resurgence of interest in mechanistic models 
for analysis of the dynamics of protein evolution. Chief 
among these are mutation-selection models [25, 26]. 

Dating back to the late 1990s, and originally conceived 
as an aid to phylogenetic reconstruction of coding DNA, 
the mutation-selection framework models the popula-
tion-genetic process whereby new mutations arise and 
become fixed in a population of individuals. The rate of 
substitution is modelled in two stages. First, new muta-
tions arise in the population through a process similar to 
that of a classic codon model. Secondly, mutations must 
eventually fix in the population. It is generally assumed 
that drift and fixation occur in a homogeneous Wright-
Fisher population [27, 28]. The rate at which mutations 
spread to fixation is then derived from a classical approx-
imation in population genetics for the limit of the proba-
bility of fixation at infinite time [29, 30]. Recent advances 
on the basic methods have allowed estimation of site-
specific fitness effects either through extensive param-
eterization [31] or as random effects under a Dirichlet 
process prior [32, 33].

Despite the promise of these methods, a number of 
issues remain that prevent their widespread adoption in 
evolutionary reconstruction and hypothesis testing. The 
models make a number of strong assumptions; for exam-
ple, mutation is assumed to be weak, with a population-
scaled mutation rate much less than one [34]. Thus only 
one mutation can occur at a time, and each segregates 
against a uniform wild-type background, disregarding 
issues such as clonal interference and linkage effects. 
Furthermore, the timescale of substitution must be such 
that fixation times can be viewed as instantaneous events 
on the branches of the tree. Most, though not all, imple-
mentations also restrict the codon substitution process 
to single-nucleotide mutations, despite evidence that this 
assumption is frequently violated in reality [35].

One assumption of the original models is that the 
evolutionary process is assumed to be at equilibrium 
throughout the tree. This stems from two aspects of the 
model. Firstly, the fitness landscape of amino acids at the 
root was assumed to be the same as that at the tips of 
the tree, meaning that no directional process is possible, 
as this would require a shift in site-specific equilibrium. 
Secondly, the form in which the fixation probabilities are 
given assumes detailed balance in the process of evolu-
tion, i.e.

where π(a) is the stationary frequency of codon a and qab 
is the transition probability from codon a to codon b.

Detailed balance was assumed explicitly in the origi-
nal formulation [25], and is a requirement for the pop-
ulation-scaled forms with linearised numerators [26]. 
It has been shown that the detailed balance assumption 
restricts the range of equilibrium dN/dS values estima-
ble under the model to < 1 [36]. This restriction applies 

(1)π(a)× qab = π(b)× qba
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only at equilibrium. It does not prevent the model from 
detecting shifts in the fitness landscape, since instanta-
neous dN/dS rates will still be elevated in the aftermath 
of the shift [37]. However, on a biological level, time-
reversibility implies that deleterious substitutions will be 
balanced by compensatory changes over even small peri-
ods of time. This may not be the case under a longer-term 
shifting balance that may obtain even at equilibrium [20]. 
Reversible models of evolution also may not adequately 
describe evolutionary processes that are expected to be 
heterogenous over time as the resulting process may 
not be reversible even if the instantaneous processes are 
reversible [38, 39].

The combination of these two assumptions means that 
mutation-selection models as presently formulated are 
not suitable for modelling an evolutionary process that 
may include adaptive episodes, shifting balance, or non-
purifying selection. The assumption of stationarity has 
been relaxed in numerous studies by testing for differ-
ences in amino acid fitnesses among viral hosts [21, 40, 
41], testing for site-specific shifts over specified subclades 
of a tree [42], or testing among a set of possible selective 
hypotheses based on viral host shifts [43, 44]. One novel 
method allows the use of pre-specified phenotypic infor-
mation to infer directional evolution events [45]. How-
ever, it is not currently possible to infer the number and 
position of these events without prior information of 
some kind.

Here, we make progress towards the goal of recon-
structing detailed selective histories by relaxing both of 
the assumptions that restrict mutation-selection models 
to equilibrium conditions. We seek to detect a change 
in an amino acid fitness profile over a homogeneous set 
of sites at an arbitrary node in the tree, without prior 
hypotheses as to its position and to determine the posi-
tion of this selective shift. Furthermore, we demon-
strate simultaneous reconstruction of amino-acid fitness 
parameters and differing codon frequencies at the root 
using the non-reversible model. We apply the results to 
a data set of β-lactamases from bacteria with different 
optimal growth temperatures and nucleotide usage, and 
discuss how the results of these explorations could lead 
to future methods that can analyse an even larger range 
of evolutionary processes.

Results
Overview of analysis
We peformed analyses using a maximum-likelihood 
approach within the Bio++ framework [46]. Briefly, our 
method infers the number and position of amino acid 
fitness profiles along a fixed input tree, assuming the 
same fitness profile at all sites. The process begins from 
the root and successively estimates maximum-likelihood 

fitness profiles for each branch and its descendent clade 
assuming a shift to a new profile within that clade. Each 
new profile is a mutation-selection model with treewide 
mutation parameters and a profile-specific set of 19 
amino acid fitness parameters. The transition rates are 
given by the product of the treewide mutation rate and 
the non-reversible fixation probability

with a and b the Darwinian fitnesses of the background 
and mutant amino acids, s is the selection coefficient, and 
Np is the diploid population size, which is fixed over the 
tree.

After determining maximum-likelihood amino acid 
fitnesses, AICc values are calculated with the additional 
model on each tested clade. If the best of these shows a 
reduction in AICc value, we infer a selective shift on that 
branch. The process repeats until no improvement can be 
found or a user-specified maximum shift limit is reached. 
The output consists of the number and branch position 
of shifts in amino acid fitness and amino acid fitness 
parameters for each inferred shift.

Simulation design
We designed two series of simulations to test the iden-
tifiability of selective shift locations and model param-
eters under non-equilibrium mutation-selection models. 
In all cases, we simulated data under a model similar to 
that used for inference, with a single set of amino acid 
fitnesses across all sites but which could vary at the root 
or among lineages. While testing methods on data gen-
erated using methods more complex than the inference 
model can be valuable for establishing robustness and 
identifying inference problems such as parameters that 
take on phenomenological load from unmodeled parts 
of the process [47], in the present case we are interested 
only in establishing the ability to infer selective shift loca-
tions using reasonably-sized data sets. We do not indi-
cate our method for use where the assumption of a single 
changing amino acid fitness profile across sites is strongly 
violated.

In the first series (ASHIFT), we simulated sequences 
with either no selective shifts or one shift at a random 
position in the tree. Codon frequencies for the root were 
set equal to the equilibrium codon frequencies given 
by the model preceding the shift, while a new fitness 
profile was generated for the model following the shift. 
We then tested our ability to recover the position of the 
shift and the amino acid fitness profiles preceding and 
following the event. Since this method requires a set of 
amino acids with a similar selective history and grows in 

(2)Pfix(a, b) =
1− e−2sab

1− e−4Npsab
.
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complexity with the size of the associated protein family, 
we also tested the effect of alignment length and number 
of taxa in the underlying phylogeny. To do this, we simu-
lated sequences with 300, 600 and 900 codons, trees with 
10 and 20 taxa, and 0 or 1 selective shifts, for a total of 
twelve treatment blocks. Each treatment block consisted 
of 20 replicate simulations.

In the second simulation series (RFREQ), we tested 
the ability of the model to coestimate codon frequen-
cies at the root and new amino acid fitness parameters 
in the substitution model over the rest of the tree. This 
series also tested the impact of failure to account for non-
equilibrium evolution. We simulated sequences under a 
model in which codon frequencies were generated inde-
pendently at the root. The initial sequence drawn from 
these frequencies then evolved through the tree under a 
new mutation-selection model with an amino acid fitness 
profile unrelated to the initial frequencies.

We compared inferences of amino acid fitness profiles 
under three models: (1) a non-reversible equilibrium 
model with the codon frequencies at the root equalling 
the equilibrium frequencies of the model; (2) an equilib-
rium model using the standard reversible approximation 
to the probabiity of fixation; and (3) a non-equilibrium 
model that included separate parameters for the root 
frequencies. The power to infer parameters at the root 
and tips of the tree depends on the rate at which the pro-
tein family grows [48], as well as the shape of tree. We 
addressed this issue by varying the rate of speciation in 
the underlying birth-death tree and using three tree bal-
ance conditions. We conducted 10 replicate simulations 
for each speciation rate and balance condition.

Inferring selective shifts
We present results of inferring the number and position 
of sequence-wide shifts in amino acid fitnesses on sim-
ulated codon alignments (ASHIFT). Alignments were 
simulated with zero (Fig. 1) or one (Fig. 2) fitness shifts. 
When no shift was present, a false-positive shift was 
detected one time in 20 for trees with 20 tips, and 0-2 
times in 20 for trees with 10 tips. The remainder of the 
inferences correctly detected no adaptive shifts.

When one shift was present, its position was correctly 
identified at least 14 times out of 20 for all numbers of 
tips and codons. The method returned a maximum of 6 
false negative results (for the 10 tip and 300 codon simu-
lations) and a minimum of 2 false negatives out of 20 for 
the two 900 codon alignments. At most 1 in 20 inferences 
returned an incorrect branch as the position of the only 
shift. A false positive result, in which a second shift was 
inferred when only one was present, occured in only 1 
out of 20 simulations for the the 900-codon simulations 
and in 4 in 20 simulations for the 20-tip, 300-codon 

series. In one instance in the 20-tip, 900-codon series, 
the analysis failed to show signs of convergence within a 
practical time frame and was terminated.

Since our simulation procedure distributed selective 
shifts over different distances from the root, we exam-
ined the relationship between the time depth of the true 
selective shift and the incidence of false positives and 
negatives (Fig.  3). The units of time are derived from 
the substitution model; 1 unit is the time in which 1 
substitution per site would be expected under a neutral 
model. False negatives were obtained for time depths of 
0.63 or less (median 0.22), while additional false positive 
branches tended to be inferred more often when the age 
of the true shift was greater (median 2.7).

The inference method was able to recover amino acid 
fitness parameters in data sets simulated with a sin-
gle selective shift when the shift was located correctly 
(Fig. 4). Parameter reconstruction was more accurate for 
the model present at the root, which was also in most 
cases the model present at most of the tips of the tree. 
Median correlation coefficients were greater than 0.75 
for the root model. For the model following the selective 
shift, median correlation coefficients remained over 0.75, 
but the range of values was larger. Longer alignments did 
not produce observably superior results.

Empirical data
The method was used to detect the most likely position 
for up to three major functional changes in Precambrian 
β-lactamase evolution [49]. Resurrected ancient proteins 
from this data set, specifically within the Proteobacteria 
have demonstrated a major sequence-wide decrease in 
thermostability and increase in substrate specificity over 
the last 2-3 billion years. We present results for the full 
diversified β-lactamase phylogeny (Fig. 5) and for a Pro-
teobacteria-only phylogeny (Fig. 6).

For the diversified phylogeny (Fig.  5), the method 
inferred three shifts in amino acid fitness, which was the 
maximum number allowed in this analysis. One shift was 
inferred within the Proteobacteria at the common ances-
tor of Vibrio and Moraxella, adjacent to the common 
ancestor of the Enterobacteria β-lactamases (ENCA) 
reconstructed in the original study [49]. Two other shifts 
were identified at the common ancestors of bacterial 
phyla, Firmicutes and Spirochaetes.

For the Proteobacteria-only phylogeny (Fig.  6), only 
two shifts out of a maximum of three were identified. The 
first shift was placed at the base of the tip leading to a 
sequence from Moraxella, adjacent to the shift identified 
within the the Proteobacteria in the diversified phylog-
eny. The second shift was located at the base of the tree 
on the branch leading to Francisella.
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For all analyses, we also visualised the change in rela-
tive fitnesses between the root and each inferred shift. 
The fitnesses were calculated relative to the median-fit-
ness amino acid for each shift (Fig. 7).

Co‑estimation of fitness parameters and root frequencies
The performance of parameter estimation in the RFREQ 
simulation series varied strongly over the different 
treatment conditions (Fig.  8). The strongest effect was 
that of the lineage birth rate used to generate the tree. 
There were opposite trends in the accuracy of root fre-
quency and amino acid fitness recovery as the birth 
rate increased. Root frequencies were often unrecov-
erable when the birth rate was less than 1, but were 

recovered with a median correlation of 0.5 with a rate of 
10 (Table 1).

Amino acid fitness parameters were accurately recov-
ered with median correlations above 0.75 for birth rates 
of 2.0 or lower, but decreased thereafter to a median cor-
relation of near 0.5 for each treatment block. The range 
of performance was broad; the worst cases in the 5.0 and 
10.0 birth rate treatment blocks failed to recover param-
eters altogether, while the best cases retained correlation 
coefficients over 0.75. The intermediate range, for birth 
rates of 1.0-2.0, allowed simultaneous recovery of both 
frequency and fitness parameters, albeit with less accu-
racy than at either extreme. We observed no clear differ-
ence between tree balance categories.
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The impact of accounting for differing root frequen-
cies also varies with the lineage birth rate (Fig.  9). At a 
lineage birth rate of 1.0 or lower, estimation of root fre-
quencies apparently has no effect on the reconstruction 
of amino acid fitness parameters along the tree. For a 
speciation rate of 0.1 in the birth-death and imbalanced 
tree conditions, failing to incorporate root frequencies 
in fact resulted in negative median fold change in error, 
meaning that performance improved. However, for birth 
rates greater than one we observed reduced accuracy 
of fitness recovery signalled by median fold increase in 
error greater than 1. The greatest performance differ-
ences were found under the balanced tree condition, with 
error increases up to twofold possible. The performance 
change remained data-dependent with some members of 
all categories failing to show improvement.

Finally, in order to test the identifiability of the non-
reversible fixation probability, we inferred fitness param-
eters simulated under the non-reversible model using 
the standard reversible fixation probability [26]. We 
found that the reversible and irreversible forms of the 
fixation probability produce paramater estimates that 
differ by less than 10−6 , rendering them numerically 
indistinguishable.
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Discussion
Simulation study
We explored the feasibility of recovering the existence 
and location of selective shifts in amino acid fitness 
profiles without prior knowledge of possible change 
points. Recovery of fitness shifts was somewhat con-
servative, with numerous false negatives especially for 
shorter sequences, while incorrectly recovered shift 
positions were rare. However, parameter recovery after 
shifts is robust across all sequence lengths tested in this 
study, meaning that analyses of this kind are in princi-
ple applicable to realistic peptide sequence lengths of 
300 amino acids and potentially fewer.

Our method as currently implemented retains sev-
eral important limitations. Most notably, the numerical 
difficulties caused by calculation of the non-reversible 
fixation probability without logarithmic approxima-
tions mean that the method is currently restricted to 
small fitness differences in order to avoid optimisation 
failures. The largest unscaled selection coefficient our 
implementation currently supports reliably is 2× 10−5 
with an effective population size of 105 . This is equiva-
lent to a population-scaled log-selection coefficient of 
2. Nevertheless, previous studies have indicated that a 
significant proportion of real selection coefficients may 
be smaller than those we consider here [32], and hence 

the use of non-reversible models may be practical for 
many applications.

In our analyses, the non-reversible fixation probability 
produced results that were numerically indistinguishable 
from the reversible fixation probability on our trees. This 
appears to be related to the fact that selection against 
an amino acid quickly leads to a near-zero rate of evolu-
tion at equilibrium dominated by transient mutations, 
and differences between models will only be apparent 
in a narrow range when selection is extremely weak. 
Similar approximations with log-transformed selec-
tion coefficients have also been shown to produce fixa-
tion probabilities very similar to the canonical formula at 
near neutrality [50]. The form of the fixation probability 
could become important in non-equilibrium situations 
in which strong selection may temporarily coexist with a 
high rate of change, which could occur in trees with more 
and larger fitness shifts, episodes of diversifying selec-
tion, or compensatory shifting balance where the process 
spends more time out of equilibrium. However, for trees 
like those in our simulations, with few small shifts and a 
quick return to equilibrium, irreversibility does not make 
a practical difference and the reversible formula could be 
used for its superior numerical performance.

Our method is also quite computationally demand-
ing due to the need to repeatedly optimise high-param-
eter models. Application to trees much larger than 
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the 20-taxon trees we explored would require parallel 
resources to be practical, and any attempt to implement 
the model for multiple partitions or in conjunction with 
mixtures of site-specific fitness profiles is likely to require 
extensive development. However, there exist numerous 
gene families with fewer than 20 known members (e.g., 

those listed in the Adaptive Evolution Database [51]) and 
these would be good candidates for empirical analysis by 
developments of this method.

A further caveat is that shifts in site-specific profiles 
can be caused by compensatory changes [6] and muta-
tion-selection models have not been parameterized to 

Fig. 5  Identification of selective shifts on an empirical β-lactamase phylogeny [49]. Shown is a diversified sample of the phylogeny constructed by 
removing the shallowest divergences from the original study [49]. Coloured circles mark out the position of inferred selective shifts. For reference, 
black circles mark out the lineage shown to have undergone a functional change in the original study. PNCA Common ancestor of various 
Gram-positive and Gram-negative bacteria; ENCA Common ancestor of Enterobacteria
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differentiate between changes in site-specific fitnesses 
due to compensatory processes and those due to direc-
tional selection. Such an advance would probably require 
relaxation of the assumption of site-independence, which 
is beyond the scope of the methods as we have conceived 
them here.

We also demonstrated the ability to co-estimate codon 
frequencies at the root and independently-generated 
amino acid frequencies on the tree (the RFREQ series), 
albeit with more difficulty than in the ASHIFT infer-
ences. The high dependence on lineage birth rates and the 
opposing trajectories of root frequencies and substitution 
model parameters mirror the relationship expected for 
ancestral trait reconstruction in comparative phylogenet-
ics [48]. Of note is that simultaneous reconstruction to a 
moderate degree of accuracy was possible only for line-
age birth rates 1-2 times the neutral substitution rate. In 
nature, speciation rates greater than 10 times the substi-
tution rate may be common, indicating that simultaneous 
reconstruction may be less accurate than here.

Even so, our findings indicate that incorporating 
root frequencies may slow this decline; at higher spe-
ciation rates, errors in fitness parameter estimation 
are decreased when root frequencies are accounted 

for. The extent to which amino acid propensities, and 
hence codon frequencies, are likely to differ between the 
ancestor of the gene family and its descendants are little 
known. However, situations like this are to be expected 
if a significant proportion of gene families have their ori-
gin in neofunctionalization events following gene dupli-
cation, or indeed any other events causing changes in 
gene function that are linked to larger changes in protein 
structure and the underlying contact map [52, 53].

Altogether, there is the potential to build explora-
tory non-equilibrium mutation selection models. The 
approach we have taken here may be seen as complemen-
tary to to novel approaches such as [45] or [54], which 
incorporate multiple strands of biological and molecular 
information in order to more robustly detect patterns 
of site-specific adaptation without relying on constructs 
such as dN/dS > 1 . Future mutation-selection mixture 
models, where there is a finite set of amino acid fitness 
vectors that are partitioned over sites and lineages of a 
phylogenetic tree and whose number is determined by 
statistical model selection criteria, could instead seek 
to explore data sets about which we can know very lit-
tle. These methods would require significant advances in 

Fig. 6  Identification of selective shifts on a phylogeny of β-lactamase proteins restricted to the Proteobacteria only. Coloured circles mark out the 
positions of inferred selective shifts. The black circle refers to the lineage shown to have undergone the greatest change in the original study [49] 
(ENCA = Common ancester of Enterobacteria)
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the mutation-selection framework, but the present work 
takes a small step in that direction.

Empirical data
We successfully applied the method to a small empirical 
data set of bacterial β-lactamases. This data set is suitable 
for a procedure that lacks site-specific fitnesses because 
resurrected ancestral proteins exhibit significant struc-
ture-wide changes in thermostability and specificity with 
little change in active site configuration [49]. While we do 
not recover the position of the resurrected protein asso-
ciated with the most rapid change in physicochemical 
properties, at the ancestor of the Enterobacteria (ENCA), 
our analyses do infer shifts in branches adjacent or near 
to this position. Thus it appears plausible that the analysis 

recovers some of the signal of this functional change. For 
practicality, our analyses were conducted on a subset of 
the full alignment; it is possible that greater accuracy 
could have been achieved with more complete sampling.

For the full diversified phylogeny, the method also 
recovers two other shifts at the base of Firmicutes and 
Spirochaetes. While we cannot rule out false positives, 
these shift positions could be related to broad differ-
ences in genome composition among bacterial phyla. 
For example, these two phyla are known to have more 
GC-poor genomes in comparison to the more GC-rich 
Proteobacteria and Actinobacteria [55], and this may 
be the result of selection on DNA replication and repair 
machinery [56]. However, this does not directly explain 
the recovered amino acid fitnesses (Fig. 7), which in fact 
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show an increase in the propensity for GC-rich amino 
acids in the β-lactamase sequences for these two shifts 
over the fitnesses at the root. This could reflect selec-
tion to counter-balance any mutational pressure that has 
emerged in these lineages. While genome composition 
need not affect the amino acid composition of specific 
genes, the two are frequently correlated [57]. Neverthe-
less, it is plausible that the method has correctly detected 
a general shift in genetic background occuring at the 
divergence of these two phyla.

As a caveat to our empirical analysis, we note that the 
diversified and Proteobacteria-only phylogenies disagree 
on the placement of a shift at the base of Francisella. It is 
possible that this would have been detected in the larger 
phylogeny if more shifts had been allowed, but neverthe-
less it raises the prospect that the method is sensitive to 
sampling scale. Broader samples may be superior where 
practicable.

Conclusions and directions
For mutation-selection models, with their more mecha-
nistic parameterizations, to become practical methods 
for characterizing selective pressures in protein families 
in comparative genomic analysis, implementations must 
be developed that remove their remaining restrictions. 
While methods exist to do this given explicit a priori 
knowledge of processes such as viral host shifts, there 
are many applications which may benefit from a more 
exploratory method. Here, we take a step forward in the 
development of such models and establish their empirical 
identifiability and statistical performance.

The current work indicates directions for expanding 
our ability to detect adaptive and compensatory events 
in evolution. As mentioned above, immediate require-
ments for usability are a more effective likelihood pen-
alty for selective shifts and a formulation of the fixation 
probability that is more computationally robust. Beyond 
these, an immediate goal is the improvement of compu-
tational performance through the powerful data-aug-
mentation methods and massive parellization available in 
implementations such as Phylobayes-MPI [33], swMut-
Sel [31] and PLEX [58]. Ultimately, while sitewise reso-
lution for these methods remains unlikely, a technique 
could be envisioned in which sites were first partitioned 
by a sitewise mutation-selection method, and sufficiently 
large partitions subsequently investigated for shifts. Such 
methods could provide highly detailed selective histories 
for target gene families and associated organisms.

Methods
Inference method
To infer selective shifts on a phylogeny, we employ 
a non-reversible mutation-selection model in which 

amino acid fitnesses are permitted to vary among 
branches of a phylogeny. At present, the model assumes 
one fitness profile for all sites analysed.

Each mutation-selection model is characterised by 19 
parameters f1 . . . f19 representing relative fitness values 
of the first 19 canonical amino acids, with the fitness 
of the twentieth fixed to 1. We choose to infer relative 
fitness values rather than equilibrium amino acid fre-
quencies due to their clear interpretability in a popu-
lation-genetic framework. Nucleotide evolution takes 
place via a continuous-time Markov chain whose states 
are the 61 possible amino acid triplets excluding those 
that form stop codons. Transition rates between codons 
a and b are given by

Where pab is the rate at which mutations are introduced 
into the population and allowing only for single-nucle-
otide mutations, µ is the individual mutation rate, Np is 
the effective diploid population size and Pfix(a, b) is the 
probability of ultimate fixation of the introduced muta-
tion over the wild-type codon in a randomly mating pop-
ulation [29]. The rate of codon mutation pab is given by 
an HKY model of nucleotide evolution [59], with transi-
tion/transversion parameter κ and nucleotide frequencies 
θA,C ,T ,G . The fixation probability Pfix depends on the fit-
ness values of the two amino acids and on the population 
size:

Where fa and fb are the fitnesses of the amino acids 
coded for by the wild-type and mutant codons respec-
tively, s is the selection coefficient, and the population 
size Np is constant throughout the tree. For all analyses in 
this paper, Np is fixed to a value of 105 . As a limiting case, 
when fa = fb , Pab is set to 1/2Np . The 61× 61 transition 
matrix is scaled so that 1 substitution per site would be 
expected in 1 unit of time if all transitions were neutral.

The transition probabilities above are those given 
by the original diffusion approximation to the prob-
ability of ultimate fixation under a Wright-Fisher pro-
cess. They differ from those used more generally in 
mutation-selection models by the fact that the fitness 
values f1 . . . f19 are those given directly by diffusion 
approximation rather than further approximated by 

(3)qab =pab × Pfix(a, b), b �= a

(4)pab =2Np × µ

(5)Pfix(a, b) =
1− e−2sab

1− e−4Npsab
.

(6)sab =
fb

fa
− 1



Page 13 of 16Ritchie et al. BMC Ecol Evo           (2021) 21:39 	

linearization. While this is approximately the same as 
the usual probability, and restricts the numerical range 
of fitness values for which calculations can be accu-
rately performed, it results in an asymmetric matrix 
of transition rates and a non-time-reversible process 
[26]. This should allow the transition rates to extend to 
ongoing adaptive evolution or shifting balance, allow-
ing the model to explore substitution processes with 
expected equilibrium dN/dS ratios greater than 1.

In the equilibrium case, a single mutation-selection 
model is applied to the entire tree, and the initial codon 
frequencies are assumed to be identical to the equilib-
rium codon frequencies under the model. Our imple-
mentation allows two extensions to this case. Firstly, 
a separate set of 61 codon frequencies may be applied 
to the root of the tree (60 free parameters with the last 
constrained to sum to 1). While these could be viewed 
as being the equilibrium frequencies of a preceding 
mutation-selection model at the root, the formulation 
in terms of codon frequencies means that this is not 
required. These frequencies are unrelated to the fitness 
parameters incorporated in the substitution process.

Secondly, it is possible to allow the fitness profile 
to change at the base of one or more branches in the 
tree, simulating an adaptive or compensatory shift. This 
introduces a new mutation-selection model param-
eterized by 19 new free fitness parameters. This model 
applies to the substitution process on the branch on 
which it occurs as well as all descending branches, 
unless another selective shift intervenes. In the present 
implementation, the location of these shifts in the tree 
need not be pre-specified. Appropriately invoked, the 
method will attempt to determine whether one or more 
shifts is present and to locate the branch on which they 
occur. The method is implemented within the Bio++ 
framework, which contains ready-made classes and 
maximum-likelihood parameter optimisation algo-
rithms for mutation-selection models and non-time-
homogeneous phylogenetics [46]. Bio++ provides 
full support for decomposition and exponentiation of 
asymmetric (non-reversible) generator matrices.

The procedure requires a pre-specified phylogeny and 
branch lengths, which may represent divergence times 
or another salient quantity, alongside a codon multiple 
sequence alignment. The process begins by assuming 
a single amino acid fitness profile and associated 19 fit-
ness parameters across the tree. This profile, along with 
a tree-wide transition/transversion parameter κ and set 
of nucleotide frequencies, parameterizes a single muta-
tion-selection model. The parameters of this model are 
fitted by maximising their joint likelihood given the tree 
and alignment. Parameter optimisation uses the simple 
multi-dimension optimiser in Bio++.

In successive iterations, a selective shift is applied to 
each branch. A provisional set of amino acid fitnesses is 
then estimated by maximum likelihood for that branch 
and its descendants, with all other aspects of the model 
remaining fixed. The search procedure does not per-
mit the case where selective shifts occur on both basal 
branches of the tree; the evolutionary process present at 
the root is assumed to persist on at least one branch.

Following optimization, the corrected Akaike Infor-
mation Criterion value (AICc) is calculated for each 
tested branch. The branch showing the greatest improve-
ment following this procedure is selected as the most 
likely location for a selective shift. All frequency param-
eters are subsequently re-optimized. AICc values are 
then recalculated and compared for the previous model 
(with k change points and 19+ k × 19 fitness param-
eters) and the new model (with k + 1 change points and 
(k + 2)× 19 amino acid fitness parameters). An improve-
ment results in the branch being accepted as the loca-
tion of an selective shift. This process continues until 
either the most recent change point proposal is rejected 
or the designated maximum number of change points 
is reached. A maximum of two shifts was allowed for all 
inferences in the present study.

Simulation procedure
To simulate sequences, we first generated random pro-
tein family trees under the pure-birth model using the R 
package apTreeShape [60] for R [61]. In addition to set-
ting birth and death rates, the model implemented in 
this package includes a parameter controlling the aver-
age balance of the tree, which we used to generate the 
tree balance conditions in the second simulation study. A 
parameter value of 0 gives an expected tree balance simi-
lar to a constant-rate birth-death tree generation process, 
while positive values give more balanced trees and nega-
tive values more imbalanced trees. For the first series 
(ASHIFT), trees were simulated with a balance param-
eter of 0.0, a speciation rate of 0.5, and a death rate of 0, 
for a standard pure birth process. For the second series 
(RFREQ), trees were evolved under three conditions, 
with balance = 1.9 (“Balanced”), balance = 0 (“Birth-
death”), and balance = -0.7 (“Imbalanced”). We addition-
ally varied the speciation rate for each of these three sets. 
Ten replicates each were simulated with speciation rates 
of 0.1, 0.5, 1.0, 2, 5, and 10. The epsilon and age-richness 
parameters were left at 1× 10−6 and 1.0 respectively for 
all simulations. The age of the trees was not fixed.

Following tree generation, we generated parameters 
for the substitution model. For each separate mutation-
selection model in each tree, we drew 19 free fitness 
parameters from a uniform distribution with bounds 
of 1± 5× 10−5 . For the ASHIFT series, in cases where 
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a selective shift was present in the tree, we selected the 
position of the affected branch at random by first uni-
formly selecting a number of nodes’ distance from the 
root, then uniformly selecting one from among the 
nodes at this distance. This resulted in shifts being spread 
through different time depths within the trees. For the 
RFREQ series, codon frequencies at the root were drawn 
from a symmetric Dirichlet distribution.

We simulated codon sequences on each phylogeny 
using the pyvolve package for Python [62]. In order 
to match the model used in inference, we modified the 
included mutation-selection model to use the non-
reversible fixation probability above [30]. The popula-
tion size was fixed at 105 . For the underlying nucleotide 
model, we retained the HKY model [59] but set the tran-
sition/transversion parameter κ to 1.

We inferred parameters by maximum likelihood in 
Bio++. For the first simulation study (ASHIFT), we 
estimated shift numbers and positions using the penal-
ized-likelihood procedure decribed above. We set the 
maximum number of shifts to two in order to capture 
false positives. This inference procedure was applied 
identically to simulations with zero or one selective shift. 
For the non-equilibrium model in the second simulation 
study (RFREQ), we co-estimated codon frequencies at 
the root and amino acid propensities across the tree, with 
the maximum number of selective shifts fixed to zero. 
For equilibrium inferences in both ASHIFT and RFREQ, 
we did not allow independent root frequencies and fixed 
the number of selective shifts to zero.

Empirical data
To validate our methodology on real data sets, we 
obtained an amino-acid alignment and phylogeny of 
prokaryotic β-lactamases [49]. Ancestral proteins resur-
rected from this data set exhibited a significant shift in 
thermostability and substrate specificity within an inter-
val from 2-3 billion years ago. We anticipated being able 
to detect this functional change with our inference pro-
cedure. Due to the high divergence of these sequences 
and the comprehensive nature of these changes, the sim-
plifying assumption that all sites share similar selective 
histories is likely to be acceptable in this case.

To explore the robustness of the method we analysed β
-lactamase data at two sampling scales. The first analysis 
consisted of a diversified sample constructed from the full 
alignment in the original study by removing the shallowest 
divergences while retaining overall clade structure, result-
ing in an alignment of 27 sequences and 675 bases (225 
codons). For the second analysis, we further restricted the 
sample to sequences within the Proteobacteria clade, which 
was the major focus of the original study. We located the 

nucleotide sequences associated with these proteins via the 
UniProt Knowledge Base [63] and downloaded the cod-
ing sequences from GenBank [64]. We aligned the coding 
sequences using amino acids as reference with PAL2NAL 
[65]. The phylogeny from the original paper was taken as 
the input tree for analysis.

We analysed this method with a similar procedure to 
that used in the ASHIFT simulations. For the empirical 
data, we allowed the procedure to infer up to three global 
shifts in amino acid fitnesses. We assume that amino acid 
frequencies at the root were the same as those on the initial 
branches.
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