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Abstract

Background: Lake Tanganyika belongs to the East African Great Lakes and is well known for harbouring a high pro-
portion of endemic and morphologically distinct genera, in cichlids but also in paludomid gastropods. With about 50
species these snails form a flock of high interest because of its diversity, the question of its origin and the evolutionary
processes that might have resulted in its elevated amount of taxa. While earlier debates centred on these paludomids
to be a result of an intralacustrine adaptive radiation, there are strong indications for the existence of several lineages
before the lake formation. To evaluate hypotheses on the evolution and radiation the detection of actual adaptations
is however crucial. Since the Tanganyikan gastropods show distinct radular tooth morphologies hypotheses about
potential trophic specializations are at hand.

Results: Here, based on a phylogenetic tree of the paludomid species from Lake Tanganyika and adjacent river
systems, the mechanical properties of their teeth were evaluated by nanoindentation, a method measuring the hard-
ness and elasticity of a structure, and related with the gastropods’ specific feeding substrate (soft, solid, mixed). Results
identify mechanical adaptations in the tooth cusps to the substrate and, with reference to the tooth morphology,
assign distinct functions (scratching or gathering) to tooth types. Analysing pure tooth morphology does not consist-
ently reflect ecological specializations, but the mechanical properties allow the determination of eco-morphotypes.

Conclusion: In almost every lineage we discovered adaptations to different substrates, leading to the hypothesis
that one main engine of the flock’s evolution is trophic specialization, establishing distinct ecological niches and
allowing the coexistence of taxa.

Keywords: Functional morphology, Nanoindentation, Mechanical properties, Gastropoda, Trophic specialisation,
Adaptive radiation

Background

Hypotheses on how biodiversity relates with the tempo-
ral and spatial “filling” of available habitats and annida-
tion itself, i.e. the actual formation of ecological niches
as a combined process of internal and external factors, is
paramount for understanding how species evolve under
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geographical and ecological conditions [1-3]. Addressing
this topic has seen various approaches based on verte-
brates, such as the studies on Darwin finches [4-9], the
cichlid fishes in the East African lakes [10-13] and Nic-
aragua [14-16] or Anolis lizards [17-19]. These species
flocks [cf. 20] are usually regarded as examples of adap-
tive radiations, the evolution of ecological and pheno-
typic diversity within a rapidly multiplying lineage, thus
linking speciation and ecology [21-26].

However, even though the majority of all known ani-
mals are invertebrates [27, 28], fewer model systems were
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on focus (with exceptions, e.g. [29, 30] on crickets). There
are however spectacular examples of invertebrate species
flocks exhibiting a great diversity, especially among mol-
luscs [see also 31, 32], the lacustrine and riverine fresh-
water gastropods on Sulawesi [33-38], Madagascar [39],
in the Thai rivers [40, 41], or “ancient” Lake Tanganyika
[42—-44]. The latter is well known for its unique assem-
blage of endemic species and has been a natural labora-
tory for research on the drivers of evolution for decades.
It harbours paludomid gastropods (Fig. 1) which trig-
gered many expeditions and subsequently malacological
descriptions [e.g. 45-60] and a long-lasting controversy
about the origin and evolution of the lake and its fauna.
Due to their marine-like appearance (termed “thalassoid”
by [45] and “halolimnic” by [61]) many earlier authors
addressed the possibility of a marine origin of the Lake
Tanganyika fauna and discussed the causes of the thalas-
soid appearance of its endemic molluscs. However, this
eventually led to the refutation of Moore’s controversial
hypothesis [61-63] of the lake being once directly con-
nected to the ocean [see e.g. in 64—68].

For a long time the idea that this largest and deepest
of the African lakes has supplied its gastropod diversity
with a stable inland environment and offered unique
opportunities for within-lake diversification (“ancient
endemic radiation” see [65, 69]) resulting in a truly “adap-
tive” radiation [cf. 70, 71] was common [e.g. 72-86].
However, strong evidence for an ancient origin of dispar-
ity and diversity in this flock has been presented, indicat-
ing the existence of major gastropod lineages before the
formation of the lake itself or its proto-lakes. The oldest
formation estimates are 9-12 Mya [87-89], while more
recent studies date the pre-rift formation to 4—11 Mya
and the earliest onset of a true rifting activity to 5.5 Mya
[90-93]. With a molecular clock approach in support
[42], this alternative hypothesis of the former existence of
several originally riverine paludomid lineages later inhab-
iting the lake and bringing possible adaptations to former
river environments with them was suggested by [43, 44].

To allocate hypotheses about paludomid evolution and
radiations—especially in the context of adaptive radia-
tions—the identification of actual adaptation is crucial.
Morphological structures associated with feeding, such
as e.g. bills or skulls in birds, vomer bones in cichlid
fishes or teeth in mammals, can exhibit adaptations and
indicate trophic specialization. They serve as an interface
between the organism and its ingesta (food, minerals)
and, as they provided insights into functional adaptations
and hence evolution, are of high research interest in vari-
ous groups [e.g. 94—97 on Darwin’s finches, 98 on ovirap-
torosaurian dinosaurs, 99 on cichlid fish].

The gastropods radula, one important synapomorphy
of the Mollusca, acts as such an interface, mechanically
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processing ingesta and directly linking the organism with
its food. Various muscles control the motion of this feed-
ing organ, pulling the chitinous radular membrane with
rows of small embedded radular teeth [100] across an
odontophoral cartilage (Fig. 2a). As teeth are in direct
contact with the ingesta, their morphology can often be
directly linked with the animal’s ecology and can reflect
various transitions from zoovorous to herbivorous traits
[101-106]. Form together with the tooth’s position and
chemical composition are widely considered adaptive to
food and are hence closely associated with feeding strat-
egies, competitor avoidance and thus trophic specializa-
tion [107-118].

Strong indications for trophic specialization in the con-
text of gastropod adaptive radiations have been described
for the radular tooth morphologies of lacustrine T¥ylo-
melania from Sulawesi [33, 35, 38], the riverine gastro-
pods from Kaek River [40], and marine Dendronotus
[119]. For the Lake Tanganyikan paludomids hypotheses
on the potential influence of trophic specialization on the
evolution of this flock are consequential, since these spe-
cies show an extraordinarily high interspecific diversity in
tooth morphologies [e.g. 44, 120]. These shapes can often
be related with the gastropods’ specific feeding substrates
(soft, mixed or solid) since teeth as highly functionate
interfaces do not only interact with the food but also with
the substrate the food is attached to [121, 122]. In addi-
tion, recent studies on the paludomid tooth anchorages
in the radular membrane, which are also diverse between
taxa, relate this connecting area with the gastropod’s spe-
cific feeding substrate [123].

In addition to morphology, the structural composi-
tion also influences functionality. For reconstructing the
evolutionary history of the African Paludomidae and to
develop hypotheses on the role of trophic specialisation
in their evolution, we here identified the hardness and
elasticity of taenioglossan radular teeth from 24 species
belonging to this flock utilising nanoindentation, a tech-
nique previously employed to identify local mechanical
properties of various biological materials [e.g. 124—130].
Results, with reference to morphology, allow the assign-
ment of distinct functions to certain tooth types. The
identification of mechanical adaptations in their cusps to
the preferred feeding substrate allowed the establishment
of eco-morphotypes. Our results strongly indicate that
one main engine of the flock’s evolution is trophic spe-
cialization, allowing the coexistence of species.

Results

Tooth’s morphologies (Figs. 3, 4, 5, 6, 7 and 8) can be cor-
related with the substrate-preference. Grazing on stones
usually correlates with certain morphologies of the cen-
tral tooth, either involving a spatulate, prominent central
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Fig. 1 Shells of examined species. Black scale bars: from Lake Tanganyika. Blue scale bar: from adjacent river systems. Forms next to the

letters a—x indicate preferred feeding substrate (circle =mud, hexagon =sand, square = plants, triangle =rock). a Bridouxia ponsonbyi ZMB
220.137-1, b B. grandidieriana BMNH 1889.6.23.57-61, ¢ B. rotundata ZMB 220.063-3, d B. praeclara DBL 19-4, e Spekia zonata ZMB 220.007-2,
Leloupiella minima ZMB 220.008-3, g Reymondia horei ZMB 220.007-1, h Cleopatra johnstoni ZMB 220.102, i Stanleya neritinoides ZMB 102.624-1,

j Tanganycia rufofilosa ZMB 102.621-1, k Martelia tanganyicensis ZMB 220.134-1, 1 Anceya giraudi ZMB 220.000-1, m Syrnolopsis lacustris ZMB
220.046-1, n Chytra kirki SMF 290543-1, o Limnotrochus thomsoni SMF 290542-1, p Tiphobia horei SMF 290550-1, q Paramelania iridescens SMF
290,538, r P damoni SMF 290531-2, s P, crassigranulata SMF 290528-1, t Mysorelloides multisulcata DBL without number, u Lavigeria spinulosa ZMB
220114, v L. grandis SMF 292827-1, w L. nassa ZMB 220.172-1, x L. livingstoniana ZMB 220116; Scale bars: a-d, f, k, |, m=2.5 mm; e=5 mm; g,i,j, n,
o,v,w=10mm; h=5mm; p-s=20 mm, t=0.75 mm; u,x=6 mm
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teeth, WZworking zone

Fig. 2 a Schematic drawing of the radula when feeding, b Taenioglossan radula of Spekia zonata (ZMH 150008/999-2), black line =area of
nanoindentation for central, lateral, and marginal teeth, ¢ Radula (ZMB220.143-2) embedded in epoxy resin and polished for nanoindentation
(longitudinal section along the radula) with (d—f) magnification of some tested areas (e with nanoindentation mark; f crosses indicate points of
indentation), g Representative results as nanoindentation measurement curves for basis, stylus, and cusps of central teeth (Young's modulus, GPa,
versus displacement into tooth material). The values for the cusps within the indentation depth of 480-520 nm were used for further calculation.
Scale bars: b=100 um; €= 250 um; d, e =30 pm; f=60 pm. CT central tooth, FPfood particle, FZformation zone, IMTinner marginal tooth,
IRTimmature radular teeth, [Tlateral tooth, MRT mature radular teeth, O odontophore, OMTouter marginal tooth, RMradular muscles, RTradular

denticle (Nassopsini and Reymondia; Figs. 4, 8), or few or
no denticles (Bridouxia ponsonbyi, B. rotundata, B. prae-
clara, Spekia, and Leloupiella; Figs. 3, 4), and with later-
als bearing a prominent denticle (Nassopsini, Reymondia,
Bridouxia; Figs. 3, 4, 8). Few solid-substrate feeders
(Stanleya and Tanganyicia; Fig. 5) display central and lat-
eral teeth with long denticles of the same size. Here, teeth
are rather similar in their morphology to teeth of gastro-
pods foraging on sand, possessing central, lateral, and
marginal teeth with small or finger-like denticles at each
cusp (Figs. 4, 5, 6, 7 and 8). All mixed substrate feeders,
Paramelania damoni, Limnotrochus thomsoni, and Bri-
douxia grandidieriana, display small, finger-like denticles
as well (Figs. 3, 6, 7).

Nanoindentation experiments provided the Young’s
modulus (E) as a measure of the stiffness of a solid mate-
rial, describing the relationship between mechanical
stress and indentation depth, and the hardness (H), the
measure of the resistance to local plastic deformation.
Statistical analysis of these parameters revealed normal
distribution for both. Significant differences between
all tooth cusps (Fig. 9) of the separate substrate feeder
groups (solid, soft, and mixed) regarding both E and H
were detected (p <0.0001, F-ratio: 2, df: 59,578.92 for E,
df: 20,833.04 for H). Paludomids feeding on sand have
comparatively soft and flexible tooth cusps (mean = std.
deviation; E=4.574+0.45 GPa, H=0.18+0.07 GPa),
species foraging on stone have the stiffest and hardest
tooth cusps (E=6.08+1.52 GPa, H=0.26+0.11 GPa),
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Fig. 3 Radular teeth of: a, b Bridouxia ponsonbyi ZMB 220.137-1, a overview, b marginals; ¢, d B. grandidieriana ZMB 220.139-4, c overview, d
centrals and laterals; e, f B. rotundata ZMB 220063-1, e overview, f marginals; g, h B. praeclara ZMB 220.063-2, g overview, h marginals. Scale
bars:a=40 um; b, d, f, h=10 um; ¢, e, g =20 um. Forms indicate preferred feeding substrate (circle=mud, hexagon =sand, square = plants,

triangle =rock)
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Fig. 4 Radular teeth of: a, b Spekia zonata ZMH 150008/999-2, a overview, b marginals; ¢, d Leloupiella minima ZMB 220.135, ¢ overview, d
marginals; e, f Reymondia horei ZMB 220.147-1, e centrals and laterals, f marginals; g, h Cleopatra johnstoni ZMB 220.102-1, g overview, h marginals.
Scale bars:a=100 um; b=50 um; ¢, d=10 um; e, f =30 um; g =40 um; h =20 um. Forms indicate preferred feeding substrate (circle=mud,
hexagon =sand, square = plants, triangle =rock)
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Fig. 5 Radular teeth of: a, b Stanleya neritinoides MRAC without number, a centrals and laterals, b marginals; ¢, d Tanganycia rufofilosa, ¢ centrals
and laterals, d marginals; e, f Martelia tanganyicensis ZMB 220.133-1, e overview, f laterals and marginals; g, h. Anceya giraudi ZMB 220.132,
g overview, h centrals and laterals. Scale bars: a—c, e, f, h=10 um; d, g =30 um. Forms indicate preferred feeding substrate (circle=mud,
hexagon =sand, square = plants, triangle =rock)
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Fig. 6 Radular teeth of: a, b Syrnolopsis lacustris ZMB 220.131, a overview, b marginals; ¢, d Chytra kirki IRSNB no. 63, ¢ overview, d centrals and
laterals; e, f Limnotrochus thomsoni ZMB 107.102, e overview, f centrals and laterals; g, h Paramelania iridescens ZMB 220.053, g overview, h centrals.

Scale bars:a=30 um; b, h=10 um; c=100 um; d, f=20 um; e =50 um; g =120 um. Forms indicate preferred feeding substrate (circle =mud,

hexagon =sand, square = plants, triangle =rock)
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Fig. 7 Radular teeth of: a, b Paramelania damoni ZMH without number, a centrals and laterals, b marginals; ¢, d P, crassigranulata ZMB 220.037-1,
coverview, d centrals and laterals; e, f Mysorelloides multisulcata IRSNB no. 126, e centrals and laterals, f marginals; g, h Lavigeria spinulosa ZMB
220.051, g overview, h marginals. Scale bars: a, f=10 um; b, d, h=30 um; ¢, g =100 um; e =20 um. Forms indicate preferred feeding substrate
(circle =mud, hexagon =sand, square = plants, triangle =rock)
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Fig. 8 Radular teeth of: a, b Lavigeria grandis ZMH 154657/999, a overview, b laterals and marginals; ¢, d L. nassa ZMB 220.074, c overview, d
laterals and marginals; e, f L. livingstoniana ZMB 220.117-1, e overview, f marginals and laterals. Scale bars:a=100 pm; b=>50 um; ¢, d, f=30 um;
e =100 um. Forms indicate preferred feeding substrate (circle =mud, hexagon =sand, square = plants, triangle =rock)

and mixed substrate feeders are intermediate
(E=4.94+0.99 GPa, H=0.204+0.09 GPa).

Significant differences were found between all
central, lateral, and marginal tooth cusps (Fig. 9)
(p<0.0001, F-ratio: 2, df: 70,177.01 for E, df: 24,978.35
for H). Marginal teeth are comparable soft and flex-
ible (E=4.68+0.63 GPa, H=0.19+0.08 GPa),
the central teeth are comparatively hard and stiff
(E=6.48+1.84 GPa, H=0.28+0.13 GPa), and the
lateral ones are intermediate (E=5.544+0.92 GPa,
H=0.2440.09 GPa).

Comparing the mechanical properties within each
species we consistently detect significant differences
(p<0.0001, F-ratio: 2) between central, lateral, and

marginal tooth cusps (see Table 1 for all E and H values,
df, and connecting letters from Tukey—Kramer test). All
species feeding on solid substrate clearly display gradi-
ents in their radular properties, the stiffest and hard-
est parts are always the central tooth cusps, followed
by the lateral ones; the softest and most flexible parts
are the marginal cusps (see additionally Figs. 10, 11). In
the mixed substrate feeders there’s a similar situation,
central cusps are hard and stiff, lateral ones interme-
diate, and marginals soft and flexible; but central and
lateral tooth cusps are not as distinct as in the solid
substrate feeders. Species foraging on sand have quite
similar mechanical properties in their tooth cusps and
are more homogenous (Table 1, Figs. 10, 11).
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Fig. 9 Results of nanoindentation, hardness (GPa) and Young's
modulus (GPa). (left) Comparing all tooth cusps of species feeding
on mixed, soft, and solid substrate; (right) comparing all central to all
lateral and all marginal tooth cups. Letters are connecting letters from
Tukey-Kramer test. N = quantity of tested tooth cusps

When comparing E and H of each tooth type between
all species significant differences were detected
(p<0.0001, F-ratio: 71, df: 20,217.82 for E, df: 2734.555
for H; see Figs. 10, 11; see Table 1, columns B for con-
necting letters from Tukey—Kramer test).

Two-way ANOVA (see Additional file 1) revealed that
feeding substrate and tooth type both have same signifi-
cant effect on E and H values (p<0.0001 for each, see
Additional file 1: Tables S2 and S3 for df, F-ratio, inter-
action terms). Least square mean plots (Additional file 1:
Figure S1) reveal that E and H values of the central teeth
are more influenced by the feeding substrate that the lat-
eral teeth, and finally marginal teeth.

Reconstruction of the ancestral feeding substrate
(Fig. 11) suggests a solid substrate for the Spekiini and
Reymondia accompanied by central teeth of 7-8 GPa
Young’s modulus and lateral teeth of 6 GPa, which con-
vergently increased stiffness to 8 GPa in Leloupiella
and Reymondia (Fig. 12). Within the Spekiini Bridouxia
grandidieriana adapted to feeding on mixed substrate
by reducing the Young’s modulus in the central teeth
to 6 GPa (Fig. 12). A soft ancestral feeding substrate
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was computed for the Hauttecoeuriini (Fig. 11), here
accompanied by a subsequent shift to solid substrate in
the group containing Stanleya and Tanganyicia with an
increasing Young’s modulus in both central and lateral
teeth, and for the Tiphobiini, followed by a parallel adap-
tation to mixed feeding substrate in Paramelania damoni
and Limnotrochus thomsoni in connection with an
increase of the Young’s modulus from 5 to 6 GPa in the
central teeth (Fig. 12). For the Nassopsini a solid feeding
substrate was reconstructed (Fig. 11), here the Young’s
modulus of all tooth types remains similar. For the mar-
ginal teeth no changes in the Young’s modulus were
detected since all analysed species have similar mechani-
cal properties in this tooth type (Fig. 12).

Discussion

The gastropods in Lake Tanganyika have limited options
regarding their habitat, as they occur below the surf zone
down to 200 m, with the deeper parts of the lake con-
taining little oxygen and are toxic [44]. Sharing habitats
might result in considerable inter- and intraspecific com-
petition, but we found strong evidences for the avoid-
ance or the reduction of resource competition by clear
substrate-specificity in most paludomid groups [see also
44]. In Group 1, Spekiini Ancey, 1906 [58], Reymondia
Bourguignat, 1885 [45] and riverine Cleopatrini Pilsbry
and Bequaert, 1927 [60], Group 2, Hauttecoeuriini Bour-
guignat, 1885 [45], Syrnolopsini, Bourguignat, 1890 [47],
and Group 3, Tiphobiini Bourguignat, 1886 [46], (groups
in accordance with [42, 44]) some species feed on bio-
film that covers stones (solid substrate), some select algae
from sandy and muddy surfaces (soft substrate) and few
(mixed) feed either on both (Paramelania damoni, Lim-
notrochus thomsoni) or on algae attached to plants and
covering sand (Bridouxia grandidieriana). Group 4,
containing Lavigeria and riverine Potadomoides, consist
probably of species that exclusively feed on solid sub-
strate. Unfortunately, reliable data on preferred substrate
is not available for Potadomoides which has not been
found again in the last decades. Its localities, the Mala-
garasi River and the Congo River drainage, are character-
ized by swampy areas as well as rapids with rocks. But,
since its radular tooth characters are similar to Lavigeria
species [43], we rather conclude that Potadomoides also
feeds on algae from solid substrates.

The mechanical properties (E, H) of the paludomid
radular teeth correlate with the preferred substrate and
reflect different eco-morphotypes (Fig. 11). All species
foraging on stones, viz. Bridouxia ponsonbyi, B. rotun-
data, B. praeclara, Leloupiella minima, Spekia zonata,
Reymondia horei, Stanleya neritinoides, Tanganyicia
rufofilosa, Lavigeria spinulosa, L. livingstoniana, L. nassa,
and L. grandis, show gradual and distinct differences in
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Fig. 10 Results of nanoindentation. Hardness (GPa) and Young's modulus (GPa) for all cusps (central, lateral, marginal, with N = quantity of
measured cusps) for each species (N = quantity of measured specimens) correlated with the preferred feeding substrate (circle =mud,
hexagon =sand, square = plants, triangle =rock). Connecting letters from Tukey—Kramer test can be found in Table 1

their stiffness and hardness between the tooth types,
which can be explained by different functional loads
(Figs. 10, 11). The material properties certainly influence
the mechanics of structures, the Young’s modulus E is,
for example, directly linked with the ability of a structure
to transfer forces [e.g. 131, 132, 133, 134] and correlates
with the structures mechanical behaviour while punctur-
ing and in direct turn the resistance of structures to fail-
ure [e.g. 135, 136]. We anticipate here that the stiff central
and lateral teeth are rather used for scratching across the
solid feeding substrate removing food items attached to
it [see also 121, 129]; this function of the CT was also
documented for Dendronotus [see 119], transferring
higher force from the radular muscles via the tooth cusps

onto the ingesta. The softer and more flexible marginal
teeth have a smaller ability to transfer forces necessary
to loosen a tightly attached biofilm. But their elastic-
ity allows the reduction of the stress concentration, for
example in case of hitting the substrate asperities. Their
mechanical properties enable them to catapult back to
place, possibly without fractures or ruptures, after hitting
an obstacle. We would hence deduce that the marginal
teeth are rather functionally different from the central
and lateral teeth, possibly harvesting, like a broom, food
items or particles that had been loosened from the sub-
strate by grinding action of the central and lateral teeth
[see also 108, 121, 129, 137]. This type of radula is consid-
ered to be a multifunctional tool.
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For all species foraging on sand or mud, viz. Cleopatra
johnstoni, Martelia tanganyicensis, Anceya giraudi,
Syrnolopsis lacustris, Chytra kirki, Tiphobia horei, Para-
melania iridescens, P. crassigranulata, and Mysorelloides
multisulcata, we found similar mechanical properties
in all tooth types as well as comparably soft and flexible
tooth cusps (Figs. 10, 11). Their hardness and elastic-
ity values are comparable to the mechanical properties
of the solid substrate feeders’ marginal teeth. We would
hence propose that these species rather possess a mono-
functional radula with each tooth serving as broom col-
lecting algae from the surface. The mechanical properties
of the mixed substrate feeders, viz. Bridouxia grandidie-
riana, Limnotrochus thomsoni, and Paramelania damoni,
are intermediate, as they have slightly softer and more
flexible central and lateral tooth cusps compared to the
gastropods loosening algae from stones but stiffer and
harder ones than the species selecting biofilm from sand
(Figs. 10, 11). Even though the gradients between the
tooth cusps are not as distinct as in the gastropods for-
aging on stone, the existence of the gradual differences
leads to the conclusion that, despite of softer and more
flexible tooth cusps, the mixed substrate feeders also pos-
sess a multifunctional radula. Central and lateral teeth are
rather used for loosening food items, whereas the softer
marginal tooth cusps, showing similar properties to the
marginal teeth of solid feeders and to each tooth type of
species selecting algae from sand, serve as brooms.

Past studies on Sacoglossa revealed that tooth mor-
phologies between closer related taxa differ because of
specialisation to distinct ingesta [113—-116] whereas for
Dendronotus (Nudibranchia) it was reported that mor-
phology relates to both phylogeny and ecology [119]. For
paludomids we found that tooth’s morphologies correlate
with the preferred feeding substrate. In most solid sub-
strate feeders central teeth displaying either a prominent
denticle (Nassopsini and Reymondia; Figs. 4, 8), or few
or no denticles (Bridouxia ponsonbyi, B. rotundata, B.
praeclara, Spekia, and Leloupiella; Figs. 3, 4), as well as
laterals bearing a prominent denticle (Nassopsini, Rey-
mondia, Bridouxia; Figs. 3, 4, 8), allow a large interaction
surface between tooth cusps and ingesta directly trans-
ferring force. Additionally, these teeth are rather short
and broad, probably leading to the reduction of deforma-
tion when tensile and compressive stresses appear in the
structure during this action. However, some solid feeders
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(Stanleya and Tanganyicia; Fig. 5) as well as the mixed
substrate feeders (Paramelania damoni, Limnotrochus
thomsoni, Bridouxia grandidieriana; Figs. 3, 6, 7) dis-
play an alternative morphology, rather similar to teeth
of gastropods foraging on sand. Soft substrate feeders
possessing central, lateral, and marginal teeth with small
or finger-like denticles at each cusp (Figs. 4, 5, 6 and 7),
which probably enables them to rake between the grains
gathering the food particles. We hypothesize that radu-
lar tooth performance in Stanleya, Tanganyicia, and all
mixed substrate feeders is ensured by mechanical prop-
erties rather than morphology. Thus, pure morphology
does not consistently reflect adaptations, but the mor-
phology furnished by mechanical properties allows the
establishment of tooth eco-morphotypes.

Adaptations to distinct substrates, solid as well as soft
and mixed, are present in most taxonomic paludomid
lineages (Fig. 11). This in turn leads to the hypothesis that
one main engine of their evolution is trophic specializa-
tion to feeding substrates, establishing distinct ecological
niches and allowing the coexistence of taxa [see also 119
for diet-driven radiation in Dendronotus]. Only Group
4 (Nassopsini Kesteven, 1903 [138], contains Lavigeria)
is exceptional because it contains exclusively solid sub-
strate feeders (Fig. 11). Lavigeria is a paludomid group
containing a plethora of named species [see e.g. 79, 139]
that had been treated as result of an exclusively intrala-
custrine adaptive radiation. Unfortunately, a systematic
revision identifying evolutionary entities is still lacking,
hindering hypotheses on their evolution. However, when
comparing Lavigeria adult shells their distinct sizes are
apparent which are interpreted as result of annidation
through different body sizes [unpublished data]. Also,
Lavigeria radular teeth are of distinct tooth sizes. Lavi-
geria grandis displaying the largest teeth, followed by L.
nassa, L. spinulosa, and finally L. livingstoniana possess-
ing the smallest teeth (Figs. 7, 8). This could be an indica-
tion that Lavigeria species avoid competition by trophic
specialization, albeit not to different feeding substrates,
but rather to different algae or biofilm types growing on
solid substrates. However, in order to determine whether
species have distinct food preferences, it would be neces-
sary to collect and gather feeding substrates and biofilms
directly in situ. The only available collectors’ comments
on Lake Tanganyikan biofilms, however, suggest that
paludomids feed on soft algae, overcasting either rocks

(See figure on next page.)

Fig. 11 Results of nanoindentation. Median of Young's modulus (GPa) of the central, lateral, and marginal tooth cusps for each species correlated
with the preferred feeding substrate (circle =mud, hexagon =sand, square = plants, triangle =rock) against the background of a phylogenetic tree
(Bayesian). Taxa without molecular information were allocated to groups based on morphological analyses from relevant literature. Reconstructed
ancestral feeding substrate of the lower taxonomic levels is plotted next to the nodes
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Fig. 12 Changes of Young's modulus over the phylogeny (excl. outgroups) visualized using continuous character mapping (from 5 GPa [blue] to

10 GPa [red]) for a central tooth, b lateral tooth, € marginal tooth for the lower taxonomic levels

or plant structures or covering sandy or muddy sub-
strates. This could explain the relatively soft and elastic
tooth cusp of these gastropods in comparison with pub-
lished hardness and elasticity measurements on teeth of
hard calcified algae feeders, such as e.g. Polyplacophora
and Patellogastropoda (with E ranging from 16 GPa over
90-125 GPa up to 52—-140 GPa [140-144] and H ranging
from 9-12 GPa [140, 142, 144]).

Molecular clock approaches [42, 122] support an
ancient origin of diversity and disparity, long before the
formation of Lake Tanganyika or a proto-lake. After the
rifting of the African continent and the formation of the
lake several independent colonialization events of already
distinct riverine paludomid lineages succeeded from
the surrounding river systems. We here reconstructed
ancestral feeding substrates and ancestral E values for
the distinct tooth types [for ancestral state reconstruc-
tion and diet preference evolution in Nudibranchia see
also 145]. However, this reconstruction is only reliable
for the lower taxonomic groups (at the level of Hautte-
coeuriini, Tiphobiini, Nassopsini, or the Group contain-
ing the Spekiini and Reymondia), but not on the level of
the Hauttecoeuriinae. Due to the fact that we have tested
only 24 species of the flock by nanoindentation, which

is a highly laborious experimental set-up, we lack reli-
able information for many species (e.g. Bathanalia, many
Lavigeria species). However, by including more paludo-
mid taxa in our molecular tree and adding feeding sub-
strate information we found evidence that the ancestral
riverine feeding substrate of the Hauttecoeuriinae is of
soft nature [122] which could have been accompanied by
long and slender teeth with numerous denticles of equal
size (monomorphic radula) and indicative of an preadap-
tation sensu strictu [146] to the riverine substrate. This
was possibly succeeded by the convergent shift to solid
substrate in two paludomid lineages (ancestor of (i) Spe-
kiini and Reymondia as well as (ii) Nassopsini) evolving
central and lateral tooth morphologies adapted to this
substrate furnished by the evolution of harder and stiffer
central and lateral tooth cusps. Since we unfortunately
lack biomaterial property information as well as reliable
feeding substrate information for Potadomoides, the riv-
erine sister group of the Nassopsini [43], we do not know
if (a) the ancestor of the Nassopsini or (b) the ancestor of
the group containing the Nassopsini and Potadomoides
has adapted to solid substrate. If Potadomoides species
fed also on solid substrate it would be possible that a
shift from soft to solid feeding substrate has taken place
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in riverine rapids. Additionally, possibly after the origin
and the colonialization of Lake Tanganyika, the ancestor
of Stanleya and Tanganyicia has adapted to solid sub-
strate. Nevertheless, Stanleya, and Tanganyicia display
(Fig. 5), as described above, rather monomorphic radu-
lar teeth similar to the soft substrate feeders. These taxa
probably still carry their ancestral riverine morphologi-
cal characters. Thus, their adaptation to solid substrate
involved only the change in material properties hardness
and elasticity.

Bridouxia is probably a case of an exclusively intrala-
custrine adaptive radiation, strongly indicated by molec-
ular clock approaches [122]. Here we were able to detect
secondary adaptation to mixed feeding substrate for B.
grandidieriana. This taxon became probably adapted
through changes in morphology as well as material prop-
erties, evolving softer and more flexible central and lat-
eral teeth with small denticles serving as a broom (Fig. 3).
The mixed substrate feeders Paramelania damoni and
Limnotrochus thomsoni retained their ancestral tooth
morphologies (Figs. 6, 7), but temporary solid substrate
feeding is probably enabled by the evolution of stiffer and
harder central and lateral tooth cusps. All other lacus-
trine species (Martelia, Anceya, Syrnolopsis, Chytra,
Tiphobia, P. iridescens, P. crassigranulata, Mysorelloides)
are adapted to foraging on soft substrates carrying their
ancestral riverine tooth morphologies [122] as well as dis-
playing soft and flexible teeth (Figs. 10, 11).

In summary, tooth shapes and tooth mechanical prop-
erties differ more than expected in sister taxa (e.g. Bri-
douxia, Lavigeria [here through tooth size], or between
all sister groups as e.g. Tiphobiini and Hauttecoeuriini).
Additionally, parallel evolution of tooth shapes and
mechanical properties can be detected (Reymondia and
Nassopsini). This suggests that radular teeth in paludo-
mids are under strong selection and that diverging from
close relatives has often been favoured resulting in the
micro partitioning of the environment; this is similar to
ingesta-processing structures (beaks, skull bones) found
in other radiations with trophic specialisation being one
main driving force (e.g. Darwin finches, cichlid fish).

Conclusion

Here we present the first comparative study on the
mechanical properties, hardness and elasticity, of taenio-
glossan radular teeth from African paludomid gastropods
from Lake Tanganyika and surrounding river systems,
based on a large sample size and in a phylogenetic and
ecological context. The tested paludomid teeth correlate
with their preferred feeding substrate and reflect differ-
ent tooth eco-morphotypes accompanying morphology.
Our identification of adaptations allows to put forward a
new perspective on the evolution of this species flock. We
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postulate that trophic specialisation resulting in niche
partitioning has played a major role in the evolution and
radiation of this flock.

Methods

As basis we used paludomid gastropods (Fig. 1) collected
in earlier studies [see 44], supplemented by additional
material of taxa collected by Heinz Biischer, Basel. Speci-
mens stored in ethanol are inventoried at the Museum fiir
Naturkunde Berlin (ZMB), the Musée royal de 'Afrique
centrale, Tervuren, Belgium (MRAC), the Royal Belgian
Institute of Natural Sciences, Brussels, Belgium (IRSNB),
and the Zoological Museum (ZMH) of the Center of
Natural History (CeNak) in Hamburg (for details on sam-
pling locality see Additional file 1: Table S1). Specimens
were identified based on shell morphology in comparison
with type material following essentially [44] and litera-
ture referred to therein.

For nanoindentation [detailed descripting of method
in 129, 130] overall 124 radulae belonging to 24 spe-
cies (Additional file 1: Table S1), accompanied by data
on 7 specimens from Spekia zonata taken from [129],
were manually extracted from adult specimens, freed
from surrounding tissues, dried and, laying on its
side, tapped with double-sided adhesive tape to a glass
object slide. The tape ensured that the radulae were
accurately arranged, with marginal teeth at the bottom,
followed by lateral, central, lateral, and on the top mar-
ginal teeth. This procedure ensured that after polishing
only one tooth type was superficial at the plain surface.
Each radula was surrounded by a small metallic ring
resulting an almost parallel sample after polishing nec-
essary for an almost error-free nanoindentation. Rings
were filled with epoxy resin (RECKLI®EPOXIWST,
Young’s modulus of the epoxy is 1 GPa), known to not
infiltrate the teeth, polymerizing at room temperature.
Object slide and tape were removed, radulae were pol-
ished with gradual diamond pastes (Buehler MetaDi
Ultra Paste 6 ym 3 pm, 1 um) and smoothened with a
polishing machine (Buehler MataServ 250 with Stru-
ers OP-U, 0.04 um suspension with 250 rpm) for a plain
surface displaying the longitudinal section of teeth
(Fig. 2c—f). After performing nanoindentation, employ-
ing a Nanoindenter SA2 (MTS Nano Instrument,
Oak Ridge, TN, USA; CSM) equipped with Berkovich
indenter tip, on the superficial tooth row (marginals)
samples were again smoothened until the next tooth
row (laterals) was on display (Fig. 2b). Steps were
repeated until all teeth were measured. The indents
for this study were made at the tooth cusps with each
indentation curve controlled manually for correct sur-
face finding. In each specimen, about 25 tooth rows of
the outer wear zone were tested, resulting in more than
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9027 measured tooth cusps for all analysed specimens.
We focussed on this specific radular locality to exclude
not matured teeth from this study. For detailed quan-
tity [N] of specimens per species, evaluable indentation
data on hardness/elasticity per species and per tooth
type see Table 1 and Fig. 10 (N of analysed specimens
differs between species due to availability of radular
material; not every nanoindentation curve and result-
ing data was evaluated due to artefacts, e.g. surface
finding problems, local surface roughness, the angle
between the embedded tooth and the epoxy surface;
thus N of analysed tooth cusps differs between speci-
mens). Reliable nanoindentation curves and resultant
data tables on Young’s modulus (Elasticity modulus; E)
and hardness (H) of materials were exported; values of
E and H were either determined at penetration depths
of 480-520 nm (for larger teeth, in Spekia, Reymondia,
Lavigeria, Chytra) or at penetration depth 450—-500 nm
(for smaller teeth, in Bridouxia, Leloupiella, Cleopatra,
Stanleya, Tanganyicia, Martelia, Anceya, Syrnolopsis,
Limnotrochus, Paramelania, Mysorelloides) with about
30 values per indentation. These indentation depths
were targeted, because at low depths E and H strongly
fluctuated due to surface roughness both (Fig. 2g), and
at higher depths the side effects of the epoxy could not
be excluded. All statistical analyses were performed
with JMP® Pro, Version 14 (SAS Institute Inc., Cary,
NC, 1989-2007), calculating mean values and standard
deviations summarizing the data of all measured cusps
per tooth type of all analysed specimens. This was
done for each species. Shapiro—Wilk-W-test for test-
ing of normality and one-way ANOVA followed by a
Tukey—Kramer test for detecting homogeneous groups
with connecting letters report were carried out after-
wards. Mechanical properties were compared between
the preferred feeding substrates (i), all central, lat-
eral, and marginal tooth cusps (ii), within each species
(iii), between the species (iv). Additionally, a two-way
ANOVA for determining the influence of the feeding
substrate, the tooth type and the interaction of both
parameters was carried out.

For scanning electron microscopy (SEM) one radula
per species (Additional file 1: Table S1) was extracted,
digested with proteinase K according to the proto-
col of [147], cleaned for a few seconds in an ultrasonic
bath, mounted on an aluminium stub, coated with car-
bon and visualized either with a SEM Zeiss LEO 1525
(One Zeiss Drive, Thornwood, NY) or a Tabletop SEM
TM4000Plus (Hitachi, Tokyo, Japan) (see Figs. 3, 4, 5, 6,
7 and 8 for SEM images).

To establish a hypothesis on the evolutionary his-
tory of the African paludomids in the context of trophic
specialisation based on biomechanical properties, we
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used all available DNA sequences of tested species, here
sequences of the mitochondrial 16S rRNA (16S) and the
cytochrome c oxidase subunit I (COI) gene from previous
studies [42, 85] (see Additional file 1: Table S1); addition-
ally, Melanoides tuberculata and Paludomus siamen-
sis sequences were used as outgroup. Sequences were
aligned with MAFFT 7 [148] employing the Q-INS-I
algorithm, the 1IPAM/x=2 option for the scoring matrix
for nucleotide sequences and otherwise default settings.
Bayesian inference with MrBayes 3.2.6 [149] was used to
reconstruct phylogenetic relationship. PartitionFinder
2.1.1 [150] was used to select best-fitting models and a
suitable partitioning strategy for the Bayesian inference
based on the Bayesian information criterion. The DNA
sequences were initially divided into four partitions: the
first, second and third codon positions of COI and 16S.
An exhaustive search with PartitionFinder was con-
ducted allowing for separate estimation of branch lengths
for each partition. The models were limited to those
available in MrBayes. Metropolis coupled Markov chain
Monte Carlo (MC?) searches were run with four chains in
two separate runs for 50,000,000 generations with default
priors, trees sampled every 1000 generations and separate
estimation of parameters for individual partitions under
default heating using best-fit models as suggested by Par-
titionFinder (first plus second codon positions of COL:
GTR+I1+G; third codon positions of COI: HKY 4+ G;
16S: GTR+1+ @G). Diagnostic tools provided in MrBayes
were used to ensure that the MC® searches had reached
stationarity and convergence. The first 5,000,000 genera-
tions of each run were discarded as burn-in.

Changes of Young’s modulus over the phylogeny (excl.
outgroups) for the three different tooth types were visu-
alized using continuous character mapping. Ancestral
states [see also 145] for internal nodes were estimated
using a maximum likelihood approach along with inter-
polating the states along the branches of the tree fol-
lowing an idea from [151] as implemented in phytools
[152, 153]. To trace the adaptation to different feeding
substrates (soft, solid, mixed) in a maximum likelihood
setting, we used ape [154] assuming the one-parameter
equal rates model to specify the transition probabilities
between the states of the discrete character.

For some species, Bridouxia praeclara, B. rotundata,
Paramelania crassigranulata, Mysorelloides multisul-
cata, no molecular information could be obtained from
various previous approaches. These taxa were placed
tentatively in the resulting phylogeny as suggested by
[44, 155] who compared internal and external morpho-
logical characters and identified synapomorphies. This
resulted here in a systematization [see 156 for further
details of this term].
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The information on the preferred feeding substrate
is based on the relevant literature [44, 79, 120, 139]
supplemented by notes from the collectors of indi-
vidual samples in the field (Heinz Biischer, Matthias
Glaubrecht).
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