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Abstract

Background: Tumors are widely recognized to progress through clonal evolution by sequentially acquiring
selectively advantageous genetic alterations that significantly contribute to tumorigenesis and thus are termned
drivers. Some cancer drivers, such as TP53 point mutation or EGFR copy number gain, provide exceptional fitness
gains, which, in time, can be sufficient to trigger the onset of cancer with little or no contribution from additional
genetic alterations. These key alterations are called superdrivers.

Results: In this study, we employ a Wright-Fisher model to study the interplay between drivers and superdrivers in
tumor progression. We demonstrate that the resulting evolutionary dynamics follow global clonal expansions of
superdrivers with periodic clonal expansions of drivers. We find that the waiting time to the accumulation of a set
of superdrivers and drivers in the tumor cell population can be approximated by the sum of the individual waiting
times.

Conclusions: Our results suggest that superdriver dynamics dominate over driver dynamics in tumorigenesis.
Furthermore, our model allows studying the interplay between superdriver and driver mutations both empirically
and theoretically.
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Background
Tumorigenesis is widely recognized as an evolutionary
process resulting from the sequential accumulation of gen-
etic alterations. Many of these alterations occur in onco-
and tumor suppressor genes, as well as in genes regulating
the DNA repair or replication mechanisms [1–3].
Mathematical modeling of tumorigenesis has a rich

history and seeks to describe the evolutionary dynamics
of tumor growth and mutation accumulation [4, 5]. The
initial two-hit and multi-stage theories [6–9] suggested
early on that multiple mutations leading to cancer are
acquired sequentially over large periods of time. This
hypothesis then evolved into more elaborate models in

discrete and continuous time [10–13], supported by a
substantial body of empirical evidence [2, 14–16].
A large fraction of these models follow the theory of

clonal evolution, according to which some genetic alter-
ations (commonly referred to here as mutations) confer
the hosting cell with significant increases in selective fit-
ness [4]. These mutations are called driver mutations
and the genes they affect are called driver genes. The fit-
ness increase enables the cell to produce relatively more
offspring than cells without the driver mutation through
various biological mechanisms such as resistance to
apoptosis or accelerated proliferation. Other types of
mutations have been considered in the modeling litera-
ture, such as passenger and deleterious mutations, which
are selectively neutral and confer a fitness disadvantage,
respectively [17, 18].
Various stochastic models of clonal evolution have

been suggested to study tumorigenesis, especially using
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the related Moran and Wright-Fisher models [19–22]. In
particular, Beerenwinkel et al. and Bozic et al. [14, 21]
proposed Wright-Fisher [23, 24] models with driver mu-
tations, with the goal of estimating the waiting time to
cancer and understanding the role of drivers in tumori-
genesis. While the acquisition and accumulation of
driver mutations is recognized to lead to the onset and
progression of cancer, some critical driver genes, such as
EGFR, TP53, or KRAS, are known to dramatically accel-
erate cancer progression by, for instance, elevating cell
proliferation or avoiding apoptosis [2, 25, 26]. There
have been early indications that a few rare but highly ad-
vantageous mutations may particularly drive the pro-
gression of cancer [27]. Hence, explicit modeling of
these highly selective mutations, in addition to normal
driver mutations, would provide more accurate insights
into the study of tumorigenesis as a clonal evolution
process.
Here, we introduce the concept of superdrivers, an ag-

gressive type of driver mutations that is highly selectively
advantageous for a mutated cell through a strongly
elevated fitness gain. Examples of superdrivers include
TP53 point mutations or EGFR copy number gains
across multiple cancer types. We present a discrete-time
Wright-Fisher stochastic model to study the evolution-
ary dynamics of superdrivers in combination with com-
mon drivers by extensively simulating tumorigenesis
under a wide range of parameters. Moreover, we
propose an analytical approximation for the expected
waiting time to the first mutated cell with defined num-
bers of superdrivers and drivers. Our model aims at un-
derstanding the evolutionary dynamics of the interplay
between superdrivers and drivers in the progression to
cancer.

Methods
Tumor evolution model
We model tumorigenesis as a Wright-Fisher process
with mutation and selection, including two types of se-
lectively advantageous mutations: drivers and superdri-
vers. Drivers have selective advantage s ∊ [0,1], while
superdrivers have a c times higher selective advantage
r = c s, with superdriver fitness increase parameter c > 1.
Every driver and superdriver confers the same fitness in-
crease of 1 + s and 1 + r, respectively, to the cell. This as-
sumption of constant fitness increase captures fitness
differences between selectively advantages mutations
and it facilitates revealing the fundamental principles of
the interplay between both fitness classes. With the
addition of superdrivers, our model can be regarded as
an extension of the model in [21]. We model tumor
growth over T = 4500 discrete cell generations, which
roughly equals 12 years, assuming one cell division per
day. In every generation t, the population size N(t) of the

tumor is multiplied by α = exp. [log(N(T)/N (0)) / T] to
obtain N(t + 1), where we consider initial and final popu-
lation sizes of N (0) = 106 and N(T) = 109 cells, respect-
ively. In our simulations, each cell can acquire at most
n = 10 superdriver and m = 100 driver mutations. Ini-
tially, all cells are modeled without any mutated loci. As-
suming that fitness effects of mutations are
multiplicative, the relative fitness ωkl of a cell with k
superdriver and ℓ driver mutations in generation t is
given by

ωkℓ ¼ 1þ rð Þk 1þ sð Þℓ
Pn

i¼0

Pm
j¼0 1þ rð Þi 1þ sð Þ jxij

;

where Nij(t) is the absolute and xij = xij(t) =Nij(t)/N(t) is
the relative frequency of the clone with i superdriver
and j driver mutations, where we have suppressed the
dependency on t. Assuming independent effects of mu-
tations on fitness and no back mutations, the probability
of sampling a mutant with k superdrivers and ℓ drivers,
a (k, ℓ) cell for short, is given by

θkℓ ¼
Xk

i¼0

Xℓ

j¼0

n−i
k−i

� �
m− j
ℓ− j

� �

μk−iþℓ− j 1−μð Þn−iþm− jωkℓxij

where μ = 10− 8 is the mutation probability per gene. In
every generation, the cell population then is updated
according to a multinomial distribution with parameters
θ(t) = (θ(t)kℓ),

N00 t þ 1ð Þ;…;Nnm t þ 1ð Þ½ � � Mult αN tð Þ; θ tð Þ
� �

;

where Mult is the multinomial distribution.

Simulation of tumorigenesis
We simulated tumorigenesis using the model described
above by varying the driver selection parameter s ∊
{0.005, 0.01, 0.02, 0.03, 0.04, 0.05} and the superdriver
factor c ∊ {1, 1.1, 1.3, …, 3}, and we report our results
based on the mean across 50 replicates. Simulation code
was written in C (compiled by GCC version 4.2 on
Linux) and statistical analysis was carried out with R
(version 3.0.1 on Linux).

Waiting time analysis
Our simulation results suggest that the expected waiting
time τkℓ to a combined set of k superdriver and ℓ driver
mutations can be approximated by the sum of the indi-
vidual waiting times Tk

S to k superdrivers and Tℓ
D to ℓ

drivers alone. Tk
S and Tℓ

D are approximated as in [21]
by decoupling selection and mutation, such that
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Tk
S ≈

k log2 r= μ nð Þ½ �
r log N tð ÞN 0ð Þ½ � and T ℓ

D ≈
ℓ log2 s= μ mð Þ½ �
s log N tð ÞN 0ð Þ½ � ;

and hence τkℓ ≈ Tk
S+ Tℓ

D.

Error modeling
To understand the agreement between the model simu-
lations and analytical waiting time approximations, we
fitted a linear regression model to predict the residual
between simulation and approximation, using the fol-
lowing predictors: driver fitness, superdriver fitness fac-
tor, number of superdriver mutations to wait for, and
number of driver mutations to wait for:

τkℓ ≈ Tk
S þ T ℓ

D þ ε;

where ε = β0 + β1 s + β2 r + β3 k + β4 ℓ is the error term
with intercept β0 and coefficients βi.
Further, to analyze the relative effects of driver and

superdriver fitnesses, we fitted an additional model
where ε = β0 + β1 s + β2 c + β3 k + β4 ℓ, with c = r/s. We
estimated the regression model from simulated data
using all combinations of s ∊ {0.005, 0.01, 0.02, 0.03,
0.04, 0.05}, c ∊ {1, 1.1, 1.3, …, 3}, k ∊ {1, …, 6}, and ℓ
∊ {1, …, 10}.

Results
To describe the evolutionary dynamics of tumorigenesis
with superdrivers and drivers, we employ a Wright-
Fisher model. In every generation of tumor cells, a muta-
tion can hit a superdriver or driver locus. Superdrivers
are modeled with a selective advantage of r = c s, where
c > 1 is the superdriver fitness increase parameter and s
∊ [0,1] is the driver advantage. We simulated tumorigen-
esis of exponentially growing cell populations (Fig. 1);
this simulation begins with an unmutated genome in the
first generation, which is the equivalent of a population
with uniform fitness, and modeled fitness gains relative
to this population. We examined the clonal interplay of
superdriver and driver mutations as they accumulate
over time, by varying their selective advantages In
addition, we propose a simple analytical approximation
for the waiting time to a set of superdriver and driver
mutations.

Superdrivers dominate clonal evolution
The number of cancer cells with a given number of
superdriver and driver mutations over time follows
approximately a Gaussian distribution (Fig. 2a-b). We
averaged the frequencies across all replicates and
observed that superdrivers and drivers accumulate
fundamentally differently. While the number of

Fig. 1 Wright Fisher process of tumor progression. a Representation of genotypes. The genotypes of all cells are modeled with n = 10 superdriver
and m = 100 driver loci. Every locus is susceptible to a mutation event (red asterisk) with the same probability in any cell in each generation. b
Growing population of tumor cells. The system starts with 106 wild-type cells, i.e., genotypes without any mutated loci, and grows exponentially
to 109 cells acquiring multiple superdriver and driver mutations. Every mutation increases the fitness of a cell and hence the likelihood of
sampling an offspring which will carry that same mutation
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accumulated superdrivers in the population of cells
globally increases constantly over time, the number of
accumulated drivers varies in a periodic fashion con-
ditioned on the number of superdrivers (Fig. 2c).
Thus, tumor evolution is mainly driven by superdriver
accumulation, which can be described as a traveling
wave [21]. Within the superdriver waves, additional
drivers accumulate in patterns of shorter traveling
waves. Although additional driver mutations provide
further increase in fitness, the clones harboring both
superdrivers and drivers eventually become extinct, as
new clones with more superdrivers arise. The outper-
formance of drivers is also reflected in that clones
with higher numbers of drivers, irrespective of the

number of superdrivers, only reach relatively low fre-
quencies. Importantly, from the same reasons, harbor-
ing additional drivers does not seem to lead to higher
frequencies of clones that have the same number of
superdriver mutations.

Shift of evolutionary dynamics
The superdriver fitness increase parameter c controls
the evolutionary dynamics of the growing tumor cell
population. As c increases, the population transforms
from a population that evolves mainly via clonal expan-
sions of drivers (Fig. 3a) to a population that is driven by
clonal expansions of superdrivers (Fig. 3b).

Fig. 2 Traveling Gaussian waves of clonal expansions of superdrivers and drivers in an exponentially growing tumor cell population. a Number of
cells with a given configuration of k ∊ {0, …, 5} superdriver and ℓ ∊ {0, …, 10} driver mutations shown by different colors and symbols,
respectively. b Same as (a), but on a logarithmic scale. c Subsets of curves of panel (b) with fixed number of either drivers or superdrivers,
revealing that tumorigenesis is dominated by superdriver accumulation. While clones with ℓ = 0 drivers have comparable frequency regardless of
the number of superdrivers, the frequency of clones with ℓ = 4 drivers increases steeply with the number of superdrivers (upper panel “Fixed
driver”). Additional drivers reach only low frequencies (lower panel “Fixed superdriver”) and eventually die out. All cell counts are averages over 50
replicates. For generating this figure, superdriver selection factor was set at c = 2 and driver selection at s = 0.01
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Stronger superdriver selection (2.6 < c < 3) entails fewer
driver waves within a superdriver wave (Fig. 4a); each of
those superdriver waves shows lower dispersion indicat-
ing that driver waves die out more quickly (Fig. 4b) and
clones with a given number of superdrivers exist for a
shorter period of time. Furthermore, peaks of subse-
quent driver waves (conditioned on the number of
superdrivers) are closer in time for higher superdriver
selection (Fig. 4c). Similarly, the maximum frequency of
superdriver waves (conditioned on the number of
drivers) tends to be reached in fewer generations when
superdriver selection is higher (Fig. 4d). Consequently,
higher superdriver factor c results in lower frequencies
of new clones that do not carry superdriver mutations.
In contrast, lower superdriver selection (1.1 < c < 1.5)
leads to more driver waves within each superdriver wave,
which also become wider. In this scenario, cells with a
given number of superdrivers exist for more generations
and hence superdriver accumulation occurs slower.

Traveling wave analytics
To further investigate the above simulation results,
which are based on averages across 50 replicates, we
fixed driver selection at 0.01 and fitted quadratic polyno-
mials for every wave in every individual replicate. From
the fitted models, we extracted three parameters:
location (i.e., generation), height (i.e., frequency), and
curvature (i.e., dispersion). We observed that location

followed a sigmoidal curve as a function of superdriver
selection, increasing both with the number of superdri-
ver and driver mutations (Supplementary Fig. 1). Fitted
height showed a different pattern. While superdriver
waves without driver mutations had higher frequency
when superdriver selection was high, superdriver waves
with one or two driver mutations had relatively lower
frequency when superdriver selection was high (Supple-
mentary Fig. 2). These clones were likely outcompeted
by fitter clones with only superdriver mutations. For
curvature, a similar pattern was observed. Without
driver mutations, curvature of superdriver waves had
consistently higher negative magnitude (i.e., narrower
curve) for high superdriver selection compared to low
superdriver selection (monotonic decrease), indicating
higher growth rate of superdriver clones. Curvature of
superdriver waves with two driver mutations and at least
one superdriver mutation tended to be higher for high
superdriver selection (non-monotonic increase, Supple-
mentary Fig. 3) and hence the growth rate of superdriver
clones was lower compared to the situation when the
superdriver selection was high.

Waiting time analysis
Our simulations revealed that tumorigenesis in the pres-
ence of both superdrivers and drivers is driven by clonal
expansions of superdrivers and hence may be approxi-
mated by traveling waves of clonal expansion [21].

Fig. 3 Change in evolutionary dynamics. a Low superdriver selection allows clones with the same number of superdrivers to exist for a long
period of time. Every wave of additional superdriver mutations entails many driver waves with the same number of superdrivers, all of which
reach high frequencies. b High superdriver selection changes the dynamics. Every superdriver wave now entails only a few additional drivers of
low frequency and superdriver accumulation occurs quicker. All figures display the average frequency of 50 replicates. Superdriver selection was
varied at c ∊ {1, 1.1, 1.3, 2.6, 2.8, 3}, while driver selection was set to s = 0.01. Only clones with k ∊ {0, …, 5} superdriver and ℓ ∊ {0, …, 10} driver
mutations are displayed to facilitate comparison
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Moreover, within the evolution of each superdriver
wave, shorter traveling waves of drivers arise and provide
additional selective advantages. These results motivate
the hypothesis that the waiting time τkℓ to k superdriver
and ℓ driver mutations can be decomposed into two in-
dependent components: Tk

S, the waiting time to k super-
drivers, and Tℓ

D, the waiting time to ℓ drivers. Our
simulations indeed support that τkℓ ≈ Tk

S + Tℓ
D, i.e., the

waiting time of a (k, ℓ) mutant is approximately the sum
of the individual waiting times Tk

S and Tℓ
D (Fig. 5a). We

compared these predicted waiting times τkℓ, computed
as the sum of the individual waiting times, to the waiting
times resulting from the simulation of the Wright-Fisher
model, and found high concordance for low k and ℓ, and
moderate concordance for large k and ℓ (Fig. 5a).
Furthermore, we observed that our theoretical ap-

proximation tends to slightly underestimates the

simulated waiting times. To both understand the source
of this deviation and correct for it, we empirically
learned the residuals using a linear regression model,
regressing them on the covariates s, r, k, and ℓ (i.e.,
driver fitness, superdriver fitness, number of driver mu-
tations waited for, and number of superdrivers waited
for, respectively). As shown in Fig. 5b, this extension
improved the approximation (adjusted R2 = 0.77, F-
statistic = 3739, p-value = 2.2 × 10− 16). From the regres-
sion analysis, we concluded that driver selection is the
primary factor accountable for the deviation of the ap-
proximation to the simulation; the higher the selective
advantage s of driver mutations, the larger is the gap be-
tween simulation and analytical approximation. All other
remaining covariates contributed to the deviation signifi-
cantly as well, but with smaller effect sizes (Supplemen-
tary Table 1). To further understand the relative effects

Fig. 4 Analysis of traveling wave patterns. Based on average frequencies over 50 replicates, four statistics were measured for different fitness
configurations: the number of driver waves within an superdriver evolution, width of waves, the difference in height between consecutive waves,
and the number of generations between consecutive waves. We compared low superdriver selection (c ∊ {1.1, 1.3, 1.5}) and high superdriver
selection (c ∊ {2.6, 2.8, 3.0}). Furthermore, we compared results between k ∊ {0, …, 5} superdriver and ℓ ∊ {0, …, 10} driver mutations. For all
results, we fixed driver selection at s = 0.01. a Higher c leads to fewer driver waves conditioned on k and b all waves that span at least 500
generations tend to exist for fewer generations with less variance. c The difference in the maximum frequency of subsequent driver waves
conditioned on k is lower for higher values of c; and d with higher c and conditioned on l, less generations lie between subsequent peaks of
superdriver waves, suggesting that the maximum frequency of superdriver clones is reached in less generations
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Fig. 5 Comparison between simulated waiting times and the theoretical sum approximation. a We examined how the expected waiting time τkℓ
to k superdrivers and ℓ drivers, as calculated from the sum of the individual waiting times (dashed), agree with the empirical waiting times from
the simulations (solid). While for lower k and ℓ the agreement is generally high, the agreement decreases as k and ℓ increase. b Improved waiting
time approximation, particularly for higher k and ℓ. We modeled the deviation between the simulated waiting times and the analytically
approximated waiting times using a regression model with driver fitness, superdriver factor, and numbers of driver and superdriver mutations to
wait for as covariates. The regression revealed that driver fitness parameter was the predictor with the largest effect size
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of superdriver and driver fitness (i.e., r / s = c), we also
tested a linear regression model that contained s, c, k,
and ℓ as predictors (Supplementary Table 2). The driver
fitness had the largest predictive value in this setting as
well. The adjusted R2 of this model was similar to the
first regression model (adjusted R2 = 0.78, F-statistic =
3814, p-value = 2.2 × 10− 16).

Discussion
In this study, we have extended the simple Wright-Fisher
model of tumor progression introduced in [21], which as-
sumes that all driver mutations confer the same selective
advantage, by introducing superdrivers, an aggressive type
of driver mutation with higher selective advantage than
ordinary drivers. This concept is consistent with earlier
observations that the fitness landscape in many organisms
may be characterized by a few very rare but highly advan-
tageous mutations [27, 28]. However, quantitative models
to study the interaction between these two classes of mu-
tations, superdrivers and drivers, particularly in the con-
text of cancer progression, have not been available to date.
Thus, the present model is a first step towards modeling
more complex fitness landscapes, where different muta-
tions harbor different fitness effects. Using extensive simu-
lations, we found that populations of tumor cells evolve in
global clonal expansions of superdrivers and periodic ex-
pansions of drivers. This process can be described by a
traveling Gaussian wave approach, which we utilized to
approximate the expected joint waiting time to a certain
number of superdrivers and drivers.
Our results suggest that tumorigenesis is dominated by

superdriver mutations. We demonstrated that the number
of driver waves within a superdriver wave is controlled by
the superdriver selection parameter c. Increasing c will
lead to fewer driver waves of low frequency and to quicker
accumulation of superdrivers in the entire population of
cells. Hence, the superdriver fitness increase parameter c
triggers an evolutionary shift from a population that
evolves through clonal expansions of drivers to a popula-
tion that evolves through clonal expansions of superdri-
vers. This dominance of superdrivers could explain how
the selective advantage becomes strong enough to notice-
ably change the evolutionary dynamics of driver mutations
[29–31]. These results are further supported by our ana-
lysis of the distribution of parameters extracted after fit-
ting quadratic polynomials to the traveling mutant waves
(location, height, and curvature). In particular, the rate at
which clones grow tends to be higher when superdriver
selection is high, suggesting that superdriver fitness accel-
erates tumorigenesis. Furthermore, the absolute height of
traveling waves is generally lower when superdriver selec-
tion is high, indicating that competitive clones with higher
fitness more quickly outperform clones with lower fitness.

The fitness effects of mutations, quantified by the
superdriver and driver fitness parameters c and s, also
determine the generations required for the appearance
of genotypes with certain numbers of mutations [32]. In
general, cells with higher numbers of drivers only reach
low frequencies, as they become extinct when cells with
an additional superdriver arise. This periodic outper-
formance of drivers confirms that harboring one add-
itional superdriver is selectively more advantageous than
the accumulation of additional drivers, as was suggested
especially for early-stage cancers [33]. This finding is in
line with previous clinical observations that early muta-
tions of highly selective genes, such as APC or KRAS,
strongly favor the onset of cancer [26, 34, 35].
The simulated traveling Gaussian wave patterns sug-

gested that the waiting times to superdrivers and drivers
can be decoupled. We further showed that the waiting
time to k superdrivers and ℓ drivers can be approxi-
mated by the sum of the individual waiting times, which
renders high concordance to the empirical simulations
for small k and ℓ. For increasing k and ℓ, the agreement
to our simulations decreases, uniformly underestimating
the simulated waiting times (especially for increasing
driver selection s). As this discrepancy increases for lar-
ger number of mutations we conclude that the evolution
of superdrivers and drivers can be decoupled primarily
for early-stage tumors and needs to be adjusted for the
variance observed in late-stage tumors.
To better understand the source of this discrepancy,

we empirically learned the residuals between the theor-
etical approximation and the simulations by using linear
regression. In addition to improving the waiting time ap-
proximation, the regression revealed that, from the in-
cluded covariates, driver selection had the highest
predictive power. One reason for this effect could be
that clones with larger numbers of driver mutations
evolve only very late, if at all, as it is more advantageous
for a clone to acquire additional superdrivers. This
means that the speed and possibly shape of driver waves
are likely not constant, violating some of the assump-
tions of the approximation thereby leading to discrepan-
cies between the estimated and simulated waiting times.
In particular, the width of the driver wave is likely not
constant; however, as we showed that driver mutations
occur periodically within a superdriver wave, this para-
meter is negligible particularly for large values of c.
In an additional regression analysis, we found that

the ratio between driver fitness and superdriver in-
crease factor was a significant predictor for the ap-
proximation error as well. This model performed
similarly to the model with driver fitness and super-
driver factor included separately. The two regression
models suggest that even though both effects are
significant, the effect of driver fitness alone on the
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deviation between simulation and approximation is
smaller than the effect of the relative difference be-
tween superdriver and driver fitness.
It is reasonable to assume that the number of expected

superdrivers k is very low, considering that a small num-
ber of potent driver mutations have been described in
the literature [2]. A recent study suggests that only three
driver mutations may be sufficient to drive cancer in
lung and colon [36]. Examples include TP53 point muta-
tions or EGFR copy number variations across multiple
cancer types [37, 38], or POT1 depletion, a particularly
aggressive alteration that is suggested to dramatically
accelerate tumorigenesis in T cell lymphoma [39]. In
addition, empirical observations suggest that the selec-
tion intensity of such mutations is significantly higher
than the vast majority of alternative mutations found
from sequencing data [28], reinforcing the need to ac-
count for the much higher relative importance of those
mutations in models of tumorigenesis. Alternatively, the
number of drivers ℓ can be expected to be higher than
the number of superdrivers k, even though this param-
eter is also estimated to be below ten, depending on the
type of tissue [40]. In addition, some related studies sug-
gest that tumorigenesis may be driven by mutations with
relatively low fitness increase. For example, a review by
Castro-Giner et al. discusses the concept of ‘mini-
drivers’ [41], i.e., selectively advantages mutations with
relatively weak fitness increase. Their drivers and mini-
drivers are covered by our model as superdrivers and
drivers, respectively. Mini-drivers are claimed to be able
to drive tumorigenesis even in the absence of drivers, a
situation that would arise in our simulations only in the
absence of superdrivers (k = 0) or by assuming a lower
superdriver mutation rate. Future studies could investigate
whether the mini-driver concept is reflected by our model
when superdrivers are allowed to occur only very rarely.
One limitation of our study is that every simulation

has to be terminated after a certain amount of time has
passed, as all simulations of tumorigenesis have to select
a viable time range to allow for sufficient progression
time [42–44]. In our study, we chose to terminate simu-
lations at 4500 generations, as this number corresponds
approximately to a tumor development of 12 years,
which is a sufficiently large time period that has been
used previously [21]. For example, our results in Fig. 4a
suggest that with low superdriver selection (i.e.,
1.1 ≤ c ≤ 1.5), the number of drivers decreases as the
number of superdrivers decreases; however, this could
potentially happen because drivers that occur in very late
generations (i.e., in generation 4000 and higher) cannot
reach high enough frequencies before the simulations
are terminated.
Additional limitations of the model include the basic

assumption that every mutation provides a constant

fitness gain, depending only on whether a superdriver or
driver loci was hit. Clearly, for biological systems how-
ever, the fitness gain of a mutated gene may vary even
for the same mutation in different individuals and across
cancer types [27], and hence the superdriver and driver
fitness parameters c and s should be regarded as aver-
ages of fitness increases. Our model could, however, be
extended by sampling c and s from a probability distri-
bution. Moreover, we modeled all loci to be independent
of each other, an approximation of the true (but un-
known) underlying fitness landscape which can have
interactions, known as epistasis [45, 46]. Also, our model
ignored the we neglected spatial heterogeneity of solid
tumors, which can significantly impact clonal dynamics
slow down tumor progression by clonal interference
[47]. Finally, our model is time-discrete in how clonal
evolution occurs. Even though discrete models have
served extensively to reveal evolutionary patterns in pre-
vious studies [14, 21, 22, 48–50], they represent an ab-
straction of continuous-time biological systems. Future
studies could extend our results by employing conti-
nuous model choices.
The justification for simulating tumor evolution based

on superdrivers and drivers type of alterations alone, is
that understanding simple mutational processes is the
foundation for understanding more complex models of
tumorigenesis. Future studies should investigate the dy-
namics of drivers and superdrivers in the presence of
other mutation types, or under different parameter land-
scapes and could be compared to in vivo data [51–53].
Similar to our study nevertheless, Datta et al. [22] ex-
tended the model in [21] and showed that deleterious
mutations have little effect on tumorigenesis unless
driver selection is very weak. Since superdrivers are mu-
tations with high fitness advantage, it is very likely that,
under reasonable assumptions, deleterious mutations
will be extinguished from the population during tumor
progression and not accumulate in later stages of
tumorigenesis [40]. In addition, the simulations in Datta
et al. [22] included a mutator phenotype [54] with ele-
vated mutation rate. Their analyses suggested that the
mutator phenotype could evolve only in situations with
low driver selective advantage. Future work could
therefore determine whether, and if so, in which case,
superdrivers suppress the development of a mutator
phenotype. In contrast, a reduced mutation generally
leads to genomic stability and hence, it can be
expected that superdrivers will become rare and
gradually lose their dominance in favor of driver
dominance.
Undoubtedly, patient tumors are much more complex

than represented through the mathematical model
employed here, and exhibit various additional biological
properties, such as, among many others, the presence of
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immune surveillance, epistasis, cellular competition for
resources, cell-cell signaling, environmental factors.
Nevertheless, mathematical models describing an evolu-
tionary environment with selection and fitness allow,
through their simplicity, to investigate focused research
question towards specific parameters of interest. This
led, for example, Bozic et al. 2010 to narrow down pos-
sible selection rates [14], and other studies to identify
candidate driver genes for drug discovery [35], as well as
investigate the clinical [55–57] and biological impact
[58–60] of driver genes. Our model contributes to
addressing such biomedical questions by allowing other
researchers to better understand the dynamics of
genetically-driven tumorigenesis.

Conclusion
In summary, our work presents a mathematical model to
study the interplay of superdriver and driver mutations in
tumorigenesis. By simulating under this model, we demon-
strated that superdriver mutations, although more unlikely
to occur than driver mutations, are the dominant evolu-
tionary force driving the progression to cancer. Moreover,
we found that, for small numbers of mutations, the waiting
time to a set of superdrivers and drivers can be approxi-
mated by the sum of the individual waiting times.
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