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Abstract

Background: Phylogenetic species trees are widely used in inferring evolutionary relationships. Existing software
and algorithms mainly focus on phylogenetic inference. However, less attention has been paid to intermediate
steps, such as processing extremely large sequences and preparing configure files to connect multiple software.
When the species number is large, the intermediate steps become a bottleneck that may seriously affect the
efficiency of tree building.

Results: Here, we present an easy-to-use pipeline named PhySpeTree to facilitate the reconstruction of species
trees across bacterial, archaeal, and eukaryotic organisms. Users need only to input the abbreviations of species
names, PhySpeTree prepares complex configure files for different software, then automatically downloads genomic
data, cleans sequences, and builds trees. PhySpeTree allows users to perform critical steps such as sequence
alignment and tree construction by adjusting advanced options. PhySpeTree provides two parallel pipelines based
on concatenated highly conserved proteins and small subunit ribosomal RNA sequences, respectively. Accessory
modules, such as those for inserting new species, generating visualization configurations, and combining trees, are
distributed along with PhySpeTree.

Conclusions: Together with accessory modules, PhySpeTree significantly simplifies tree reconstruction. PhySpeTree
is implemented in Python running on modern operating systems (Linux, macOS, and Windows). The source code is
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freely available with detailed documentation (https://github.com/yangfangs/physpetools).

Background
The reconstruction of phylogenetic species trees is of
central importance in many biological disciplines. For
example, the tree of life provides a remarkable view of
organizing principles in biology [1, 2]. In addition, many
new genomes are being sequenced, and their taxonomic
identities can be determined by inserting them into
prebuilt species trees [3]. Moreover, combined with
species trees, phylogenetic profiling using gain and loss
patterns of homologs achieves high performance in
predicting protein linkages [4—8].

Toolkits and pipelines have been developed for
phylogenetic reconstruction (Table 1). Toolkits such as
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BuddySuite [9], ETE3 [10], and MEGA [11] are widely
used for phylogenetic inference and tree manipulation.
BuddySuite and ETE3 provide rich interfaces that allow
researchers to carry out secondary development. Bud-
dySuite includes a pipeline with which to reconstruct
gene or species trees, but third-party software needs to
be specified and manually installed in the local running
environment, which may be inconvenient for users on
different platforms. MEGA is a standalone and cross-
platform program, and it also provides a user-friendly
graphical interface. BIR [12], Agalma [13], PhyloPlAn
[14], and AMPHORA [12] are designed for phylogenomic
analysis. BIR is particularly useful for preparing gene se-
quences for phylogenomic inference. Agalma has a
command-line interface for phylogenomic analyses based
on genomic and transcriptome data. PhyloPlAn and
AMPHORA (AMPHORAZ2 [14]) are effective pipelines for
large-scale phylogenetic inference based on thoroughly
tested marker genes, and other operations such as
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Table 1 Comparison of phylogenetic tree construction software
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Software Auto- Alignment Trim Tree building Tree merge
pipeline®

MUSCLE MAFFT ClustalW Gblocks  trimAl RAXML FastTree IQ-TREE ASTRAL SPRSupertrees
BuddySuite ¥ x v v v x v N v v x x
ETE3 1Y x v v x x v v v x x x
MEGA '] x v x v x x x x x x x
BIR ['? x v v v v Vv v v x x x
Agalma [13] x x x x v x N x x x x
PhyloPhlAn [14] x v x x x x vV v x x x
AMPHORA 3] x x x v v x v x x x x
PhySpeTree v v v v v v v v v v v

? The automation refers to sequences download, preprocess, and preparation of configure files. Critical steps such as sequence alignment and tree construction

can be manually adjusted with advanced options in PhySpeTree

taxonomic curation, estimation, and insertion are also
available. The marker genes, however, are conserved only
between microbial genomes, so PhyloPlIAn and AM-
PHORA are limited to reconstructing bacterial and
archaeal species trees.

Although the software mentioned above are powerful
in inferring phylogenies, most require users to manually
download genomic data, clean and align sequences, or
prepare complex configure files. These laborious and
time-consuming steps may impede tree reconstruction,
especially when the number of species becomes large.
Hence, there is a clear need for a flexible and efficient
pipeline that can reduce the time required for species
tree building processes.

Here, we present an easy-to-use Python package
named PhySpeTree, which provides an automated solu-
tion for the entire process of species tree reconstruction,
from data collection to tree building. PhySpeTree has
two parallel pipelines based on either the most com-
monly adopted small subunit ribosomal RNA (SSU
rRNA) [15] or concatenated highly conserved proteins
(HCPs) [16]. The distinguishing feature of PhySpeTree is
its automated design. Users need only to input the ab-
breviations of species names, and then PhySpeTree can
automatically download and analyze sequences. Some
critical steps, such as multiple sequence alignment and
tree construction, can be manually adjusted. Moreover,
PhySpeTree contains modules to facilitate downstream
analysis. For example, users can apply the “autobuild” mod-
ule to extend prebuilt trees by inserting new organisms.
The “iview” and “combine” modules are designed for tree
visualization in iTOL [17] and consensus tree construction
[18], respectively. Together with accessory modules, Phy-
SpeTree significantly simplifies tree reconstruction.

Implementation

PhySpeTree is implemented in Python and distributed as
an independent package. PhySpeTree integrates multiple
tools and provides an automated solution for

reconstructing species trees (Table 1). The workflow of
PhySpeTree is shown in Fig. 1. First, users input the
abbreviations of species names (Additional file 1: Figure S1
and Additional file 2: Table S2) and choose the sequence
type (SSU rRNA or HCP) to build species trees. If the HCP
option is selected, PhySpeTree retrieves and concatenates
HCP sequences from the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database [19]. Otherwise, PhySpeTree
uses SSU rRNA sequences from the SILVA database [20].
For unannotated organisms, users can prepare FASTA for-
mat files containing either HCP or SSU rRNA sequences
and then insert them into prebuilt databases. Second, mul-
tiple sequence alignment is conducted by MUSCLE [21],
MAFFT [22], or ClustalW [23], and conserved blocks are
selected by Gblocks [24] or trimAI [25]. Finally, PhySpe-
Tree reconstructs species trees by RAXML [18], IQ-TREE
[26], or FastTree [27]. In addition, PhySpeTree provides
flexible modules to facilitate downstream analysis, such as
generating visualization files for iTOL [17] and tree com-
bination (Fig. 1).

SSU rRNA option

For bacterial and archaeal organisms, SSU rRNA sequences
are widely used to build species trees [2]. We prebuilt a
dataset according to the latest version of the SILVA data-
base (Release 132, Dec. 13, 2017) [20]. The dataset contains
truncated SSU rRNA sequences from 140,662 species, and
nucleotides that are not aligned are removed (Additional
file 1: Figure S1A and Additional file 2: Table S1). When
the SSU rRNA option is selected, PhySpeTree automatic-
ally fetches related sequences.

HCP option

It has been reported that HCP-based species trees have a
higher resolution than the ones built based on a single
gene [15]. Hence, PhySpeTree also provides the HCP
option. First, we chose 31 single-copy HCPs without
horizontal transfer from Ciccarelli et al [16]. Then, we
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Fig. 1 The workflow of PhySpeTree. PhySpeTree retrieves and downloads corresponding sequences following with multiple sequence alignments,
conserved blocks selection, and tree reconstruction. PhySpeTree also allows users to insert their own sequences of HCP or SSU rRNA. Output
trees are in the “newick” format files. ©Automatic tree reconstruction @Processing user-defined fasta files for unannotated organisms

manually mapped them to KEGG orthologues (Release
90.1, May 1, 2019) [19] (Additional file 2: Table S3).
When users choose the HCP option, PhySpeTree dir-
ectly retrieves HCP sequences from the KEGG database.
The HCP option currently supports 5943 organisms
(Additional file 1: Figure S1B and Additional file 2: Table
S2).

Sequence alignment and tree reconstruction

PhySpeTree integrates various tools for multiple se-
quence alignment and tree reconstruction. For sequence
alignment, MUSCLE [21], MAFFT [22], and Clustal [22]
are provided. To infer accurate phylogenies, the max-
imum likelihood-based method RAxML is set as the
default option [18]. In addition, IQ-TREE [26] and
FastTree [27] are alternatives to accelerate tree

reconstruction. Advanced parameters of integrated tools
can be specifically set and passed in PhySpeTree, allow-
ing users to manipulate critical steps in sequence align-
ment and tree reconstruction.

Result

Modules of PhySpeTree

PhySpeTree contains five modules. The main module
“autobuild” is developed to automatically build species
trees. With this module, users do not need to prepare
sequences in advance. Instead, the abbreviations of spe-
cies names are the only required inputs. The intermedi-
ate steps, e.g., sequence download, cleaning, alignment,
and tree reconstruction, are automatically handled by
PhySpeTree. The following command line shows an
example:
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$ PhySpeTree autobuild -i species_names.txt --hcp

where “species_names.txt” is the file of abbreviated or-
ganism names; for example, “hsa” represents Homo sapi-
ens (Additional file 2: Table S2). “--hcp” indicates that
the HCP option is selected.

Moreover, the “autobuild” module can be used to ex-
tend prebuilt trees by inserting new organisms whose
genome annotations may be incomplete. For the new or-
ganisms, the SSU rRNA may come from experiments,
while orthologous databases such as eggNOG [28] and
OMA [29] are good resources for searching for corre-
sponding HCP sequences. FetchMG [30] is also available
to identify HCP sequences in reference genomes and
metagenomes. The following commands illustrate how
to insert a new organism into trees:

$ PhySpeTree autobuild -i species_names.txt -e
new_hcp.fasta --ehcp

where “new_hcp.fasta” is the HCP sequence of the new
organism. The file should be prepared by users. “--ehcp”
indicates that the tree is extended according to HCP
sequences.

Instead of using default settings, in the “autobuild”
model, users can adjust advanced options to control crit-
ical steps, such as sequence alignment, conserved block
selection, and tree building. The following command
shows how to set advanced options of RAXML:

$ PhySpeTree autobuild -i species_names.txt --srna —-raxml|
--raxml_p “f a -m GTRGAMMA -p 12345 -x 12,345 -# 100 -n T1’
where “--raxml_p” indicates advanced options passed to
RAxML.

The module “build” is developed for advanced users
to directly reconstruct trees from protein or gene se-
quences. It is practically useful to reconstruct trees by
user-defined sequences other than SSU rRNA or HCP
sequences. This function may overlap with ETE3 and
MEGA and is executed as:

$ PhySpeTree build -i defined_seq.fasta --single

where “defined_seq.fasta” is a FASTA file containing
user-defined sequences. “--single” indicates a single se-
quence for each organism.

The “iview” module is designed to facilitate tree
visualization. It provides a convenient interface used to
generate configure files for iTOL, which is a powerful
online tool for tree display, annotation, and manipula-
tion [17]. The taxonomy of species is directly retrieved
from the KEGG database. The following command an-
notates input species at the phylum level:

$ PhySpeTree iview -i species_names.txt --range -a phylum
where “species_names.txt” is the same file as in the
“autobuild” module.
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To reconstruct a consensus tree, PhySpeTree uses the
“combine” module to merge multiple trees. This module
is useful for comparing and selecting conserved branches
from trees generated by different sequences or tree
building methods. It is implemented as follows:

$ PhySpeTree combine -i combine.tree

where “combine.tree” is a file containing multiple trees.
The module “check” is designed to check whether in-

put species are supported in PhySpeTree. It can also be

used to check sequence information that is needed to

extend the current tree. The following command will re-

turn species that are not supported by the HCP option:

$ PhySpeTree check -i species_names.txt ~hcp

Installation The PhySpeTree pipeline is implemented in
Python and has been tested on Linux systems such as
Fedora, Ubuntu, and CentOS. We also released a Docker
image to support Windows and macOS. The latest ver-
sion can be installed as follows:

$ pip install PhySpeTree

Alternatively, PhySpeTree can be directly installed from
the GitHub repository. Code is available at https://
github.com/yangfangs/physpetools/releases, and PhySpe-
Tree is installed by a local command as follows (exe-
cuted in the PhySpeTree directory):

$ python setup.py install

Usage and tutorial To facilitate the use of PhySpeTree,
we distribute a detailed tutorial (https://yangfangs.github.
io/physpetools/) (Additional file 3). The tutorial provides
step-by-step examples to show how to use the modules
mentioned above.

Benchmark test of the efficiency and consistency of
PhySpeTree

To test the efficiency of PhySpeTree, we simulated five
data sets with different numbers of species (50, 100, 300,
600, and 1000) by randomly selecting taxa from our pre-
built HCP and SSU rRNA databases. Each data set was
independently generated three times, and the mean and
standard deviation of the run time were recorded. One
of the great advantages of using PhySpeTree is that it
provides automated sequence preprocessing (e.g., query-
ing databases, downloading sequences, and formatting).
The time required for this process showed linear growth
with an increase in the number of species (Table 2). It
took approximately 3s to preprocess one species, and
most of the time was spent on querying remote prebuilt
databases. The prebuilt databases can be downloaded
and easily deployed, so we provided a special option,
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Table 2 Run time test of PhySpe Tree
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Total no. Sequence preprocession Tree building
species * st. dev. (s) * st. dev. (s)?
HCP SSU rRNA  BuddySuit HCP  SSUrRNA® BuddySuit
50 109.9+1.2 130.3+6.9 N/A 259+28 343+13 354114
100 216.8+3.8 294.3+4.2 N/A 366+16 80+0.9 10.7£1.3
300 6943+146 97491503 N/A 67.1+20 463+27 722+38
600 11745+ 17.8 1523.5+319.9 N/A 676+38 276+21 1783+20.5
1,000 2237.2+85.9 2129.2 + 390.3 N/A 95.8+10.0 35.3+0.7 581.6+53.7

2 The tree reconstruction pipeline was conducted by MAFFT (alignment), Gblocks (trim), and FastTree (tree building). Benchmark test was conducted with i7-4790
3.6GHz CPU (parallel on 6 threads) with 16GB memory on Fedora operating system. ® "-auto" option was turn on in MAFFT. The alignment strategy was

automatically chose according to the number and length of sequences

“-db”, to further improve efficiency by manipulating se-
quences on local computers. Another advanced feature
of PhySpeTree is the fully optimized configuration of
software streams. We then compared the run time of
tree building in PhySpeTree with that of a pipeline in
BuddySuit [9]. The same third-party software and pa-
rameters were used. In PhySpeTree, the SSU rRNA op-
tion was slightly better than the HCP option, mainly
because more sequences were processed with the HCP
option. The run time of BuddySuit was comparable to
that of PhySpeTree when building small tress (fewer
than 300 species), whereas PhySpeTree outperformed
BuddySuit when the number of species increased. For
example, in building a tree with 1000 species, the opti-
mized configuration of PhySpeTree resulted in more
than a 5X speed gain (Table 2). Overall, our benchmark
tests showed that PhySpeTree is a highly efficient pipe-
line in the reconstruction of large-scale trees.

There is a lack of ground truth for evaluating the
topological accuracy of phylogenies across a wide range
of species. As a surrogate, we quantitatively assessed the
consistency of species trees from PhySpeTree with
respect to the updated tree of life [31]. Because most
organisms in the tree of life were uncultured or newly
identified, we manually checked and filtered species
names from our prebuilt databases. Finally, the SSU
rRNA and HCP options matched 154 and 122 species,
respectively (Additional file 2: Table S4 and Table S5).

We then randomly selected 20, 50, and 100 species and
used PhySpeTree to reconstruct species trees with both
the SSU rRNA and HCP options. Normalized Robinson-
Foulds (nRF) distances, ranging from 0 (identical) to 1
(most unlikely), were calculated to measure topological
similarity (Table 3) [10, 32]. Unsurprisingly, SSU rRNA
trees archived near perfect consistency (mean nRF dis-
tance <0.13) with the tree of life, as almost identical
SSU rRNA sequences were used. For up to 100 species,
we found that the HCP option of PhySpeTree was also
feasible (mean nRF distance: 0.18 ~0.32). Notably, in-
creasing the number of species did not significantly reduce
the accuracy of tree reconstruction. The topological dis-
similarity between HCP trees and the tree of life was
mainly due to the number and type of conserved proteins
used to reconstruct the trees.

Case study: the evolutionary position of the archaeal
phylum Lokiarchaeota

A recent study reported a novel archaeal phylum, Lokiarch-
aeota. Genomes in this phylum encode various eukaryotic
signature proteins. Further phylogenetic analysis revealed a
close relationship between Lokiarchaeota and Eukarya [3].
However, debates about the Lokiarchaeota-Eukarya affili-
ation arose mainly due to the number of species and HCPs
used in tree reconstruction [3, 33]. PhySpeTree can be
conveniently applied to investigate the evolutionary pos-
ition of newly identified organisms. Thus, here, we provide

Table 3 Consistency test of PhySpe Tree comparied with the updated tree of life [33]

Total no.
ota no SSU rRNA option® HCP option®
species
nRF distance nRF distance No.
tst.dev.® sequences tst.dev.° sequences
20 0.08 £ 0.07 0.18+0.15 19
50 0.09 +0.07 0.23+0.05 19
100 0.12+0.02 0.31+0.03 11

2 SSU rRNA sequences were retrieved by PhySpeTree, aligned by SINA, and tree reconsturction by RAXML (GTRCAT model). ® HCP sequences were retrieved by
PhySpTree, aligned by MUSCLE, and tree reconstruction by RAXML (PROTGAMMAJTTX model). < Normalized Robinson-Foulds (nRF) distance was calculated by

ETE3 [10]
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Fig. 2 Extended tree of life with Lokiarchaeota. The Lokiarchaeum sp. GC14_75 was inserted into the tree of life. The bacterial, eukaryotic, and

< Eukaryota

an example to show how to insert Lokiarchaeum sp.
GC14_75 (loki) into prebuilt species trees.

At first, we randomly chose 1246 species, including 440
eukaryotic, 544 bacterial, and 280 archaea species, from the
prebuilt HCP database, then used PhySpeTree to recon-
struct a species tree with the HCP option (Additional file
2: Table S6). Next we prepared 25 HCPs of [oki (ribosomal
protein L1/L3/L5/L11/L13/L14/122/ S2/S3/S4/S5/S7/S8/
S9/511/513/S15/S17,  phenylalanine—/seryl-/leucyl-/argi-
nyl-tRNA synthetase, metal-dependent proteases with
chaperone activity, predicted GTPase probable translation
factor, and preprotein translocase subunit SecY) and used
the “autobuild” module (with the “-e” option) to expand
the tree of life with Joki (Fig. 2 and Additional file 4). In ac-
cordance with the previous species trees [34, 35] recon-
structed based on 55 concatenated ribosomal proteins, our
results indicated phylogenetic affiliation between loki and
eukaryotes. Although our results did not support that loki
and other archaeal lineages were monophyletic [36], vari-
ous tree topologies can be easily explored by PhySpeTree
with different HCPs.

Conclusions
We developed an automated pipeline named PhySpe-
Tree to reconstruct species trees across bacteria,
archaea, and eukaryotes. The PhySpeTree pipeline
contains as many options as other tree-building tools
(detailed comparison in Table 1). However, another fea-
ture sets PhySpeTree apart: it automates intermediate
processes, including retrieving sequences from public
databases, preparing complex configure files to run dif-
ferent software, aligning sequences, and building trees.
The inputs of PhySpeTree are simple that users need
only to prepare the abbreviations of species names. For
unannotated organisms, users can apply the “check” and
“autobuild” modules in PhySpeTree to prepare sequence
files. Because PhySpeTree is frequently synchronized
with the most recent public databases, the number of
unannotated organisms is expected to be small.
PhySpeTree provides both the traditional SSU rRNA
option and the HCP option to reconstruct species trees.

Benefiting from comprehensive rRNA databases (e.g.,
SILVA and RDP) [20, 37] and high-throughput rRNA
amplicon sequencing [38], SSU rRNA has been widely
used as a phylogenetic marker for taxonomic identifica-
tion [31, 39]. However, inferring taxonomies based on a
single marker gene is challenging, given that chimeric
sequences arising from PCR and sequencing errors can
corrupt tree topologies [40] as well as the limited
resolution of SSU rRNA in closely related species [41].
Compared with trees obtained from a single marker
gene, those reconstructed by the concatenation of highly
conserved single-copy proteins show a higher resolution
[16, 31, 42]. For example, to explore the phylogenetic
history of organisms, a species tree across all three do-
mains of life was generated based on HCPs [16]. The
same set of HCPs was applied for the species assignment
of prokaryotic genomes [43] and to establish metage-
nomic operational taxonomic units [44] and is applied in
the HCP option in PhySpeTree. Recently, several revised
species trees have been inferred by the concatenation of 16
ribosomal proteins [31] or 120 bacterial proteins [45, 46]
to explore the tree of life. Although HCPs are extensively
used, when applying the HCP option of PhySpeTree, users
should be aware of the limitations of HCPs, such as recom-
bination [42] and potential lateral gene transfer [47].
PhySpeTree was developed in Python and is executed
as command lines, so it is easy for advanced developers
to expand its modules or integrate PhySpeTree with
other phylogenetic tools. For example, PUmPER [48]
updates existing trees with new gene sequences. PhySpe-
Tree may work as a complementary tool in terms of
building the initial tree and automatically preparing
updated sequences from public databases. On the other
hand, users of PhySpeTree are reminded that phylogen-
etic discordance mainly caused by different evolutionary
processes affects species tree accuracy [49]. Coalescent-
based methods are broadly used to address incongruence
[50]. ASTRAL [51] and NJst [52] are efficient tools for
handling incomplete lineage sorting. They are also ro-
bust to branch length errors, which may result from rate
heterogeneity. PhyloNet [53, 54], iGTP [55], Guenomu
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[56], and SPRSupertrees [57] consider gene flow, gene
duplication and loss, or horizontal gene transfer when
inferring species trees. The coalescent-based methods
mentioned above take gene trees as inputs, which can be
conveniently estimated by PhySpeTree (“build” module)
or any other tool listed in Table 1. Moreover, species
trees inferred from PhySpeTree can benefit from other
types of evidence; for example, fossils and ancient DNA
can be incorporated into node-based and tip-based cali-
bration [58, 59].

Availability and requirements
Project name: PhySpeTree

Project home page: https://yangfangs.github.io/
physpetools/
Operating systems: Linux (Docker image for

Windows and macOS)
Programming language: Python 2.7+ and python 3+
License: GNU General Public License v3.0
Other requirements: None

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512862-019-1541-x.

Additional file 1: Figure S1. The taxonomic distribution of species
supported by the HCP (A) and SSU rRNA options (B).

Additional file 2: Table S1. The list of 140,662 species supported in the
SSU rRNA option. Table S2. The list of 5943 species supported in the
HCP option. Table S3. The list of 31 highly conserved proteins and
corresponding KEGG IDs. Table S4 and Table S5. The lists of SSU rRNA
and HCP matched species between prebuilt databases of PhySpeTree
and the updated tree of life, respectively. Table S6. Species used to
reconstruct the tree of life in Fig. 2.

Additional file 3. The step by step usage and tutorial for PhySpeTree.

Additional file 4. Data used to extend tree-of-life with Lokiarchaeum sp.
GC14_75. "FastTree.tree” is the output tree file. “tree_of_life_species_-
names_abb.txt” contains the species abbreviated names to use
reconstruct tree-of-life. “highly_conserved_protein_loki” contains
Lokiarchaeum sp. GC14_75 HCP sequences. “parameter.txt” contains
parameter commands.
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