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Reduced alphabet of prebiotic amino acids

optimally encodes the conformational
space of diverse extant protein folds

Armando D. Solis
Abstract

Background: There is wide agreement that only a subset of the twenty standard amino acids existed prebiotically
in sufficient concentrations to form functional polypeptides. We ask how this subset, postulated as {A,D,E,G,I,L,P,S,T,
V}, could have formed structures stable enough to found metabolic pathways. Inspired by alphabet reduction
experiments, we undertook a computational analysis to measure the structural coding behavior of sequences
simplified by reduced alphabets. We sought to discern characteristics of the prebiotic set that would endow it with
unique properties relevant to structure, stability, and folding.

Results: Drawing on a large dataset of single-domain proteins, we employed an information-theoretic measure to
assess how well the prebiotic amino acid set preserves fold information against all other possible ten-amino acid
sets. An extensive virtual mutagenesis procedure revealed that the prebiotic set excellently preserves sequence-
dependent information regarding both backbone conformation and tertiary contact matrix of proteins. We
observed that information retention is fold-class dependent: the prebiotic set sufficiently encodes the structure
space of α/β and α + β folds, and to a lesser extent, of all-α and all-β folds. The prebiotic set appeared insufficient
to encode the small proteins. Assessing how well the prebiotic set discriminates native vs. incorrect sequence-
structure matches, we found that α/β and α + β folds exhibit more pronounced energy gaps with the prebiotic set
than with nearly all alternatives.

Conclusions: The prebiotic set optimally encodes local backbone structures that appear in the folded environment
and near-optimally encodes the tertiary contact matrix of extant proteins. The fold-class-specific patterns observed
from our structural analysis confirm the postulated timeline of fold appearance in proteogenesis derived from
proteomic sequence analyses. Polypeptides arising in a prebiotic environment will likely form α/β and α + β-like
folds if any at all. We infer that the progressive expansion of the alphabet allowed the increased conformational
stability and functional specificity of later folds, including all-α, all-β, and small proteins. Our results suggest that
prebiotic sequences are amenable to mutations that significantly lower native conformational energies and increase
discrimination amidst incorrect folds. This property may have assisted the genesis of functional proto-enzymes prior
to the expansion of the full amino acid alphabet.
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Background
A consensus has emerged from diverse studies, begin-
ning with the classic Miller experiments [1], that only a
subset of the canonical genetically-encoded amino acids
may have existed in some abundance in the prebiotic
world. Bolstered by analysis of meteorite composition
[2], a reanalysis of diverse experiments simulating early
conditions [3], structural and thermodynamic consider-
ations [4, 5], and genomic and proteomic studies [6, 7],
there is now wide agreement that the amino acids {A,D,
E,G,I,L,P,S,T,V} were sufficiently present as life began to
form, and that the polymers of these amino acids would
have composed the first functional biomolecules [8].
These amino acids likely dominated the composition of
polypeptides and simple proto-enzymes, whose beneficial
interactions with cofactors, metals, mineral surfaces, and
nucleotides may have facilitated early metabolic pathways.
Biosynthetic complexity, mediated by longer, well-folded,
more stable enzymes with greater specificity, is likely to
have come later on [9].
The progression of metabolic evolution from simple to

complex becomes plausible only if the prebiotic amino
acids are themselves capable of forming early structures
that are sufficiently stable to catalyze reactions and to give
rise to the first metabolic pathways. There are compelling
reasons to suspect that reduced alphabets can, in
principle, provide the minimum ingredients for activity.
Foremost, it is generally held that given any fold, not all
amino acids in the sequence that can form it are critical to
its structural stability and specificity [10]. Amino acids
share significant similarities in physicochemical properties
and also in the way they encode structure [11], as evi-
denced by the variety of homologous sequences that have
evolved to fold into similar conformations. The hypothesis
that particular folds can be formulated with a simplified
amino acid alphabet is supported by experimental efforts
which demonstrate that structure and function can be
preserved with significant alphabet reduction [12–14].
Among these studies are successful attempts employing
the prebiotic set explicitly to reduce the sequence
complexity of select target proteins [15–18].
These observations lead us to ask whether there are

general characteristics of the prebiotic set that endow it
with unique properties relevant to structure, stability,
and folding. Previous studies of the physicochemical
attributes of the prebiotic set provide insight into their
structural coding behavior [4, 11, 19–21]. In this work,
we attempt to interrogate the uniqueness of the pre-
biotic set directly by comparing its structural fitness
against all other possible reduced amino acid sets. Using
information-theoretic analysis, we explore general struc-
tural propensities of all possible reduced sets in order to
discern whether the prebiotic set distinguishes itself in
the way it preserves fold information. Rather than
limiting the exploration to a handful of proteins or
particular folds, our work examines the reducibility of
the sequence space for all extant folds inhabited by
single-domain proteins. Our analysis thus spans many
diverse structural families.
Because the number of folds is small compared to the

diversity of protein sequences [22, 23], it has been con-
cluded that useful folds persist once they appear in the
evolutionary timeline [24]. The fold space we observe
today is therefore a collection of folds that have arisen
throughout evolutionary history, including some from
the earliest protein sequences. Therefore, to assess the
fitness of the prebiotic set in organizing ancestral folds,
it makes sense, then, to investigate whether the prebiotic
set is able to optimally preserve structural information
in the extant fold space. Benefitting from investigations
that have attempted to assign temporal order for the
creation of folds [25–27], our work provides a tool to
discern a probable sequence of fold evolution vis-à-vis
the expansion of the amino acid alphabet from the
prebiotic set of around ten to the current genetically-
coded twenty.
To evaluate the fitness of a given alphabet reduction,

we use an information-theoretic approach to measure
the amount of structural information preserved if we
expose natural protein sequence to systematic virtual
mutagenesis. Related versions of this information-based
methodology have proven to be effective in clustering
amino acids by their structural propensities [11, 28].
Our specific goal here is to see how a particular alphabet
reduction affects structural information retention in a
diversity of folds, and across a wide range of sequences.
In order to rigorously compare the performance of the
prebiotic set to any other alternative set, we undertake
an exhaustive evaluation of all possible 10-member set
reductions of the amino acid alphabet space by exami-
ning the ability of each of these reductions to preserve
the folds of more than 2000 single-domain proteins.
This systematic computational regime allows us to thor-
oughly and simultaneously explore the alphabet space
and fold space. An information-theoretic approach is a
rigorous and effective way to explore these vast
computational spaces comprehensively and efficiently,
permitting a definitive evaluation of the particular struc-
tural properties of the prebiotic set of amino acids that
serendipitously ushered in the first life.
Our work yields a number of results. We find that

among all possible 10-letter alphabets that can be orga-
nized from the full alphabet of twenty genetically-coded
amino acids, the prebiotic set appears to be optimal in
forming the spectrum of local backbone structures that
appear in extant proteins. The prebiotic set is also near-
optimal in encoding the spectrum of single-domain folds
that exist in nature currently. We observe that the ability
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of the prebiotic set to formulate folded conformations
depends on fold class—specifically, we find strong
correlation between the postulated relative temporal
emergence of folds and the viability of the prebiotic set
to formulate them. These results have significant impli-
cations for the early evolution of structure and function
of proteins. We also learn that the prebiotic set already
possesses the ability to sufficiently discriminate native
folds, particularly α/β and α + β folds, from incorrect
folds. This is an advantageous characteristic to have at
the onset of life, since it implies that sequences formed
largely by the prebiotic set were already amenable to
energetically beneficial mutations that can, on aggregate,
sufficiently stabilize functional conformations and facili-
tate efficient folding even prior to the integration of the
complete 20 amino acid alphabet into the genetic code.

Methods
In order to probe the fitness of the prebiotic amino acid
set to preserve fold information, we designed a computa-
tional method to assess structural information contained
in every other reduced alphabet in an efficient way. This
method has two major components. First, we adopt the
spirit of experimental alphabet reduction efforts by
undertaking virtual mutagenesis to reduce the amino
acid alphabet. Because this is a computational approach,
we can do so expansively for a large, non-redundant set
of single-domain proteins that span fold families, allow-
ing us to observe general patterns regarding alphabet be-
havior across sequence and fold spaces. Second, we
employ mutual information, an information-theoretic
quantity, to evaluate the success of the extensive virtual
mutagenesis in a computationally efficient Monte Carlo
search across the nearly 2 × 1015 ways to reduce the 20-
letter amino acid alphabet into a 10-letter alphabet.
(This aggregate number will be derived below.) Com-
paring the mutual information of each of these re-
ductions allows us to identify unique folding properties
of the prebiotic set. We have applied mutual information
in a wide variety of efforts to tackle questions related to
protein sequence, structure, and energetics [11, 28–31].
We propose that it provides an appropriate and un-
biased measure to gauge structural coding properties of
reduced alphabets. The details of these two components
are discussed below.

Virtual mutagenesis
We generalize this procedure to an n-member reduced
amino acid alphabet Rn . A simple virtual mutagenesis
procedure is applied to rewrite a large non-redundant
data set of single-domain protein sequences using n
amino acids, where n < 20. This entails the formulation
of a substitution rule S , which prescribes how each of
the 20-n amino acids not included in the chosen Rn will
be mutated, causing their elimination in all protein se-
quences in the data set.
This procedure, shown graphically in Fig. 1, involves

layers of recursion. Considering one particular reduced
alphabet Rn

i , it is seen that there are many ways to
formulate the substitution rule S . In particular, each of
the remaining (20-n) amino acids not part of Rn

i can be
mutated into any one of the n amino acids that is part of
Rn

i , giving (n)20-n possible S . A computational strategy
to gauge the fitness of each S is necessary in order to
identify the optimal rule Sopt to associate with the
particular Rn

i . In our work, the optimal rule Sopt is the
best of all (n)20-n possible S that yields the highest struc-
tural mutual information, a quantity we define below. In
our investigation of the prebiotic set, for n = 10, there
are 1010 unique S per R10

i . Enumerating all 10-member
sets yields 184,756 unique R10 . Their product illustrates
the extent of the computational challenge involved—i.e.,
there are potentially more than 1.8 × 1015 virtual muta-
genesis experiments to apply to each of the more than
2000 proteins in our data set.

Evaluation of fitness of S
We designed a measure of fitness of a particular substi-
tution rule S j to reflect the average viability of all amino
acid substitutions across a range of conformations and
sequence contexts that exist in the universe of single-
domain structures. The fitness must consider the myriad
local and long-range interactions that attend each resi-
due position in the sequence.
Given the universe of protein conformations C and

their corresponding sequences S, we employ the
information-theoretic quantity total mutual information
Itotal(C,S| S j , Rn

i ) to measure the fitness of the reduced
sequences {S| S j , Rn

i } transformed by substitution rule
S j under a given alphabet reduction scheme Rn

i .
We consider the aptness of substituting one amino

acid for another in terms of two general interactions:
those occurring in the local sequence that dictate back-
bone conformations, and those occurring far in se-
quence that form the matrix of non-local tertiary
contacts. These interactions dominate knowledge-based
potential functions that perform well in protein folding
investigations [32]. Similar to knowledge-based poten-
tials [29], the total mutual information can be estimated
as a sum of mutual information terms:

I total S;CjS j;R
n
i

� � ¼ Ibb S;CbbjS j;R
n
i

� �

þIc S;CcjCbb;S j;R
n
i

� � ð1Þ

where Ibb(S,Cbb| S j;R
n
i ) refers to the mutual information

between backbone conformation Cbb and the amino acid
sequence S; and Ic(S,Cc| Cbb;S j;R

n
i ) refers to the mutual



Fig. 1 Work flow of the virtual mutagenesis procedure and mutual information optimization. A large data set of protein sequences (whose
structures are known) is rewritten using a given reduced alphabet R10

i , a 10-member subset of the 20 genetically coded amino acids, and S j , the

substitution rule that dictates how the remaining amino acids are to be mutated virtually. For every combination of R10
i and S j , mutual information

can be computed to assess their effectiveness in preserving structural information in the data set of more than 2000 single-domain proteins. Because
there are more than 1015 different combinations of R10

i and S j for which a mutual information can be computed, a Monte Carlo

procedure is implemented to search across the different S j efficiently given each of the 184,756 ways to configure R10
i . In the end, the

percentile rank of the prebiotic set R10
prebiotic is computed from the spectrum of mutual information values given by all other alternative

10-letter alphabets
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information between contacting amino acids in the
tertiary fold and their Cartesian distances Cc within a
specified cut-off. The dependence of Cc on Cbb (in
the second term above) follows from the chain rule
of probability [33].
A number of simplifications are necessary in order to

make this equation workable here. Because we are using
a finite data set to parameterize this equation, it is not
feasible to consider the effect of the entire protein
sequence S on structural features Cbb and Cc, while also
including any dependencies between them. Over-
partitioning the data set to estimate probabilities, as with
any knowledge-based potential, can lead to complete
memorization and information degradation [29].
As a first approximation, we recognize aspects of

sequence that are most relevant to the two interactions
considered: for the backbone conformation Cbb, the local
sequence Sloc exerts the most influence [34], and for the
contact conformation Cc, the contacting amino acid pair Sc
principally determines residue interactions [30]. Another
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simplification can be made if one assumes that the struc-
tural features Cbb and Cc are independent, thereby eli-
minating the dependence of Cc on Cbb in the second term.
To take into account any overlap between Ibb and Ic, one
can introduce weight coefficients, a common strategy in
formulating knowledge-based folding potentials to limit
redundancies among potential terms [32]. Using these
strategies, we can rewrite the equation as:

I total S;CjS j;R
n
i

� �
≈ Ibb Sloc;;CbbjS j;R

n
i

� �

þαIc Sc;CcjS j;R
n:
i

� � ð2Þ

where α is a weight coefficient. In the case of independence
between the two terms, α = 1. Parameterization of these
two informatic terms was done using the Information
Maximization Device [31] with a large non-redundant
data set of high resolution structures, as described
below. The weight coefficient was estimated by
observing the stability of the alphabet reduction Rn

across different alphabet size n, described in the
Results section below.
We employed this equation to estimate the mutual in-

formation for a given Rn
i as follows. Since S, the reduced

sequence of the proteins in the data set, will change as a
result of a particular { S j , Rn

i }, both informatic terms
Ibb and Ic as well as their sum Itotal will also shift. Search-
ing across all possible substitution rules S identifies the
best substitution rule Sopt as that which yields the high-
est mutual information Itotal. We associate this Itotal with
the fitness of the particular Rn

i .
The fitness of the prebiotic alphabet in preserving fold

information is evaluated by comparing its mutual in-
formation I totalðS;CjSopt;R

n
prebioticÞ with the spectra of

mutual information values given by all other reduced sets,
illustrated in the bottom section of Fig. 1. We also imple-
ment a gapless threading procedure (without relaxation)
to approximate the ability of the simplified alphabet to
discriminate natively folded conformations from incorrect
sequence-structure alignments. Based on these compari-
sons, we are able to examine whether the prebiotic alpha-
bet exhibits unusual properties related to structure
information compared to all alternative reduced sets.
We note that the virtual mutagenesis procedure intro-

duced here does not involve a molecular relaxation step
to locally adjust the tertiary conformation in response to
multiple residue substitutions. Because such a step is
computationally demanding, it would not permit a
comprehensive survey of the alphabet and fold spaces.
But since we formulated our contact mutual information
term to account for the interaction of residues within
the context of their tertiary environments, any seriously
destabilizing substitutions should be penalized properly.
This report shows that our methodology has nonetheless
been able to discern fundamental coding behavior of
amino acids that would not have been evident otherwise.

Deriving information-optimized local backbone descriptor
We designed the quantity IbbðSloc;;CbbjS j;R

n
i Þ to meas-

ure the influence of the local amino acid sequence on
the backbone conformation given a particular reduced
alphabet Rn

i and substitution rule S j . For Sloc, we con-
sidered the trimer sequence, known to carry substantial
mutual information with the protein backbone [31]. For
the backbone conformation, we considered the dihedral
angles formed by the virtual alpha carbon bonds, which
are summative descriptors of the path of the protein
backbone [35, 36]. For an amino acid triplet si-1-si-si + 1,
we computed two dihedral angles defined along the
virtual Cα

i-1-C
α
i bond (γi-1) and the virtual Cα

i-C
α
i + 1

bond (γi). These two dihedral angles form a dihedral
angle pair (γi-1,γi) that defines a space analogous to the
Ramachandran space (ϕ,ψ).
Mutual information between sequence and conform-

ation can be estimated by [31]:

I S;Cð Þ ¼
X
S

X
C

p s; cð Þ ln
p cjsð Þ
p cð Þ ≈

1
nd

X
all str
data

ln
f cjsð Þ
f cð Þ

ð3Þ
where C stands for conformation; c is the particular con-
formation; S stands for sequence; s is the particular se-
quence; p is the probability; and f is the frequency,
culled from the structural data set of size nd amino
acids. The summations in the middle equation cover all
instances of S and C in the protein universe, while the
summation in the right-hand side covers all instances of
S and C in the representative, non-redundant structural
data. In order to ensure that each data point does not in-
fluence its own contribution to the mutual information,
a condition that becomes critical as the number of
discrete partitions of f increases [28], the frequencies f
are subtracted by 1 (i.e., removing itself from the
frequency estimates). In addition, where appropriate,
estimates for f are buttressed by background frequencies
to guard against complete memorization [31].
Applying this mutual information equation to estimate

backbone information contained in the trimer sequence
si-1-si-si + 1, given a particular alphabet Rn

i and substitu-
tion rule S j, we have:

Ibb Sloc;;CbbjS j;R
n
i

� �
≈

1
nd

X
all str
data

ln
f γ i−1; γ ijsi−1−si−siþ1
� �

f γ i−1; γ i
� �

ð4Þ
It is necessary to discretize the (γi-1,γi) space due to

the paucity of high quality structural data. The method
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used to determine the information-optimal partition of
the (γi-1,γi) space is based on the Voronoi partition [37].
The Voronoi partition can be established by choosing k
seeds (points in the space) to define k Voronoi cells,
within which every point is closest to the seed that de-
fines the cell. The goal is to maximize the effect of local
sequence on structure—i.e., to compare the information
entropies of sequence-independent and sequence-
dependent propensities and subsequently identify the
Voronoi partition of the space that maximizes this
difference.
A Monte Carlo algorithm was applied to identify the

optimal set of k seeds {v1,v2, …,vk} needed to partition
the space, where vi is a point in the structural space. We
used mutual information as the objective function:

IV Sloc;;CbbjVk
� �

≈
1
nd

X
all str
data

ln
f V k γ i−1; γi

� �jsi
� �

f V k γ i−1; γi
� �� �

ð5Þ
where Vk(γi − 1, γi) is the Voronoi cell to which the
dihedral angle pair (γi-1,γi) belongs. To simplify this
optimization, we restrict the sequence effect to the
central amino acid in position i (instead of considering
the full trimer sequence). To facilitate the search, the
(γi-1,γi) space was discretized to 0.1 radians, covering the
space by 62 × 62 or 3844 equidistant points.
A Monte Carlo run begins with randomly selecting k

initial seeds out of the 3844 points and then assigning
all the (γi-1,γi) angle pairs in the structural data set to
the closest seed in the initial set using Euclidean dis-
tance. With each (γi-1,γi) pair assigned to its Voronoi
cell, the mutual information between sequence and
structure can be computed according to Eq. (5). The
Monte Carlo search commences by generating an alter-
native set of seeds and recomputing the mutual infor-
mation to test whether to accept the new set of seeds.
Two ways of generating alternative seeds were used: one,
by randomly replacing 1, 2, or 3 seeds (or more, depen-
ding on the total number of seeds) by other possible
seeds picked randomly from the 3844 points; and two,
by randomly moving 1, 2, or 3 seeds (or more) to nearby
points in the grid.
This algorithm yields Vk

opt , the optimal discretization of

the (γi-1,γi) space into k points, by maximizing the mutual
information across different sets of seeds {v1,v2, …,vk}
sampled in the Monte Carlo search:

Vk
opt ¼ v1; v2;…; vkf g

arg max IV Sloc;;CbbjVk
� � ð6Þ

This procedure also identifies the optimal k, the num-
ber of cells, since the Information Maximization Device
[31] assigns low mutual information to extreme values
of k. Specifically, for low k, mutual information is low
because the resolution is too coarse to capture nuances
of structural information in sequence; while for high
k, mutual information is also low because the size of
the structural data set becomes insufficient to popu-
late frequency distributions in any meaningful way.
This optimization procedure is illustrated in the left
half of Fig. 2.
Representing the assignment of backbone conformation

into the optimal Voronoi cells as Vk
optðγ i−1; γ iÞ , we can

rewrite the backbone term as:

Ibb Sloc;;CbbjS j;R
n
i

� �
≈

1
nd

X
all str
data

ln
f V k

opt γ i−1; γ i
� �jsi−1−si−siþ1

� �

f γ i−1; γi
� �

ð7Þ

Another kind of backbone structure mutual information
was computed in order to account for uneven frequencies
of amino acids in the data set. In contrast to the quantity
Ibb above, which considers the unweighted triplet con-
tribution to the mutual information, we formulate Ibb,norm
to represent the triplet-sequence normalized case in
which each of the 8000 triplets contribute equally to
the mutual information:

Ibb; norm Sloc;;CbbjS j;R
n
i

� �

≈
1

8000

X
all

trimers

1
nsi−1−si−siþ1

X
si−1−si−siþ1

ln
f V γ i−1; γ i

� �jsi−1−si−siþ1
� �

f γ i−1; γ i
� �

ð8Þ

where the inner summation is done for all occurrences
of the particular trimer sequence si − 1 − si − si + 1, with
nsi−1−si−siþ1 as the number of occurrences; and the outer
summation goes through all 8000 unique trimers in the
data set. This supplemental quantity was computed
to check whether more frequently occurring amino
acids can bias the measure. This normalization ad-
justment removes the bias of amino acid frequency
so that all 20 amino acids become equally likely to
formulate functional structures. This is certainly not
how polypeptides behaved in the prebiotic world, but
we undertake this analysis to see how well the pre-
biotic set can sufficiently cover the sequence-normal-
ized structural space that is available to all local
sequences regardless of relative frequency. (Since it
is not possible to normalize the amino acid compos-
ition for Itotal because of the cooperative nature of
the contact environment, no adjustments were done
to limit composition effect).



Fig. 2 Work flow of the structural descriptor optimization used to parameterize mutual information. The backbone structure is characterized by a
pair of virtual alpha carbon dihedral angles, whose two-dimensional space can be discretized by the Voronoi partition into k states or seeds. The
number of seeds k and their locations in the dihedral angle space can be optimized by a Monte Carlo search using mutual information
as objective function, as illustrated on the left side of the Figure. The tertiary contact structure is characterized by the contact distances
between pairs of non-adjacent residues, with the parameters dmax that describe the maximum distance of interaction and m that dictates
the number of discrete bins by which the length dmax is partitioned. An exhaustive search is made across various dmax and m with mutual information
as objective function. The two sets of information-optimized descriptors (for the backbone and for tertiary contacts) are used to compute the mutual
information Ibb and Itotal used in the virtual mutagenesis procedure (see Fig. 1), and also used to parameterize the energy function ΔU employed in
the threading experiment
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Deriving information-optimized non-local distance-
dependent descriptor

Each residue in the folded protein interacts directly with
its molecular environment. The object of the term IcðSc;
CcjS j;R

n
i Þ is to quantify the structural information

encoded in the contact environment of every residue in
the context of the tertiary structure, which allows us to
assess the ability of any reduced alphabet to preserve
this information. Mutual information is measured on a
per residue basis, computed as the mean sum of the
information contribution of all individual contacts within
a cut-off distance:

Ic Sc;CcjS j;R
n
i

� �
≈

1
nd

X
all str
data

X
all contacts
for residue i
within dmax

ln
f dcjsis j
� �
f dcð Þ

ð9Þ

where dc is the distance (nearest atom approach) between
two amino acid residues si and sj at least five residues
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apart in sequence, with a maximum distance dmax, capped
up to 12Å, around the effective upper range for long-
range interactions [11].
Because there are a range of dmax values, and because

dc can be discretized at different resolutions, the Infor-
mation Maximization Device [31] can be applied to
these two parameters. Using the equation above, setting
R20 (for the full 20-letter alphabet), and using unre-
duced sequences, we tested a range of values [4.0 Å,12.0
Å] for dmax as well as different levels of discretization m
within the range [4100], in order to identify the optimal
parameters automatically. As in previous work [30], the
optimum discretization level is expected to be fine
enough to permit discrimination but not so fine that the
limited data set would not be able to support it. The
Information Maximization Device [31] assures that this
optimum level will be found. This optimization pro-
cedure is illustrated in the right half of Fig. 2.
Monte Carlo procedure to optimize prescriptive alphabet
reduction via virtual mutagenesis
Given a particular reduced alphabet Rn

i , finding the
most optimal substitution rule Sopt —that which gives
the highest mutual information—may be done by an
exhaustive enumeration and evaluation of all 1010

unique ways to configure S . However, this becomes
cumbersome because the virtual mutagenesis procedure
involves rewriting the sequences of all the proteins in a
data set of 2141 structures and then recalculating the
mutual information for each unique S . An alternative is
to apply another Monte Carlo search, using mutual
information as objective function, to identify Sopt , a
reasonable approach for search spaces that are particu-
larly smooth. This approach avoids having to evaluate all
1010 unique states of S.
The computational procedure, shown in Fig. 1, is as

follows: (1) a virtual mutagenesis of protein sequences in
the structural data set is made globally to reduce the
alphabet to the desired level Rn

i by using an initial,
randomly chosen substitution rule Sinitial ; (2) the mutual
information is computed; (3) the substitution rule is
slightly altered (by reassigning a random number of
amino acids from one member of the reduced alphabet
to another), the virtual mutagenesis is reapplied follow-
ing the new rule S0, and the mutual information is recal-
culated; (4) the new substitution rule S0 is accepted if
the mutual resulting information is lower, or discarded
otherwise; (5) steps 3–4 are repeated until the mutual
information does not decrease any further for 10,000
iterations, resulting in Slocal max ; (6) steps 1–5 are
repeated 20 times; (7) the lowest mutual information
among the 20 maxima Slocal max identifies the optimal
substitution rule for the given reduced alphabet.
Frequently, we find that more than one of the 20 ma-
xima Slocal max gives Sopt . Comparing results of the
exhaustive enumeration with this Monte Carlo procedure
for 100 randomly chosen reduced alphabets, we observe
that all of the Sopt was identified by the latter, while
requiring only 106 instead of 1010 iterations. This compu-
tational shortcut becomes especially beneficial because
optimization for Sopt has to be done for all possible 184,
756 reduced alphabets.
Randomized sequence threading to assess the ability of
reduced sequences to preserve fold information
Gapless threading without relaxation using a knowledge-
based potential was done to probe the ability of the
informatic measurements for reduced amino acid sets to
discriminate native from incorrect sequence-structure
alignments. This simulation was done to evaluate the
potential for reduced sequences to be optimized for a
crucial characteristic of evolved soluble proteins: a
pronounced gap between the energy of the native fold
and the mean energy of incorrect folds. Such energy
landscapes depict a folding process that occurs with
relative ease and that results in native conformations
with pronounced stability mediated by an aggregate of
beneficial interactions that act with “minimum frus-
tration” [38]. It is of interest to know whether this
property was already operational early in the evolution
of the first functional polypeptides.
In order to neutralize amino acid composition effects

while retaining the ability to do fold recognition regard-
less of sequence length, the strategy adopted here was to
randomly shuffle protein sequences and then remount
them onto the original structure [39, 40]. This has been
shown to produce statistics very similar to the more
traditional approach to threading (by mounting a se-
quence onto different folds) while reducing computing
time [32]. Because this sequence shuffling simulation is
being done to 2141 single-domain proteins multiple
times, for each of the 184,756 different sets of 10 amino
acids, relaxation of the threaded conformations is not
feasible. It is assumed, however, that a general appro-
ximation to the sequence-structure alignment is still
informative because of the vastness of the sequence-
structure space that we are permitted to explore with
this approximation.
The potentials used to gauge threading fit are derived

by recasting propensities used in mutual information
measurements as empirical energies using the Boltz-
mann formalism [29, 41]. The resulting potentials of
mean force, derived from the Boltzmann equation re-
lating propensities to free energies, give a first appro-
ximation of the energetics of folding. To summarize,
the Boltzmann formalism relates observed probabilities
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associated with conformation C and sequence S to the
potential ΔU:

ΔU ¼ −kT ln
p CjSð Þ
p Cð Þ ð10Þ

where k is the Boltzmann constant and T is the absolute
temperature. If we consider the backbone potential and
the contact potential as components of the total poten-
tial, the equation becomes:

ΔU ¼ ΔUbb þ ΔUc

¼ −kT ln
p CbbjSlocð Þ
p Cbbð Þ −kT ln

p CcjScð Þ
p Ccð Þ ð11Þ

Applying this to discrete instances of backbone states
cbb and contacts cc in a given protein, the equation
becomes:

ΔU ¼ −kT
X
all

residues

ln
p cbbjslocð Þ
p cbbð Þ −kT

X
all

residues

X
all

contacts

ln
p ccjsis j
� �
p ccð Þ

ð12Þ
The two component terms above are parameterized

the same way as Eqs. (7) and (8), estimating probability
distributions as frequency distributions derived from the
same non-redundant data set of protein structures.
The equation above can be used to situate the

energy score of the native sequence-structure align-
ment, ΔUprebiotic, in a spectrum of scores given by
repeated threading of shuffled sequences onto their
respective conformations. We found that 500 sets of
shuffled sequences provided a converging estimate of
the difference between ΔUprebiotic and < ΔUshuffled>,
the mean energy of incorrect alignments. This dif-
ference measures the relative stability of the native
conformation against alternative (incorrect) confor-
mations. With repeated measurements across different
reduced alphabets, the ability of the prebiotic alphabet
to preserve this property can be assessed.
In the end, discrimination is measured by total diver-

gence, the difference between the mutual information of
the native-sequence-structure alignment and the mean
divergence, a quantity derived from the average energy
scores of 500 shuffled sequence-structure alignments.
Total divergence works as well as the more familiar Z-
score in measuring the effectiveness of potential functions
in identifying native sequence-structure alignments [29].

Structural data sets
A data set of 4641 non-redundant high-resolution X-ray
crystal structures was culled from PISCES [42] with pair-
wise sequence identity of no greater than 25%, resolution
of at least 2.0 Å, and R-factor cutoff at 0.25. This set was
used to optimize the parameters for the structural
descriptors in the mutual information equations (Eqs.
7–9) and the threading potential (Eq. 12), and also to
derive the structural propensities f in these equations.
The Information Maximization Device [31] was ap-
plied to achieve the highest resolution possible for
the backbone and contact structural descriptors given
this data set.
For the survey of fold and alphabet spaces, we restricted

the virtual mutagenesis simulation to the subset composed
of single-domain proteins, numbering 2141 high reso-
lution structures. The SCOP database [43] was used to
classify these single-domain structures into fold classes.

Results
We examined the performance of all alphabet reductions
Rn in preserving fold information across all single domain
folds, in order to explore the viability of alphabet reduc-
tion across fold space. We note that the alphabet reduc-
tion patterns detected in this work are global properties,
coming from averaged structural propensities exhibited by
the reduced sets across a variety of protein sequences
from different fold families and of diverse functions. To
accomplish the exploration across reduced alphabet space
and fold space, we employed virtual mutagenesis (Fig. 1)
using an information-theoretic objective function, the
mutual information (Eq. (2), designed to embody local
sequence effects on the backbone and long-range
sequence effects on side chain contacts, two principal
sequence-dependent interactions in folded proteins.
We also examined the case where alphabet reduction

was done under a revised objective function containing
only local sequence effects on the protein backbone
(Eqs. 7 and 8), in order to test particular hypotheses on
the emergence of early proto-enzymes in the prebiotic
world. Finally, we applied a fold recognition (threading)
procedure to assess the ability of reduced alphabets to
retain the discriminatory power of the full alphabet in
determining the native fold.
We defined structural information as a combination of

two sequence-dependent interactions: that of the local
backbone and that of long-range residue pair contacts.
To capture the greatest possible mutual information
given limited structural data, we simplified the structural
descriptors into discrete states, and chose the best
discretization by an optimization for mutual infor-
mation, using the Information Maximization Device
[31]. We then used these optimized descriptors to
parameterize the mutual information equations in sub-
sequent alphabet reduction procedures.

Optimizing sequence-dependent local backbone and
long-range contact information
We considered the effect of the trimer sequence (si-1-si-si+1)
on the dihedral angle γi-1 of the virtual alpha carbon bond
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between (si-1-si) and the dihedral angle γi of the virtual
alpha carbon bond between (si-si + 1). A Monte Carlo
optimization (Fig. 2) using mutual information as the
objective function was applied to different levels of parti-
tion of the space, represented by k, from k = 8 to k = 25.
We found that k = 16 yielded the highest mutual informa-
tion. This optimal k was subsequently chosen to represent
backbone structure in this study. The effective outcome of
this optimization is the partition of the (γi-1,γi) space into
Voronoi polyhedra specified by the seeds enumerated in
Table 1. Figure 3 illustrates this optimal tessellation, which
we subsequently used to parameterize the local backbone
interactions, as expressed in Eq. (7).
The descriptor used for the contact mutual in-

formation is the distance-dependent contacts between
residue pairs within dmax at nearest atom approach,
which aims to encapsulate the intramolecular environ-
ment of each residue in the folded protein. An exhaust-
ive procedure (Fig. 2) was implemented to find the most
informative value for dmax as well as the number of
discrete bins m that subdivide the contact distance.
Figure 4 shows the mutual information arising from
different values of dmax and discretization levels m. We
find that the mutual information is maximal when
dmax = 10 Å and m = 50, and used these values to
parameterize the distance-dependent interactions as
expressed in Eq. (9).
Table 1 Optimal seeds for Voronoi tessellation of backbone
dihedral angle pair

seed # γi-1 γi
1 0.0 2.4

2 0.3 2.8

3 0.6 5.9

4 1.8 3.8

5 1.9 2.2

6 2.1 1.5

7 2.2 5.7

8 2.5 2.1

9 2.6 2.1

10 3.0 1.3

11 4.6 4.0

12 4.6 0.9

13 4.7 6.0

14 4.8 5.0

15 4.9 2.5

16 6.1 6.0

The variables γi-1 and γi characterize the dihedral angles (in radians) operating
on the virtual Cαi-1-C

α
i and Cαi-C

α
i + 1 bonds respectively. These seeds define

the information-optimal Voronoi tessellation of the virtual dihedral angle
space into 16 polyhedra (illustrated in Fig. 3). Each point in the two-
dimensional space can be assigned to one of the 16 partitions to which seed
it is closest, based on Euclidean distance
Combining local and long-range sequence-dependent
structural information
Due to the cooperative nature of protein folding, over-
laps exist in the mutual information contained in local
backbone structure and in long-range contact environ-
ments of residues. It is difficult to disentangle this
overlap or to consider a grand mutual information
equation encompassing both interaction domains due to
the multivariate nature of such an equation vis-à-vis the
limited size of the structural database with which to
parameterize it. A common solution is to do a weighted
sum of the two terms, as in Eq. ((2), where α is the
weight coefficient. To determine an appropriate range of
α, we examined the stability of the reduced alphabets
across different weights, to see how dependent our
results are on such weights. We observe that the
optimized reduced alphabets are remarkably stable; they
do not change across a wide range of weights, defined
by α = [0.05,20.0] (effectively setting relative ratios up to
a factor of 400), and only at extreme values of α does
the influence of the over-weighted interaction become
dominant. That is, near α = 0, local backbone pro-
pensities of the amino acid sequence dominate the
patterns observed in the alphabet reduction procedure;
conversely, at α >> 20, long range propensities dominate.
This observation accords with other observations of the
high consistency of amino acids in coding both local and
long-range interactions [11]. To simplify our computa-
tion, we selected the neutral weighting, at α = 1, to
equalize the structural information contribution of each
term. This weight coefficient has been found to also be
optimal in a rigorous study of knowledge-based potential
functions [32].

Optimal reduced alphabets and structural information
measurements for all possible alphabet reductions
We considered two forms of the information-theoretic
objective function: one that considers only the effect of
the local sequence on backbone structure, Ibb (Eq. 7), and
another that considers as well a non-local interaction
between residues occurring in close proximity in the
folded protein, Itotal (Eq. (2). The former simulates
prebiotic conditions where short polypeptides aggregated
non-specifically with other cofactors, nucleotides, and
organic molecules without well-defined tertiary folds. In
such conditions, the primary determinant of structural
propensity for these earliest polypeptides with nascent
functions must have been the local sequence. Considering
only the local sequence effect on backbone structure
under a crowded non-specific environment, as expressed
in Ibb (sequence-unweighted, Eq. 7) and Ibb,norm (triplet-se-
quence normalized, Eq. 8) thus measures the fitness of a
reduced alphabet in such early conditions. In contrast, in-
corporating specific intra-sequence non-local interactions



Fig. 3 The optimal Voronoi tessellation of the virtual alpha carbon dihedral angle pair. The optimal number of polyhedra was found to be 16,
and the seeds for each of these are specified in Table 1. This figure includes only 1000 random data points for each of the 16 polyhedra for
illustration purposes only. (Significantly more data points are contained in the structural data set used to optimize this space)
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between residues into the objective function, as expressed
in Itotal, permits an evaluation of the fitness of reduced
alphabets in preserving fold information in the context of
the folded environment.
Using a Monte Carlo search, we identified Sopt for

each of the 184,756 unique R10
i , for the Ibb, Ibb,norm, and

Itotal objective functions, and then ranked them with
respect to these informatic quantities. The optimal sub-

stitution rules Sopt for the reduced alphabets R10
best for

five SCOP classes examined in this work are summa-
rized in Table 2. The optimal substitution rules for the
prebiotic set are also included in the table. Noting that
these substitution rules represent averaged behavior
across different folds within the major fold classes, we
make a number of observations. The substitution rules
and the best reduced alphabets appear to be dependent
on fold class. The prebiotic set overlaps significantly
with the optimal reduced alphabet for α/β and α + β
folds for Ibb; specifically, they differ only on one amino
acid, where I is displaced by K. For the other folds, the
numbers of differing amino acids are greater: two for
small proteins (IL displaced by CK), and three for all-α
(ITV displaced by KNQ) as well as for all-β (AIL dis-
placed by HKN). A similar pattern emerges for the
optimization on Itotal. The number of differing amino
acids is minimal for α/β and α + β folds: for the α/β fold
class, I and T are displaced by K and Y; and for the α + β
fold class, I and S are displaced by R and Y. The num-
bers of differing amino acids for the other folds are again
greater: three for all-α (IST displaced by CQY), four for
small proteins (EILT displaced by CFRY), and five for
all-β (ADEIL displaced by CFNRY). The substitution



Fig. 4 Mutual information measurements for different cut-off distances (Å) and different numbers of bins made to characterize the distance-
dependent contact interaction. The optimum was found to be dmax = 10.00 Å, and the number of bins m = 50
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rules reflect expected patterns based on polarity: hydro-
phobic amino acids are recruited to replace other hydro-
phobic amino acids, and polar/charged amino acids
likewise replace other polar/charged amino acids. These
substitution patterns are consistent with earlier findings
on structure-based amino acid clustering [11].
Table 2 Optimal and prebiotic reduced alphabets and substitution

Interaction domain Fold class
[SCOP #]

Sopt

ACD

backbone (Ibb) all-α [1] AAD

all-β [2] TVD

α/β [3] ALD

α + β [4] AVD

small [7] ACD

backbone + contact (Itotal) all-α [1] ACD

all-β [2] TCN

α/β [3] AVD

α + β [4] AVD

small [7] ACD

SoptðR10
bestÞ refers to the optimal substitution rule for the reduced alphabet with th

rule for the prebiotic reduced alphabet. The amino acids are indicated in alphabetic
the reduced alphabet, and those not in bold are the amino acids that substitute for
Ibb refers to the mutual information between local trimer sequence and alpha-carbo
includes Ibb plus the mutual information arising from contacting residues in tertiary
To assess the effectiveness of Rn
prebiotic in preserving

fold information compared to the spectrum of alterna-
tive reduced alphabets, we counted the number of alpha-
bets (out of 184,756) that have Ibb, Ibb,norm, and Itotal
values higher than those of the prebiotic set. Results,
summarized in Table 3, show that sequences formed
rules for different SCOP fold classes

ðR10
bestÞ

EFGHIKLMNPQRSTVWY
SoptðR10

prebioticÞ
ACDEFGHIKLMNPQRSTVWY

ELGQLKLANPQASKLAL AADEAGEIELEDPAASTVAA

EVGHVKVVNPTTSTVVV ATDEVGTITLIDPTTSTVVV

ELGSVKLLDPEKSTVAL AVDELGDIELIDPEESTVLL

EVGTVKLLDPEKSTVLV AVDEIGTIELLDPETSTVIV

ECGSVKVKDPSTSTVVV ASDETGSITLLDPTTSTVII

ELGQLELADPQQEELWY AADEIGSIELLDPEESTVLA

SFGTVTVVNPTRSTVYY AVDEVGTISLVSPTTSTVIV

ELGSVKLYDPKKSSVYY AVDEIGSIELLDPESSTVIT

ELGTVRLVDPRRTTVYY AVDEIGTITLIDPSTSTVIT

DFGYVRFFSPSRSSVYY AVDEVGSITLISPTTSTVTT

e highest mutual information; SoptðR10
prebioticÞ refers to the optimal substitution

al order by their single-letter code. The amino acids in bold are included in
those not in the reduced alphabet. Two interaction domains are considered:
n virtual dihedral backbone; Itotal refers to the total mutual information that
structure



Table 3 Mutual information ranking for the prebiotic reduced alphabet

Interaction domain Fold class
[SCOP #]

Unweighted mutual information (I) Normalized mutual information (Inorm)

R10prebiotic rank R10
prebiotic percentile rank (%) R10prebiotic rank R10

prebiotic percentile rank (%)

backbone (Ibb) all data [1–4, 7] 48 99.97 859 99.54

all-α [1] 3351 98.19 1688 99.09

all-β [2] 2834 98.47 1899 98.97

α/β [3] 13 99.99 124 99.93

α + β [4] 52 99.97 396 99.79

small [7] 270 99.85 878 99.52

backbone + contact (Itotal) all data [1–4, 7] 7389 96.00

all-α [1] 18,289 90.10

all-β [2] 18,333 90.08

α/β [3] 4127 97.77

α + β [4] 5325 97.12

small [7] 104,252 43.57

The table shows the rank of the prebiotic reduced alphabet, in terms of mutual information (for both Ibb and Itotal), among the spectrum of all 184,756 possible
10-amino-acid reduced alphabets. The unweighted mutual information is described in Eq. (7) for Ibb and in Eq. ((2) for Itotal, while the normalized mutual
information Ibb,norm is described in Eq. (8)
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from the prebiotic set preserve backbone information
across all folds better than most any other reduced
alphabet—i.e., ranking 48th out of 184,756 alphabets (at
99.97 percentile) for the unweighted measure Ibb, and
859th (at 99.54 percentile) for the normalized measure
Ibb,norm. This points to the ability of the prebiotic set to
completely cover the backbone structure space of extant
functional folds. The optimality of the prebiotic set is
somewhat reduced when the tertiary structure environ-
ment is included in the measure, ranking it 7389th (at
96.00 percentile) when using the measure Itotal, still a
significant ability to retain structural information but
not as impressive as the backbone-only case.
Distinguishing among the different fold classes as

defined by SCOP, we observe, using the unweighted meas-
ure Ibb, that the prebiotic set covers the backbone space of
α/β, α + β, and small proteins impressively well, ranking
13th, 52nd, 270th over-all (at 99.99, 99.97, and 99.85
percentiles) respectively, while the all-α and all-β proteins
are covered moderately well, ranking at 3351st and 2834th
(98.19 and 98.47 percentile) respectively. The normalized
measure Ibb,norm bears the same general patterns in
ranking but with less variation, ranking the prebiotic set at
124th, 396th, and 878th (99.93, 99.79, and 99.52 percen-
tiles) for α/β, α + β, and small proteins respectively, and
1688th and 1899th (99.09 and 98.97 percentiles) for all-α
and all-β proteins respectively. The comparable outcomes
for Ibb and Ibb,norm indicate that variation in amino acid
frequency has a minimal effect, if any, on our results.
When the full structural information Itotal is used to

evaluate the behavior of the prebiotic set in different fold
classes, a different pattern emerges. For α/β and α + β
proteins, the prebiotic set retains the ability to preserve
structural information, ranking it 4127th and 5325th (97.77
and 97.12 percentiles) respectively. However, for all-α and
all-β proteins, a significant degradation is observed, pushing
the ranking of the prebiotic set to 18,289th and 18,333rd
(90.10 and 90.08 percentiles) respectively. For small pro-
teins, the prebiotic set lands on its worst ranking of all, at
104,252nd (43.57 percentile).
From these measurements, the following key obser-

vations can be made. First, the prebiotic set is superior
in covering the backbone structural space inhabited by
extant proteins. Second, when the necessary tertiary
contacts in the context of the folded proteins are con-
sidered, the ability of the prebiotic set to retain structural
information depends greatly on the fold class. The pre-
biotic set has near-optimal coverage of the structural
space of α/β proteins, and to a slightly lesser extent, α + β
proteins. This is true when the backbone structure is
considered exclusively (both unweighted and sequence-
normalized measures) or when the residue contact en-
vironment is considered. Third, the prebiotic set performs
least optimally in preserving fold information in all-α and
all-β proteins, particularly when the tertiary interactions
present in folded proteins are considered. Fourth, while
the backbone space for small proteins is significantly
covered by the prebiotic set, their residue contact envi-
ronments require significantly different reduced alphabets
from the prebiotic set.

Gapless threading by random sequence shuffling
Natural proteins built from the full genetically-coded
amino acid alphabet have the crucial ability to distinguish
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correct folded conformations from all other incorrect
folds, by virtue of the prominent energy gap that charac-
terizes the energy landscape. Gapless threading was done
to assess the ability of the reduced prebiotic set to main-
tain such discrimination. Results of the threading simula-
tion, summarized in Table 4, show that, for threading
using the backbone potential only, there are only 6
reduced alphabets (out of 184,756, or 99.997%) that are
better than the prebiotic set at discriminating native
sequence-structure alignment from incorrect alignments.
For threading using the total potential, which incorporates
non-local interactions, there are 1858 10-set alphabets
that are better than the prebiotic set (99.00%), still sig-
nificant but not extraordinarily so.
Threading results for proteins partitioned by SCOP

fold class reflect general observations seen in the mutual
information measurements. Reduced sequences created
from the prebiotic set are able to discriminate native-like
conformations from incorrect folds for α/β and α + β
folds better than for all-α and all-β proteins. Considering
only the backbone structure space, only 2 and 30 other
reduced alphabets do better in threading discrimination
than the prebiotic set for α/β and α + β proteins respec-
tively. When long-range interactions are taken into ac-
count, the discrimination of the prebiotic set in α/β and
α + β folds is superior to all but 525 (99.34 percentile)
and 327 (99.82 percentile) of all other reduced alphabets
respectively. The prebiotic set performs the worst in dis-
criminating the native conformation of small proteins
Table 4 Gapless threading results
Fold class [SCOP #] R10

prebiotic

ΔUnative/kT <ΔUincorrect> /kT ΔUnative/kT - <ΔUincorrect> /kT

backbone interaction domain (Ibb)

All data [1–4, 7] − 0.2161 0.3590 − 0.5751

α only [1] − 0.4649 0.2909 − 0.7558

β only [2] − 0.1014 0.3363 − 0.4377

α/β only [3] − 0.2453 0.3497 −0.5951

α + β only [4] − 0.2139 0.3419 − 0.5558

small only [7] 0.0175 0.3503 −0.3328

backbone + contact interaction domain (Itotal)

All data [1–4, 7] −0.3429 0.6667 − 1.0096

α only [1] − 1.1000 0.5849 − 1.6848

β only [2] 0.1886 0.7320 −0.5434

α/β only [3] − 0.2961 0.6558 − 0.9519

α + β only [4] − 0.2240 0.6939 − 0.9180

small only [7] 0.9708 0.7631 0.2077

This table shows computed values of the knowledge-based potential defined in
refers to the free energy of the reduced sequence in its correct tertiary structure
reduced sequence mounted on the same tertiary structure. The difference betw
sequence for its correct conformation. The substitution rules for both the prebio
prebiotic set is measured in terms of this discriminative ability, comparing this v
reduced alphabets
against incorrect folds, ranking only 10,112nd (94.53
percentile) compared to alternative alphabets.
Discussion
Explorations of the creation of the first living cells on
Earth, born from early organic molecules that catalyzed
reactions for self-propagation and metabolism, can be
aided by studies of the biochemistry of current living
organisms. Since it is possible that the ingredients that
built these prebiotic organic molecules are similar to
what composes extant biosystems, we may be able to
learn about primordial evolution from our current
biochemical inventory [44]. Proteins are such an integral
part of every aspect of life that the story of how life began,
persisted, and flourished must necessarily account for the
emergence and propagation of peptides in the evolu-
tionary timeline. Extant proteins should provide a rich
catalog of molecular fossils that potentially bear
sequence and structural artifacts dating back to the
earliest functional peptides.
Studies have posited a temporal division in the emer-

gence of the twenty genetically-coded amino acids, iden-
tifying a subset as prebiotic, likely existing before cellular
life began, and possibly participating in the formation of
the earliest functional peptides [2, 5, 6]. Most conclude
that 10–12 amino acids, including {A,D,E,G,I,L,P,S,T,V},
appeared early, with the rest gradually added to the reper-
toire as their anabolic pathways became established [1, 8].
R10
best

Rank of R10
prebiotic

(out of 184,756)

ΔUnative/kT <ΔUincorrect> /kT ΔUnative/kT - <ΔUincorrect> /kT

− 0.2171 0.3609 − 0.5781 7

− 0.4647 0.4260 − 0.8907 451

− 0.1134 0.3983 − 0.5116 455

− 0.2482 0.3665 − 0.6148 3

− 0.2154 0.3667 − 0.5821 31

0.0420 0.4493 −0.4073 4

− 0.3676 0.7367 −1.1043 1858

− 1.1703 0.7039 −1.8743 3260

0.1724 0.8348 −0.6624 1013

−0.3251 0.7188 − 1.0439 526

− 0.2384 0.7876 − 1.0260 328

0.6454 0.7844 − 0.1390 10,112

Eq. (12) and the fitness rank of the prebiotic set. The quantity ΔUnative

. The quantity <ΔUincorrect > refers to the mean free energy of the shuffled
een these two quantities measures the discriminative ability of the reduced
tic set and the best reduced set are outlined in Table 2. The rank of the
alue to those given by the spectrum of 184,756 alternative
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Some have even postulated a specific order of emergence
for these amino acids [45–47].
A fundamental question is whether polypeptide chains

formed predominantly from the set of prebiotic amino
acids were sufficient to formulate functional molecules
to begin and sustain the first life. Though we may not
know the full repertoire of functions that arose then, we
can surmise that some of the functions of modern pro-
teins must have originated from these primordial forms
which have endured through cycles of advantageous
modifications. Similarly, because there is a limited num-
ber of folds today compared to the diversity of natural
sequences [22, 23], useful folds are hypothesized to have
persisted from the moment they arose in the timeline of
molecular evolution [24], such that the set of extant
protein structures has arisen from accretion and must
include traces of the earliest folds. Thus, a way to
explore the viability of the prebiotic amino acids in
giving rise to functional folds is to examine their ability
to preserve structural information and code for extant
folds despite drastic alphabet reduction.
In line with these propositions, experimental studies

have aimed to simplify the amino acid sequence of
particular proteins without altering structural and/or
functional integrity [12–18, 48, 49]. These demonstra-
tions provide a compelling proof of concept that reduced
alphabets, including the prebiotic set, can formulate
functional folds. In this study, we sought to know if this
growing experimental evidence can be generalized across
diverse sequences and folds by examining whether these
patterns stem from fundamental structural properties of
optimized reduced sets and of the prebiotic amino acid
set in particular.
To explore the structural properties of reduced alpha-

bets, we designed a way to quantify the ability of any
alphabet to retain sufficient structural information to
preserve folds, by applying virtual mutagenesis to single-
domain protein sequences of diverse conformations.
Two principal measures of structural information were
computed—one is the ability of the local sequence to
encode backbone structure, and the other includes the
ability of the contacting residues far away in sequence to
encode the folded molecular environment. The former,
Ibb, chiefly measures the local backbone propensities of
sequences, but since the mutual information is para-
meterized using X-ray crystal structure data of folded
proteins, this quantity more accurately characterizes
backbone propensities of polypeptides as they are
subjected to crowded conditions with many close but
non-specific molecular interactions. Thus, it is appro-
priate to use Ibb to probe the functional fitness of the re-
duced alphabet in primordial conditions, where short
peptides must have interacted fleetingly with and/or
bound non-specifically to other molecules—including
other peptides, nucleotides, mineral surfaces, metal ions,
and other cofactors—in some density. The latter, Itotal,
considers the full intramolecular structure of the folded
sequence, specified by the backbone conformation and
the matrix of non-local contacts that attend every
residue position. This combined quantity effectively
measures the ability of a reduced alphabet to formulate
complete folds. Our information-theoretic approach
allows us to systematically compare the fitness of the
prebiotic set with all other possible 10-member alpha-
bets, and consequently to detect whether the set of
prebiotic amino acids exhibits unusual structural coding
properties relevant to proteogenesis. We outline aspects
of the prevailing story of molecular evolution below in
light of the results of our work.
First, we can learn about the kinds of conformations

that may have been generated prebiotically. Though
short peptides do not exhibit conformational specificity
because of the absence of a stabilizing tertiary frame-
work, their backbones bear particular structural propen-
sities [50, 51], depending significantly on the local
sequence [52], as seen in the effect of the amino acid
and its immediate neighbors on the phi-psi dihedral
angles [31, 53–55]. These peptides likely aggregated non-
specifically and also may have formed reasonably compact
structures in interaction with other molecules and ions to
form early functional conformations [56–62]. Compaction
may have been necessary to avoid hydrolysis and may have
facilitated the enrichment of soluble proto-enzymes [63].
While short amino acid sequences are not expected to
condense into well-defined conformations, we can gauge
the structural permissivity of sequences formed by re-
duced alphabets. The quantity Ibb measures the extent to
which the reduced alphabet is able to formulate sequences
with structural propensities resembling the backbone dis-
tribution of extant proteins as they are subjected to a stat-
istical ensemble of nonlocal interactions in the molecular
environment. The higher the Ibb, the better the alphabet
preserves the backbone structural information encoded in
the full-alphabet sequence.
The extraordinarily high ranking of the prebiotic set

based on Ibb shows useful characteristics of the poly-
peptides that would have arisen in early evolution. We
observe that such prebiotic peptides optimally embody
the backbone structural propensities of the extant
universe of functional single-domain folds. Thus, if they
were to formulate useful structures, they ought to have
given rise to the kinds of local forms and surfaces that
we observe in current proteins. These structures in
principle could then participate in rudimentary bio-
chemical catalysis.
Examination of Itotal gives us a broader picture of the

ability of reduced alphabets to preserve the structural
information in full-alphabet sequences of extant proteins.
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We observe that the ranking of the prebiotic alphabet,
while still in the 96th percentile, decreases markedly
compared to its superior ranking for Ibb. This suggests
that the prebiotic set encodes functional backbone confor-
mations optimally and functional tertiary conformations
near-optimally. The prebiotic set alone is sufficient to code
for the distribution of backbone conformations found in
extant proteins, while a few of the later amino acids are
needed to fully code for the observed range of tertiary
conformations. These later amino acids appear significant
to structure in the way they stabilize non-local tertiary
interactions, implying that if the prebiotic set formulated
nascent functional structures alone, they would have
displayed marginal stability. This is significant because it
is thought that folds of marginal stability, postulated to
have arisen as life began, facilitated the evolution of
diverse proteins of various functions [64–67]. Early tran-
sient structures were likely functionally promiscuous,
accomplishing multiple roles in early metabolic pathways.
Their marginal stability meant that, as life pushed towards
more complex pathways, ancestral proteins more easily
evolved with stepwise sequence mutations towards stable
structures with more specific functions. Thus, tertiary
conformations formed by early polypeptide sequences
dominated by the prebiotic set provided a fertile ensemble
of proto-enzymes that, in progressive molecular selection,
could have generated the kinds of conformations that
currently exist.
We then examined the fitness of the prebiotic set to

encode backbone and tertiary conformations of indivi-
dual SCOP fold classes. Using the rank of the mutual
information given by the reduced alphabets, we find that
the prebiotic set is most able to encode structures asso-
ciated with the α/β fold, followed closely by the α + β
fold. Structures found in folds consisting of all-β and all-
α structures were less amenable to being conceived by
the prebiotic set. The tertiary matrix of small proteins
do not appear to be encoded by the prebiotic set at all.
Thus, a proteomic system dominated by prebiotic amino
acids would be expected to formulate mostly α/β and
also some α + β folds, if any folds arise at all. Conversely,
folds that contain all-α and all-β structures, along with
small proteins, are the least likely to form. Examining
the optimal 10-amino acid alphabets for the different
fold classes (Table 2), we find that there is increasing
dependence on the later (non-prebiotic) amino acids for
the stabilization of conformations belonging to all-α, all-
β, and small proteins. Therefore, if each of the 20 ca-
nonical amino acids actually emerged at different points
in time, and if the prebiotic set approximately preceded
the later ten, then our results hold that the α/β fold class
emerged first in evolution, followed closely by α + β, and
then later on the all-α fold class, all-β fold class, and
small proteins. This timeline comports with other
proteomic studies hypothesizing the order of proteogenesis
[25–27, 68, 69]. The mixed α-β folds, not coincidentally,
appear to dominate metabolic functions that would have
been critical to the formation of early pathways [68, 70].
A number of bioinformatic studies have observed a shift

in amino acid usage in proteins, consistent with the hy-
pothesis that the prebiotic amino acids dominated ances-
tral sequences, with later amino acids entering the
proteome successively [6, 71–75]. The optimal alphabets,
based on the two measures Ibb and Itotal, adhere to the
temporal order of the emergence of amino acids vis-à-vis
that of the emergence of different folds. Trifonov [45]
hypothesized the following order for the later 10 amino
acids, based on a synthesis of multiple genomic and prote-
omic criteria and hypotheses: R/(Q,N)/H/K/C/F/Y/M/W;
Sobolevsky & Trifonov [46], in an analysis of octapeptides
in bacterial proteomes, produced the following order: R/
Q/N/K/F/H/C/M/Y/W; and Liu et al. [47], from a statis-
tical analysis of amino acid usage across species, proposed
the following order: K/R/N/F/Q/Y/M/H/W/C. According
to our findings pertaining to Ibb optimization, in order to
encode the backbone conformations of all-α and all-β
proteins optimally, amino acids towards the beginning of
the three temporal orders—N, K, Q, and H—in addition
to the prebiotic set, appear to play significant roles.
According to Itotal optimization, however, the amino acids
towards the end of the order—C, F, Y, and W—become
significant for tertiary stability. Cysteine is a creative
addition to the protein building block for its ability to
form disulfide bonds, while the aromatics phenylalanine
and tryptophan scaffold a highly hydrophobic core. A
deeper analysis of such amino acid reduction and substitu-
tion patterns is necessary to discern the roles each amino
acid takes in the emergence of stable functional structures
along the evolutionary timeline.
Finally, our work illuminates an important energetic

aspect of sequences formed by the prebiotic amino acids.
Modern proteins are said to be “minimally frustrated,” a
characteristic referring to the consistently stabilizing
additive interactions throughout the sequence, whose
energy landscape features a pronounced gap between
the spectrum of energies of the decoy ensemble and the
energy of the native state [38]. Such an energy gap
appears to be the result of energetically beneficial muta-
tions that accrue, in the course of evolution, across the
sequence. At which point in proteogenesis this property
arose in ancestral proteins remains an open question.
From our threading results, we observe that reduced
sequences composed of prebiotic amino acids exhibit an
exceptionally wide energy gap compared to all other
alternative reduced alphabets. Thus, it appears that
prebiotic sequences, especially those that form the
earliest postulated folds α/β and α + β, are already
amenable to mutations that increase the energy gap
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and smoothen the energy landscape, permitting efficient
folding. It is noteworthy that this important folding
property may have already been operative in ancient
proteomes prior to the emergence of the full twenty
genetically-coded amino acids.
Conclusions
If the first polypeptides were constituted predominantly
by prebiotic amino acids {A,D,E,G,I,L,P,S,T,V} on early
Earth, then it would have been a significant advantage if
this reduced alphabet bore some intrinsic propensity to-
wards functional forms compared to other reduced alpha-
bets. We investigate this conjecture by demonstrating the
capacity of reduced sequences to form the kinds of struc-
tures that compose extant proteins, working from the
assumption that ancestral proteins resembled proteins in
our current proteomic inventory structurally and func-
tionally. Our structure-based analysis probes the reduci-
bility of the sequence space of all extant single-domain
folds via a systematic virtual mutagenesis procedure.
The methodology involves an efficient search across
10-member set reductions of the amino acid alphabet
space (numbering more than 1015) in the virtual muta-
genesis of more than 2000 single-domain proteins, and
evaluating the fitness of each substitution using an opti-
mized information-theoretic metric that encompasses
both local backbone and long-range contact interactions.
We find that the prebiotic set is optimal in encoding the

spectrum of local backbone structures that appears in the
folded environment of extant proteins. This is relevant to
the mechanics of proteogenesis in the following way. We
imagine that prebiotic amino acids, which may have
existed in significant concentrated quantities in some
environments, formed short polypeptides that poly-
merized into longer chains and/or aggregated around
cofactors, metals, nucleotides, other peptides, and other
organic molecules. Our finding suggests that these
prebiotic polypeptides, under crowded conditions that
encourage close but non-specific interactions, are biased
for backbone conformations embodied by modern folds.
Thus, if any prebiotic polypeptide sequences formed
structures that persisted long enough to be useful, they
would have resembled conformations whose backbones
are similar to extant proteins, and thus likely had func-
tions that have persisted in current metabolic pathways.
We also find that the prebiotic set is near-optimal in

encoding the spectrum of single-domain folds that exist in
nature currently. There are fold-specific differences in the
ability of the prebiotic set to encode the spectrum of
tertiary conformations of extant proteins. The prebiotic
set is able to encode native tertiary conformations of α/β
and α + β folds, and, to a lesser extent, of all-α and all-β
folds. The prebiotic set is insufficient to encode small
proteins as a class, necessitating the stabilizing effect of
later amino acids. These observations, based solely on
structural criteria, comport with the consensus of a
number of studies based principally on the analysis of
proteomic and genomic sequences. First, regarding the
timeline of first appearance of folds vis-à-vis the temporal
order of amino acids, it makes sense that the earliest
polypeptides dominated by prebiotic amino acids formu-
lated simple α/β and α + β folds more readily than others.
Since enzymes belonging to these folds are found in a
wide range of metabolic functions, including the bio-
synthetic pathways of the later amino acids, it is likely that
their emergence early in evolution facilitated the meta-
bolic production and subsequent enrichment of later
amino acids. Later amino acids would have entered the
alphabet as their biosynthetic pathways were established
by the ancestral folds. Second, suboptimal tertiary con-
tacts make structures only marginally stable, allowing
these proteins to be plastic and functionally promiscuous,
an advantage early in evolution when the prebiotic pro-
teome was small. The ancestral structures were also easily
mutable and open to evolve other functions. With the
expansion of the amino acid alphabet, conformational
stability and functional specificity of later all-α and all-β
proteins increased, and small proteins became possible,
further widening the functional repertoire of enzymes.
Finally, we observe that sequences formulated ex-

clusively by the prebiotic set are able to discriminate
native over incorrect folds exceptionally well compared to
all other possible reduced alphabets, particularly for those
proteins belonging to the α/β and α + β fold classes. To
have such a critical property of protein folding potentially
arise early in proteogenesis, even prior to the establish-
ment of the full 20 letter amino acid alphabet in the
genetic code, would have facilitated the evolution of func-
tional proteins with persistently stable structures, es-
tablishing a framework for the first metabolic pathways.
Abbreviations
Rn : n-member reduced alphabet, where 1≤ n ≤ 20; for instance, R10 is a 10-
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Ibb: mutual information that considers only backbone interactions; Ic: mutual
information that considers only non-local contact interactions; α: weight
coefficient in Itotal that modulates the contribution of the two terms;
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α
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α
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