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Abstract

Background: Transcription factors (TFs) play a key role in regulating plant development and response to environmental
stimuli. While most genes revert to single copy after whole genome duplication (WGD) event, transcription factors are
retained at a significantly higher rate. Little is known about how TF duplicates have diverged in their expression and
regulation, the answer to which may contribute to a better understanding of the elevated retention rate among TFs.

Results: Here we assessed what features may explain differences in the retention of TF duplicates and other genes using
Arabidopsis thaliana as a model. We integrated 34 expression, sequence, and conservation features to build a linear
model for predicting the extent of duplicate retention following WGD events among TFs and 19 groups of genes
with other functions. We found that TFs was the least well predicted, demonstrating the features of TFs are substantially
deviated from duplicate genes in other function groups. Consistent with this, the evolution of TF expression
patterns and cis-regulatory cites favors the partitioning of ancestral states among the resulting duplicates: one
“ancestral” TF duplicate retains most ancestral expression and cis-regulatory sites, while the “non-ancestral” duplicate is enriched
for novel regulatory sites. By modeling the retention of ancestral expression and cis-regulatory states in duplicate pairs using a
system of differential equations, we found that TF duplicate pairs in a partitioned state are preferentially maintained.

Conclusions: These TF duplicates with asymmetrically partitioned ancestral states are likely maintained because one copy
retains ancestral functions while the other, at least in some cases, acquires novel cis-regulatory sites that may be important for
novel, adaptive traits.
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Introduction
Plant genomes are replete with paralogous genes
derived from a variety of duplication events and
mechanisms, particularly whole genome duplication
(WGD) [14, 15, 20, 21, 52, 56, 61, 72, 73, 77, 78]. Two
ancient WGD events took place prior to the divergence of
angiosperms [27]. Subsequently, more than a dozen WGD
events have occurred across a variety of angiosperm
lineages [33, 41, 47, 55, 65, 75], including three in the
lineage leading to Arabidopsis thaliana [9]. As the last

known WGD event in the Saccharomyces cerevisiae
[30, 79] and human [12, 53] lineages occurred prior to the
radiation of angiosperms, WGD occurs much more
frequently in plants relative to other eukaryotic lineages.
WGD accounts for ~ 90% of the expansion of TF

families across plants lineages [42] and TFs are consis-
tently enriched among WGD duplicates across divergent
plant species [10, 36, 63]. In addition, plant TF duplicates
derived from WGD are retained at higher rates than
most plant genes with other functions [62, 63]. These
duplicate TFs contribute significantly to plant adaption
[34], agricultural traits [80], and domestication [39].
The expansion of several TF families coincides with
major events in the evolution of plants, such as the
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migration to land and expansion of flowering plants
[11, 64, 76]. TF duplication is also central to the evolu-
tion of flowering time [60], floral structures [67] and
fruit development [38, 43].
Because WGD results in duplication of all genes in a

genome, the differences in the degrees of expansion of
different gene families [7, 24, 37, 62] must result from
differential rates of gene retention. Previously, a collec-
tion of features including sequence properties (e.g. gene
length), biochemical activities (e.g. expression level),
evolutionary characteristics (e.g. substitution rates), and
annotated functions have been used to assess the pro-
perties of retained duplicates in general [26, 45]. It
remains an open question how well these properties may
explain the retention rates of genes duplicated via diffe-
rent WGD events and in specific groups of genes, such
as TFs and genes with other functions. It is also
unknown how these properties differ between TFs and
other functional groups of genes.
In this study, we first modeled the percent retention of

TFs as a group and 19 other function groups of genes
using 34 gene features in three broad categories (expres-
sion, sequence, and conservation). Then, to assess how
the ancestral and extant functions of duplicate pairs have
diverged relative to their ancestral function, we deter-
mined how gene expression and cis-regulatory sites of
TF duplicates have likely evolved post WGD by inferring
the ancestral expression and cis-regulatory states of
extant TF duplicates. Finally, we modeled the evolution of
TF WGD duplicates as a system of differential equations
which tracks the change in frequency of duplicate pairs
retaining the ancestral state in both, one, or neither to
assess whether the partitioning of TF duplicates pairs is
maintained by a bias against losing the ancestral state in
the second duplicate copy.

Results & discussion
Retention of duplicate genes in different function groups
following WGD
To assess the factors contributing to the differential
retention of TF duplicates from WGD events and dupli-
cates from WGD events involved in other functions, we
first quantified the degree of duplicate retention of A.
thaliana WGD duplicates in 20 different function
groups. These function groups include TFs [28] and 19
other groups defined based on Gene Ontology (GO) mo-
lecular functions (see Methods, Additional file1: Table S1).
The other functional groups were chosen based on
their larger sizes for comparisons with TFs. Genes were
classified as “WGD-duplicates” (both duplicate copies
retained) or “WGD-singletons” (only one copy retained)
depending on whether there were paralogs in corre-
sponding duplicate blocks [9]. Because duplicate reten-
tion is expected to differ across different WGD events,

duplicate pairs derived from the α, β, and γ WGD
events [9] were analyzed separately. Here the duplicate
retention (referred to as Rd) is defined as ratio of the
frequency of genes with WGD duplicates in each func-
tional group to genome wide frequency of genes with
WGD duplicates for each WGD event. Confirming
results from earlier studies [42], among the 20 function
groups examined, Rd values were highly heterogeneous
and only TFs and protein kinases had significantly
higher Rd than the genome average for all three WGD
events (Additional file 2: Figure S1). Importantly, the
difference in the Rd is not due to differences in gene num-
ber among functional groups alone (R2; α WGD= 0.05,
β = 0.16, γ = 0.04; Fig. 1a).
With the Rd value defined, we next examined which

gene features (sequence, expression, conservation, and
others types, Additional file 1: Table S2) were correlated
with Rd values among functional groups for each WGD
event (Fig. 1b). We should emphasize that a subset of
the features have been shown to be significantly asso-
ciated with retention of WGD-duplicates as a whole
[26]. Here we examined the relations for each WGD
event independently. We found that, depending on the
WGD event, the correlations between Rd and feature
values can have different signs (black arrows, Fig. 1b) or
magnitudes (white arrows, Fig. 1b), suggesting that, as
WGD duplicates age, the mechanisms contributing their
retention may differ (discussed in more details in the
next section). To assess to what extent these features
combined may predict Rd, we fit a linear model that
describes the relationship between the average feature
values of genes in each function groups and Rd for each
WGD event (Fig. 1c). Instead of using all 34 features, for
each WGD event we focused on a subset of informative
features (between 5 and 6 in each case) which maxi-
mized the F-statistic of the model (see Methods). Our
models explained 87, 83, and 65% of the variance in
degree of retention for the α, β and γ events respectively,
significantly better than the null model (Table 1). Thus,
the degrees of retention for duplicate genes in a function
group can be predicted using the average expression, se-
quence, and conservation features.

Features explaining degrees of retention across function
groups and WGD events
To assess the contribution of individual features in
explaining the differences in Rd among function groups,
we determined the change in explained variance caused
by removing a feature from a model (Table 2). Important
features that cause significant reduction in regression
coefficients in the models tend to be those explaining
degree of duplicate retention for all three WGD events.
Examples include maximum expression level (RNA-seq),
which positively correlated with retention, and mean
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Fig. 1 (See legend on next page.)
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expression level (microarray), which is negatively corre-
lated with retention. This would suggest that functional
groups with genes that have more specific expression
patterns (i.e. lower average across all conditions, but
higher maximum expression under a few specific condi-
tions) increases the likelihood of duplicate retention. In
addition to features important for all three WGD events,
some features are more strongly correlated with reten-
tion of older duplicate genes. These features include
lower nucleotide diversity and lower expression corre-
lation, suggesting long term retention of duplicates
favors genes experiencing stronger purifying selection and
those with more divergent expression patterns (Table 2).
However, certain parameters in our model do show

sensitivity to what functional groups are used. In order
to test the robustness of our models of duplicate reten-
tion, we made new, truncated data sets by leaving out
one functional group per set and performed our
optimization procedure again on each truncated set (see
Additional file 1: Tables S3-S5). While most parameters
show small deviation in response to the removal of indi-
vidual functional groups (5–11% relative to the mean),
we observed cases where the standard deviation was
> 15%: the number of domains (15.7%) and nucleotide di-
versity (26.2%) in the α WGD model, as well as nucleotide
diversity (15.1%) and maximum percent identity (16.5%)
in γ WGD model. This elevated variance in these

parameters when we used the truncated dataset is pri-
marily driven by the removal of three functional
groups: defense response, TFs, and translation. Of
these, the TF group stands out as, without TFs, nucleo-
tide diversity is dispensable in model of α WGD reten-
tion (F-statistic = 12.73 without nucleotide diversity,
F-statistic = 12.74 with nucleotide diversity). In addition,
our model fit of γ WGD retention is no longer significant
after leaving TFs out (p = 0.12). This is expected given
that estimates of TF retention are more underesti-
mated in α and γ models than any other functional
group (Fig. 1c) and thus the retention of TFs likely rep-
resents an extrema relative to most functional groups
(Additional file 3: Figure S2).
Although the degree of retention predicted by the

models closely align with the actual values for each func-
tion groups across each event (R2, α = 0.87, β = 0.83,
γ = 0.65; see Fig. 1c), the estimates of different parameters
is affected by the choice of functional groups being
considered. The presence or absence of TFs in particular
is highly influential which is to be expected given that TFs
have such a high degree of duplicate retention. This is

(See figure on previous page.)
Fig. 1 Linear model of the degree of duplicate retention in function groups based on genes features. a Relationships between gene counts and odds
of retention of WGD duplicates across functional groups (α = orange, β = green, γ = blue). The correspondence between group sizes (numbers of
genes) and degrees of retention (odds ratios) was determined using the square of the Pearson product-moment correlation coefficient (R2, α = 0.05,
β = 0.16, γ = 0.04). b A heatmap of the Pearson product-moment correlation coefficient (PCC) between the values of a feature across different function
groups (rows) and the odds of retention of functions groups from a particular WGD event (columns, indicated by the symbols α, β, and γ). Darker red:
stronger positive correlation. Darker blue: stronger negative correlation. Features with different sign of correlation across WGD events are indicated by
black arrows. Features with a large (≥0.20) difference in PCCs with the same sign are indicated by open arrows. c The observed odds of duplicate
retention (x-axis) for each group plotted against the predicted odds of retention (y-axis) from the best model for each event (α = orange, β = green,
γ = blue). Dotted line: equality between predicted and observed retention odds. Values from TFs are indicated by a black arrow while values from
protein kinases are indicated by an open arrow. Red dot (TFγ’): the predicted odd ratio for TFs from the γ event after adjusting for difference in percent
identity of TF genes. Performance of the models was assessed by calculating the R2 between the observed and predicted odds ratio for each event
(α = 0.87, β = 0.83, γ = 0.65)

Table 1 Statistics for the best fitting model for the odds ratio of
duplicate retention for each WGD-event

WGD Event # Featuresa CoDb F-statisticc p-valued

α 6 0.87 13.8 5.6E-05

β 5 0.83 13.2 7.1E-05

γ 5 0.65 5.1 7.2E-03
a The number of explanatory variables (features) used in the best fitting model
b Coefficient of Determination (R2)
c The F-statistic is a measure of the goodness of fit of the model to the
observed odds ratio
d The p-value of goodness of fit based on the F-statistic. A significant p-value
(< 0.05) indicates that the model performs better than the null model by
fitting the mean value to the data, after accounting for the number of features
in the model

Table 2 The importance of all features used in the linear
models of duplicate retention in function groups across each
WGD event

Feature Signa αb βb γb

Expression Mean (AtGenExpress) – −0.29 − 0.09 − 0.49

Expression Maximum (RNASeq) + −0.56 − 0.59 − 0.14

Number of Domains – − 0.06 −0.36 n/a

Nucleotide Diversity (Pi) – −0.06 n/a −0.32

Expression Correlation (AtGenExpress) – n/a −0.24 −0.21

Expression MAD/Median (AtGenExpress) – −0.09 n/a n/a

Protein Length (in Amino Acids) + −0.07 n/a n/a

Paralog Dn + n/a −0.07 n/a

Maximum Percent Identity + n/a n/a −0.2
a The sign of the association between the feature and duplicate retention
b Importance of features measured as the decrease in R2 when the feature is
removed from the model, with more negative values indicating greater impact
and therefore greater importance. An n/a indicates the feature was not used
in the model for that event
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further demonstrated by the fact that the Rd of TFs was
underestimated in all three models (black arrows, Fig. 1c,
Additional file 3: Figure S2), and the net underestimation
of TF retention summed across all models (Rd = 1.25) is
45.5% higher than the next nearest functional group
(ubiquitin transferase, Rd = 0.86). For this reason, we
chose to examine the feature distributions among TFs
duplicates relative to those from other functional
groups. Specifically, the retention of duplicates from
the γ event is correlated with maximum percent iden-
tity, but the magnitude of the parameter associated
with the feature is reduced by 37.9% if TFs are
excluded (Additional file 1: Table S5). The identities of
TF WGD-singletons (only one copy retained) to their
best matches (66.9%) are significantly higher compared
to the genome-wide WGD-singleton average (61.3%,
Welch’s t-test, p = 1.9e-223), although identities of
WGD-duplicates to the best matches are similar between
TFs (71.3%) and genome-wide average (72.5%). The higher
than average identity of TFs explains why the removal of
TF functional group has such an impact on the γ model
and the estimation of the effect of maximum percent
identity in particular. In spite of this, the error in the γ
model for TF retention was 0.802 even when TFs were in-
cluded, the largest underestimation of all of our model
predictions. However, if we assume TF WGD-singletons
had a more typical distribution of maximum percent iden-
tity (i.e. duplicate are 10% higher on average than 5.6%)
the predicted degree of TF retention of the γ event
becomes 2.94 (red dot, Fig. 1c), reducing the error by
almost half in our original model.
In addition to the linear models for predicting degrees

of retention at the function group level, we have estab-
lished machine learning models incorporating the same
features to predict whether a gene likely have retained
duplicate or not (Additional file 4: File S1). Similar to the
linear model, the machine learning model performed the
poorest when predicting TFs (Area Under Curve-Receiver
Operating Characteristic = 0.75) compared to predicting
all genes (0.88, Additional file 4: File S1). Taken together,
we demonstrated that degree of retention for genes in
different function groups are related to multiple features
that are impacted by the timing of WGD events. However,
while these features are useful for predicting the degree of
retention for some function groups, they systematically
underestimated degree of retention for TFs. The behavior
of TFs departs from the norm in part because underlying
differences in the features of TFs and genome average.

Partitioning of ancestral expression states following TF
duplication
To further explore what features retained TF WGD-du-
plicates possess, we examined how the expression
patterns of retained TF WGD-duplicates have evolved

following WGD events. Approaches to infer ancestral
functions based on those of extant genes have been used
to hypothesize the rate of gene activation and repression
in duplicate genes in Drosophila melanogaster [49] and
analyze the evolution of stress response in A. thaliana
[40, 82]. Here we inferred the ancestral TFs expression
prior to WGD using BayesTrait (see Methods), which
assigns and optimizes rates of evolution based on
sequence evolutionary rates in phylogenetic trees in
order to determine the most likely ancestral state
(Fig. 2). Expression data were grouped into four sub-
sets and analyzed separately, including light and de-
velopment sets (LightDev), control conditions (Ctrl),
abiotic and biotic stress treatments (Stress), and differen-
tial expression between stress treatments and controls
(Diff ) (Additional file 1: Table S6). Ancestral expression
values of 474 TF WGD-duplicate pairs were inferred from
extant gene expression values discretized into quartiles
(expression state = 0, 1, 2, or 3) using each expression
data subset.
To test how often the ancestral expression states of

TFs were retained post-duplication, we compared the
expression states of individual, extant TF WGD-dupli-
cate to its inferred ancestral states (Fig. 3a). The most
common ancestral-extant expression state combin-
ation for a TF was that the ancestral and extant TFs
had the same expression quartiles (diagonal red boxes,
Fig. 3b, Additional file 5: Figure S3), suggesting that most
TF WGD-duplicates retain their original expression.
However, when considering a pair of TF duplicates
(Fig. 3c), the ancestral state was retained in only one
duplicate more often than expected by chance (Fig. 3d).
We should emphasize that the cases where both dupli-
cates have the ancestral expression states are still more
common (e.g. account for 53% of cases from the
α-LightDev data set). However, under random permuta-
tion of duplicate pairs, 58% of α-duplicates in the Light-
Dev data set are expected to be ancestral-ancestral
(Additional file 1: Table S7). In contrast, we only ex-
pected 37% of pairs to be partitioned, but observed 45%
pairs to have on ancestral and one non-ancestral
expression states. We find the same trend using other
data subsets (see Additional file 1: Table S7). Taken
together, we found that, although TFs tend to preserve
their ancestral expression states, the expression state
evolution between a pair of TF duplicates tend to be “par-
titioned” with one ancestral and one non-ancestral copies.
The “partitioned” state of TF WGD-duplicates pairs is

over-represented at lower degrees for more ancient β
and γ WGD events (Fig. 3d). We confirmed that there is
indeed significant interaction between the expression
state of a TF WGD-duplicate pair and the timing of the
WGD event (ANOVA, p < 2e-16), indicating that parti-
tioning occurred relatively quickly after the most recent
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WGD, but that these partitioned patterns were not
necessarily maintained as the duplicates age. Next we
asked if TF duplicate expression levels tend to increase
or decrease when they deviate away from the ancestral
state using each expression data subset. For the Light-
Dev (left panel, Fig. 3d), Ctrl, and Stress expression level
subsets (Additional file 6: Figure S4), deviation from
ancestral expression states among duplicates tend to
be small (i.e. mostly by one quartile) and negative. In
contrast, we found that TFs were equally likely to

increase or decrease differential expression in
response to stress compared to the ancestral state
(Fig. 3d, Additional file 6: Figure S4). We also modeled the
transition from ancestral expression (O) to higher (+) and
lower (−) expression level states following WGD (see
Methods). The results of these models can be found in
(Additional file 7: Figure S5). In the two-parameter model
(the rates from O to + and - were allowed to differ), the
rate of evolution from O to - was 1.9~3.1 times more
frequent than that from O to +. For the Diff subset,
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Fig. 2 Inferring ancestral expression states. a An illustration of how BayesTraits is used to infer the most probable expression states at a given
ancestral node on the evolutionary tree. First, evolutionary rates between expression states (defined by quartiles) are randomly assigned. These
rates are then use to infer the most probable ancestral states from the observed extant expression values. Finally, the likelihood of the observed
extant expression states is evaluated based on the current ancestral states and evolutionary rate and this likelihood is used to update estimations
of the evolutionary rate. This process is repeated iteratively to optimize the evolutionary rates across the tree and thus the inferred ancestral
states b The observed expression and inferred ancestral expression states of a branch of the AP2 domain family tree for three leaf developmental
data sets. The ancestral states of the ancestors of TOE1 and TOE 2 (a β duplication), TOE3 and AP2 (a β duplication), as well as SNZ and SMZ (an
α duplication) were inferred using the program described in (a)
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O to - was 1.2 times more frequent but not signifi-
cant (p = 0.43). These results further suggest that the
evolution of TF duplicates favors decreasing expression
levels relative to the ancestral expression state. How-
ever, when looking at differential expression in
response to stress, TF duplicates can evolve in either
direction with similar likelihood. Thus, following
duplication, TF duplicates may have increased or
decreased responses to stress, rather than losing the
response altogether, in sharp contrast to the patterns
when all duplicate genes were considered [81, 82].

Asymmetry in the partitioning of ancestral expression
Thus far we show that an ancestral expression state tends
to be retained by only one copy of a TF WGD-duplicate
pair when each expression state is considered individually.
Considering that each gene will have multiple expression
states (e.g. different tissue, developmental time point,
environment), one outstanding question is whether each
copy would retain different subsets or most of the ances-
tral expression states. To address this, we considered all
expression data point with partitioned ancestral states
between a pair of TF WGD-duplicates. We assume that

A C

B D

Fig. 3 Evolution of expression in TF WGD-duplicates. a An illustration of how the z-scores in b are calculated. Individual TF duplicates were assigned
to a cell using the extant (x-axis) and ancestral (y-axis) expression quartile values (dark green = 4th, green = 3rd, yellow= 2nd, white = 1st). Z-scores
were then determined by comparing the frequency of the observed values to frequency distribution that would be expected if expression values
were chosen randomly from a pool of extant and ancestral values. b Difference in expression quartile of individual TFs compared to their ancestors.
Heatmaps show the z-scores of the observed frequency of each difference compared to the expected frequency for LightDev (left column) and Diff
(right column) dataset in three WGD events (α = top, β =middle, γ = bottom). Darker red and blue indicates counts higher and lower
than random expectation, respectively. c An illustration of how the z-scores in d were calculated. For each WGD TF duplicate, the difference in the
expression quartile values (colored the same as in (a)) of an extant duplicate and its ancestral gene is defined as “deviation”. Duplicate 1 is the copy
with a higher or equal expression quartile value compared to the other copy (duplicate 2). d Deviation values of pairs of TF WGD-duplicates. Heatmaps
show the z-scores of the observed frequency of WGD-duplicate pair deviation compared to the expected frequency for LightDev (left column) and
Diff (right column) datasets in three WGD events (α = top, β =middle, γ = bottom). Color correlates with the magnitude of the z-score as in (a)
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the randomly expected number of ancestral states retained
by a single WGD-duplicate follow a binomial distribution
with a retention probability of 0.5 (both copy equally likely
to retain a particular ancestral state). Next, we define the
expected asymmetry of a duplicate pair as the difference in
the fraction of ancestral states inherited between duplicates
(mean = 0.18, Fig. 4a). The observed mean asymmetry
between TF WGD-duplicates was 0.68, significantly
higher than that from random partitioning (Welch’s
t-test, p < 1e-323) (Fig. 4b). This biased partitioning
was also found within each expression data subset
(Additional file 1: Table S8). In addition, this biased parti-
tioning of expression states between TF duplicates was
not simply due to the use of correlated time course
data because the mean asymmetry scores calculated
using subsets of LightDev, Stress, and Diff conditions
were virtually unchanged (Additional file 1: Table S8).
Given these results, for each TF WGD-duplicate pair,

we can generally define one duplicate as being “ances-
tral” and the other as being “non-ancestral”.

Asymmetry in the partitioning of ancestral cis-regulatory
sites
The ancestral copy is likely retained due to selection of
inherited ancestral states. How about the non-ancestral
copy? One possibility is that, despite the extreme asym-
metry, some non-ancestral copies may still retain some
ancestral functions that are subjected to selection.
Another hypothesis is that the non-ancestral copy is
retained because it has acquired a novel function in the
form or new expression or regulatory states. To test this,
we applied our model of ancestral-state partitioning to
cis-regulatory sites. Using putative binding sites of 345
A. thaliana TFs [48], we inferred ancestral cis-regulatory
sites of ancestral TFs (see Methods). Loss of an ancestral
cis-regulatory site in only one TF copy (57%) occurs

A B

C D

Fig. 4 Asymmetry of ancestral state retention in TF WGD-duplicates. a Example of how Asymmetry score (Asy, see Methods) is calculated. Ancestral
conditions are indicated by yellow boxes and non-ancestral conditions by grey boxes. Among a pair of duplicates, an ‘ancestral’ copy (red arrow) is the
duplicate retains more ancestral states than the other, ‘non-ancestral’ copy (blue arrow). In case where equal numbers of ancestral states are inherited
(the first case with Asy = 0), the ancestral and non-ancestral designation is assigned randomly. b The Asymmetry scores of ancestral expression
partitioning between TF WGD-duplicates. Red columns indicate the expected frequency of each score bin based on a series of grouped
Bernoulli trials (see Methods) while blue columns indicated the observed frequency. c The Asymmetry scores of ancestral cis-regulatory site partitioning
between TF WGD-duplicates. Red and blue columns are as described in (b). d The frequency distribution of the difference in number of
novel cis-regulatory sites between ancestral and non-ancestral WGD duplicate copies. The value on the x-axis is calculated as the number
of novel regulatory sites in the non-ancestral copy minus the number in the ancestral copy
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more often than expected (42.3%; t-test, p < 1e-323). In
contrast, observed retention (10.5%, expected = 24.0%)
and loss (16.2%, expected = 18.5%) of ancestral cis-regu-
latory sites in both WGD-duplicates were significantly
less frequent than expected (p < 1e-323). In addition, the
partitioning patterns of ancestral cis-regulatory sites
were highly asymmetric (Kolmogorov–Smirnov test,
p < 2.2e-16; Fig. 4c). Thus, much like what we observed
for expression, TF WGD-duplicates can be classified into
ancestral and non-ancestral copies with regard to cis-regu-
latory sites.
Most importantly, in 177 of the 249 duplicate pairs

with ≥1 novel regulatory sites (71.0%), the non-ances-
tral copy tend to have more novel cis-regulatory sites
(Fig. 4d), significantly higher than random expectation
(50%, p < 3.8e-12). In addition, the novel cis-regulatory
sites are only found in the non-ancestral copies in
61.8% of duplicate pairs, compared to 14% of pairs
where all of the novel sites are in the ancestral copies.
Novel cis-regulatory sites are also over-represented
(odds ratio = 3.54) in the promoters of putative non-an-
cestral genes compared to ancestral ones (Fisher’s Exact
Test, p < 2.2e-16). These patterns suggested that, the ac-
quisition of novel cis-regulatory sites likely contribute to
the retention of the non-ancestral TF duplicate copies.
This conclusion is likely similar if we consider novel ex-
pression states because the ancestral and non-ancestral
designation defined according to expression levels tend to
have the same designation based on cis-regulatory sites
(59.8%, compared to expected by random association at
24.6%, p = 1.8e-20).
For TF WGD-duplicates where the definition of ances-

tral and non-ancestral copies is supported by both expres-
sion and cis-regulatory data, we can find experimental
evidence supporting functional divergence of duplicates.
For example, KNAT3 and KNAT4 (Fig. 5a) function in
different regions of the root [70, 71] while DAG1 and
DAG2 (Fig. 5b) have opposite regulatory roles in control
germination [23, 57]. While there is functional differenti-
ation in the above cases, it is not clear what the ances-
tral function of the duplicates pairs was. However, for
the pair BPC3/BPC2 (Fig. 5c), BPC3 functions
antagonistically not only to BPC2, but other BPC family
members as well, in controlling growth, leaf shape, and
flower development [46]. Given that BPC2/BPC3 were
duplicated during the β event, and only BPC1 diverged
from BPC2 after WGD, it is therefore likely that BPC3
possess a novel function compared to the rest of
the family.

Patterns of WGD-duplicate divergences and partitioning
results from evolutionary bias
Partitioning of ancestral expression and regulation into
ancestral and non-ancestral duplicates is favored following

duplication of TFs. To determine if this ancestral state
partitioning is maintained or if the partitioning is simply a
transition state and eventually both copies would be lost,
we modeled loss of ancestral states of TF WGD-duplicate
pairs (see Methods). Using the synonymous substitution
rate (ds) of TF WGD-duplicate pairs derived from the α,
β, or γ events as a proxy for time, the rate of transition
between WGD-duplicate pairs where neither (state O),
only one (state I), or both (state II) duplicates had lost
ancestral expression was modeled (Fig. 6a). We compared
a model where the rates for losing the ancestral states in
both duplicates were the same (one-parameter model) with
a model where the O➔I transition rate was allowed to vary
from that between I➔II (two-parameter model). These
models were applied to all expression subsets with similar
results and conclusions (Additional file 8: Figure S6).
Below we discuss the LightDev subset as an example.
We found the two-parameter model to be significantly

better at explaining the observed difference in WGD-du-
plicate states over time (Likelihood Ratio Test, p <
2e-14). Considering expression states, the O➔I transition
rate were 7 to 13 times higher than the I➔II transition
rate (Fig. 6b). Thus, the number of partitioned WGD-du-
plicates accumulated rapidly post WGD, followed by a
relatively slow accumulation of cases where ancestral
expression states had been lost in both duplicates. We
also assessed a four-parameter model (O➔I, I➔II, II➔I,
I➔O) of expression state evolution that was not better
than the two-parameter model. In contrast, applying
this same approach to model regulatory site evolution
revealed that the four-parameter model is significantly
better (p of 4.8e-13 and 1.2e-11 vs. one and
two-parameter models, respectively; Fig. 6c). The rates
governing the O➔I transition (x) are two orders of
magnitude higher than the I➔II transition (w, Fig. 6d).
Importantly, in the four-parameter model for cis-regu-
latory sites, there was a high rate of O➔I transition es-
timated at the early stage of WGD (blue curve, Fig. 6c).
In addition, an appreciable proportion of partitioned
duplicates lost ancestral regulatory sites in the second
copy (green curve, Fig. 6c). This is in sharp contrast
compared to the transition rate estimate over time for
expression where second copies tend not to lose
ancestral expression state (Fig. 6b), indicating that regula-
tory sites are faster evolving and more labile compared to
expression states.

Conclusions
In this study, we used linear models to assess how
expression, conservation, and sequence structural fea-
tures of genes in these functional groups may explain
their retention rate difference. The value distributions of
TF features are significantly different from genes in the
rest of the genome that result in lower predictability.
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When considering each TF WGD-duplicate pair, one TF
duplicate tends to have reduced expression level relative
to the inferred ancestral level. In addition, we found that
ancestral expression and cis-regulatory sites tends to be
partitioned between TF duplicates asymmetrically such
that there are distinct ancestral and non-ancestral dupli-
cates. Interestingly, the non-ancestral TF duplicates
tend to gain novel cis-regulatory sites that likely
contribute to new expression patterns. Finally, we

demonstrate a preference for maintaining partitioned
expression and cis-regulatory site states between TF
WGD-duplicate pairs.
Multiple mechanisms have been proposed to explain

why duplicate genes are retained. The gene balance
hypothesis [4–6] has been proposed to specifically explain
the retention duplicates of TFs and other genes with larger
numbers of interactions/functions [1, 42, 62, 63]. The
hypothesis stipulates that duplicate genes with products

KNAT4KNAT3Ancestor
Root development, 7 d
Root development, 8 d

Root development, 15 d
Root development, 17 d
Root development, 21 d

A.

BPC3BPC2
Rosette leaf #4, 10 d
Rosette leaf #2, 17 d
Rosette leaf #4, 17 d
Rosette leaf #6, 17 d
Rosette leaf #8, 17 d

Rosette leaf #10, 17 d
Rosette leaf #12, 17 d

Carpels, stage 12, 21 d
Cauline leaves, 21 d

Seedling hypocotyl, 7 d
Whole seedling, 7 d
Whole seedling, 8 d

Whole seedling, 21 d

C.

DAG1DAG2
UV-A pulse, 4 hr

B.

UV-AB pulse, 45 min
UV-AB pulse, 4 hr

Red light pulse, 4 hr
Cont. white light, 45 min

Cont. white light, 4 hr
Cont. far-red light, 45 min
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Cont. red light, 4 hr
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2

3
4

Ancestor

Ancestral
copy

Non-ancestral
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Fig. 5 Expression partitioning between duplicate pairs with high regulatory asymmetry. Expression partitioning of three duplicate pairs KNAT3/4
(a), DAG1/2 (b), BCP2/3 (c) where the non-ancestral duplicate (blue arrow) exhibits differential function from the ancestral duplicate (red arrow).
Expression quartile is indicated by color (dark green = 4th, green = 3rd, yellow = 2nd, white = 1st). Note that only expression conditions under
which function differs between the duplicates are shown
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that form multimeric complexes will tend to be retained
to maintain the stoichiometry [5, 6] and enables future
sub- and/or neofunctionalization [74]. We found that 7.5
and 13.9% of duplicates TF pairs have retained > 80% of
ancestral expression in both copies in the Stress and
LightDev data set respectively that may still be retained
due to dosage balance. Nonetheless, most duplicates have
substantially diverged expression patterns. For example, in
> 60% cases (a case refers to a TF-WGD duplicate pair
expressed in one of expression data subsets), ≥1 ancestral
expression states are found uniquely in each duplicate.
This partitioning of ancestral subfunctions between both
duplicate copies is a hallmark of subfunctionalization [19],
in which both duplicate copies are selected to maintain
the full set of ancestral functions.
However, the partition of ancestral expression states is

highly asymmetric in most cases. Although they can still

be maintained by sub-functionalization, this asymmetry
suggests that, if we assume that expression patterns can
be treated as proxies of gene function, some TF
WGD-duplicates take on only a small part of their
ancestral functions and thus defined as non-ancestral.
We found that the non-ancestral copies tend to have
more novel cis-regulatory sites (Fig. 4d), suggesting that
the gain of these novel sites may lead to neofunctionali-
zation [50] or to escape from adaptive conflict [13], both
of which involve the evolution of new or improved func-
tion that is selected for. The above observations are con-
sistent with the suggestions that subfunctionalization
may be a transition state to neofunctionalization [54].
The asymmetry may also suggest that the non-ancestral
TF duplicate copies may be decaying functionally and
are on their way to become pseudogenes, as suggested
in a case study [35]. This can be due to genome
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fractionation/dominance, where one genome loses
duplicates at a significantly higher frequency following
WGD [59, 68].
To further improve our understanding of what roles all

of these mechanisms play in TF duplicate retention will
benefit from more detailed modeling of TF evolution. In
this study, linear models for retention prediction and
ODE models of ancestral expression and regulatory site
evolution are based on WGD events that is > 50 million
old. It will be crucial to consider data from other species
with more recent WGD events to elucidate the early
dynamics of TF evolution. In addition, we demonstrate
that non-ancestral duplicates inherited fewer ancestral
cis-regulatory sites tend to gain novel sites. It remains to
be determined experimentally whether these novel sites
control new expression patterns and, most importantly, is
selected for rather than neutrally evolving. Finally, our
study focuses on the overall pattern of TF evolution. It is
anticipated that different TF families will evolve differently
from each other. In future studies, it will be important
to assess factors influencing retention for individual
TF families.

Methods
Genome sequences, gene annotation, and expression
data
Genome sequences, protein sequences, and gene annota-
tion information for A. thaliana was obtained from Phyto-
zome v10 (https://phytozome.jgi.doe.gov/pz/portal.html).
WGDs were defined according to Bowers et al. [9] who
used BLAST [3] to identify candidate duplicate gens in A.
thaliana, with a hard Expect value cutoff of 1e-10. Dupli-
cate pairs were used to identify syntenic regions and these
regions were dated using by comparing duplicate pairs to
orthologs from other species for which the time of
divergence from A. thaliana had been estimated. Dating
only employed pairs where matches between duplicates
and orthologs were in > 35 aminio acids. Additionally,
tandem genes in A. thaliana were defined as pairs of
reciprocal best BLAST hits with an e-value <1e-10 and a
threshold based on the number of annotated, non-hom-
ologous genes between the putative tandem duplicates (≤
5 intervening genes, [24]). Expression microarray data for
this study was taken from AtGenExpress [22, 31, 58], nor-
malized using RMA [25] in R as performed previously
[81]. The array data was divided into four groups: control
conditions (in environmental condition experiments, Ctrl),
light and development set (LightDev), abiotic and biotic
stress treatments (Stress), and differential expression be-
tween stress treatments and controls (Diff ) (Additional file
1: Table S9). The Diff data contains the log2 normalized
difference between data sets for each stress condition/
treatment/duration and its corresponding controls. In
addition to microarray data, we have included a set of 214

RNA-sequencing samples (Additional file 1: Table S10)
from A. thaliana Col1 wildtype from the Sequence Read
Archive (https:// www.ncbi.nlm.nih.gov/sra) as of Septem-
ber 30, 2014. Raw sequence reads were processed using
Trimmomatic [8], with a quality threshold of 20, window
size of 4, and hard-clipping length of 3 for leading and
trailing bases. Processed reads were then mapped to the
A. thaliana genome using Tophat2 [32] and expression
levels calculated with Cufflinks [69], both with a max-
imum intron length of 5000 bp.

Defining TFs and other groups of genes in A. thaliana
TFs were defined according to the criteria used by the
Plant Transcription Factor Database [28] with 1717
annotated TF loci in A. thaliana. To assess the degrees
of TF duplicate retention after each WGD event, we
defined a set of “functional groups” for comparison
following from the procedure used in Maere et al. [42].
To compare among genes with divergent functions and
to ensure the log odds indicative of the degrees of reten-
tion could be defined for each group, function groups
were defined using Gene Ontology (GO) [2] terms in the
molecular function and biological process categories
from The Arabidopsis Information Resource (https://
www.arabidopsis.org/), and only groups containing
100–2000 genes and ≥ 20 WGD-duplicate pairs were kept.
We excluded GO:0006355 (regulation of transcription,
DNA-templated) due to its substantial overlap with the
TF group we have defined above. The remaining 19 func-
tion groups include: ATP Binding (GO:0005524), catalytic
activity (GO:0003824), defense response (GO:0006952),
DNA endoreduplication (GO:0042023), hydrolase activity
hydrolyzing O-glycosyl compounds (GO:0004553), kinase
activity (GO:0016301), lipid binding (GO:0008289), oxi-
doreductase activity (GO:001649), oxygen binding
(GO:0019825), protein binding (GO:0005515), proteolysis
(GO:0006508), response to auxin (GO:0009733), response
to chitin (GO:0010200), RNA binding (GO:0003723),
transferase activity, transferring glycosyl groups
(GO:0016757), translation (GO:0006412), transporter
activity (GO:0005215), ubiquitin-protein transferase
activity (GO:0004842), zinc ion binding (GO:0008270).
A list of genes in each group can be found in
Additional file 1: Table S1.

Fitting odds ratio of duplicate retention within each
group of genes for each WGD event using linear models
A gene was designated as a “WGD-duplicate” if its
paralog derived from a particular WGD event is present.
For a gene without its paralog from WGD, it was desig-
nated as a “WGD-singleton” gene. The degree of
retention for a function group, g, after a specific WGD
event, w, is defined as:
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Rg;w ¼ Dg;w=Sg;w
� �

D¬g;w=S¬g;w
� �

Where Dg,w and D¬g,w are the numbers of WGD-dupli-
cate genes in group g and those not in group g (¬g),
respectively. Sg,w and S¬g,w are the numbers of
WGD-singleton genes in group g and those not in
group g (¬g), respectively. The 95% confidence inter-
val around the point-estimate Rg,w was defined using
the “fisher.exact” function in R, the details of which
can be found at in Fay [16]. For each WGD event,
we established a general linear model with the glm
function in the R environment which relates the Rg,w

to a set of features of each gene group. The 34 fea-
tures (predictor variables, Additional file 1: Table S2)
were filtered with the following procedures to prevent
over-fitting because we have only 20 function groups.
We calculated the correlation between all features to find
all cases where the absolute value of correlation was > 0.7.
The considerations for which features to keep included:
(1) how well each feature correlated with Rg,w on its own,
(2) whether the feature was derived from a subset of
another feature, and (3) the number of other features with
a correlation > 0.7 (favored the elimination of more
features). In addition to the above criteria, one data set
(protein-protein interactions) was eliminated because of a
high frequency of missing values (88%). The synonymous
substitution rate (dS) feature and any feature using dS in
their calculation were also excluded because they would
be highly correlated with WGD timing and confound our
analyses comparing the three WGD events. The filtering
step left 11 features for building the general linear model.
Following fitting the glm function, features were ranked
according to their p values from the least to the greatest
and the feature with the largest p value was dropped. The
model was then fit to the reduced feature set and features
were once again ranked. This process was repeated until
the F-statistic (a measure of goodness of fit of the given
model against a null model where all coefficients are set
to zero) of the model was maximized and the final p value
was calculated based on the maximal F-statistic. To
evaluate the robustness of our models, we generated
truncated versions of our data sets by leaving our one
functional group and refitting the model, eliminating
additional parameters if necessary to obtain the
F-statistic maximizing models. Parameter estimates for
the final model and each leave-one-out model can be
found in Additional file 1: Tables S3-S5.

Inferring ancestral expression levels and cis-regulatory
sites
DNA-binding domains were identified in TF protein
coding sequences using hmmscan via HMMER3 [44]
based on the Pfam-A version 29.0 HMMs [18] with a

threshold e-value of 1e-5. TFs were classified into
families according to their DNA-binding domains and
44 of 59 TF families with ≥4 members were used for
further analysis (Additional file 1: Table S11). For each
TF family, full-length protein sequences were aligned
using MAFFT [29] with default parameters. The
phylogeny of each TF family was obtained using RAxML
[66] with the following approach: rapid Bootstrapping
algorithm, 100 runs, GAMMA rate heterogeneity, and
the JTT amino-acid substitution model. These trees were
then mid-point rooted with retree in PHYLIP [17].
Given the prevalence of duplication events and the
tendency for TF duplicates to be retained in the plant
lineages, homologs from other plants will be interlaced
with TFs from A. thaliana in the phylogenies. This
makes it challenging to hypothesize proper outgroup
sequences. As such, we determined that midpoint
rooting, while less than optimal, was the most consistent
method we could apply across all TF family trees.
The mid-point rooted trees were used to infer the

ancestral gene expression states and the cis-regulatory
sites of WGD-duplicate TF pairs with BayesTrait [51] as
was done in our earlier study [81]. Bayes Trait randomly
assigns an evolutionary rate to the transition between
possible states and uses these rates to determine mostly
probably state of a given ancestral node. The likelihood
of the observe states is then calculated and used to
evaluate the current tree model and adjust evolutionary
rates. This process is repeated iteratively to maximize
the likelihood until either a maximum number of itera-
tions or convergence is reached. This process is per-
formed 100 times for each tree in order to evaluate the
robustness of the inferred state and we only used ances-
tral states which were present in > 50 trees which is a
non-trivial threshold as there are five possible states for
each expression condition (each quantile and the
ambiguous state). Further detail can be found at
(http:// www.evolution.rdg.ac.uk/ BayesTraitsV2.0Files/
TraitsV2Manual.pdf ).
The expression data sets used are described in

Additional file 1: Table S9. The discretized gene expres-
sion state (0,1,2,3) was based on the quartiles of gene
expression levels within each experiment. Thus the
inferred, ancestral expression state was also discretized.
For cis-regulatory sites, the binding targets of 345
A. thaliana TFs were defined based DNA Affinity
Purification-Sequencing data [48] from the Plant
Cistrome Database (http://neomorph.salk.edu/dap_-
web/pages/index.php) where at least 5% of the read
associated with a site were found to be in the 200 bp peak
region. We inferred whether a site was present or absent
(0,1) in the common ancestor of a duplicate pair. For both
expression and regulatory site data, in cases where there
was a missing value, it was explicitly included as an
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ambiguous state. To call the ancestral state from the
expression or cis-regulatory site data, we required a
posterior probability > 0.5. Cases where the called
state was ambiguous or no majority existed were
excluded from further analysis.

Asymmetry of the retention of ancestral expression and
regulatory sites
For determining expression state asymmetry, only TF
WGD-duplicates with ≥5 partitioned ancestral expres-
sion states in one of the four expression datasets (Ctrl,
LightDev, Stress, and Diff ) were considered. For a
WGD-duplicate pair with genes A and B, if the number
of inherited ancestral expression states in A was larger
or equal to that in B, then A and B were defined as the
ancestral and the non-ancestral duplicate copies,
respectively. The degree of asymmetry (YA,B) of expres-
sion states between two duplicates was defined as:

YA;B ¼ max FA; FBð Þ− 1− max FA; FBð Þð Þ

Where FA and FB are the frequency with which ances-
tral expression was retained for duplicates A and B,
respectively. By definition, FA + FB = 1, such that YA,B
has value between 0 (when FA = FB, no asymmetry) and
1 (when either FA or FB = 1, maximum asymmetry).
With the asymmetry values for each TF pair, an

average asymmetry value of all TF pairs was calculated for
each expression dataset, as well as for the union of all TF
duplicates from all datasets (1239 values total) to assess
how the observed degree of asymmetry compared to what
would be expected from if every partitioned state was
independent (i.e. each gene has an equal chance of retain-
ing the ancestral state regardless of the outcome of pre-
vious partitioning events). We also defined two subsets of
the LightDev, Stress, and Diff data sets using the first and
last element of each times series respectively because the
expression of genes at different points of a time series are
potentially correlated. The number of genes with > 5 parti-
tioned conditions genes decreased in the subsets of Light-
Dev (all = 334, first = 327, last = 325), Stress (all = 347, first
= 265, last = 272), and Diff (all = 351, first = 277, last = 269)
data sets. We excluded the Ctrl data set because it is
composed of only four series, mean that no genes could
pass the > 5 partitioned condition cutoff.
The expected distribution of asymmetry values for the

expression states of TF WGD-duplicates (under the
assumption of independent of partitioning events) was
determined by conducting a series of Bernoulli trials
equal to the total number of partitioned states amongst
TF-WGD duplicates. In each of these trials there was an
equal probability that either the first or second duplicate
receive the ancestral state. The results of these trials
were then grouped according the exact per gene

distribution of partitioned states in TF-WGD duplicates
and an asymmetry value was calculated for each group.
This procedure was repeated 1000 times using an inde-
pendent set of trials and subsequent groupings.
For assessing cis-regulatory site asymmetry, only TF

WGD-duplicates with ≥5 inferred ancestral cis-regula-
tory sites we considered (402 WGD-duplicate pairs
total). Similar to expression state asymmetry, in each du-
plicate pair the ancestral and non-ancestral duplicates
were defined according to the number of inherited
ancestral sites. For each WGD-duplicate pair, the degree
of asymmetry of cis-regulatory site among a TF pair was
defined analogous to what was done for expression. The
expected distribution of asymmetry values for the cis-re-
gulatory sites of TF WGD-duplicates was determined
using the same procedure as for expression states.

Ordinary differential equation models of TF state
evolution
The change in expression states from the ancestral
expression quartile to either a higher or lower quartile in
an extant TF was modeled as a system of ordinary
differential equations such that:

d
dt
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0
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Where O, +, and - are the frequency of TF WGD
duplicate genes retaining the ancestral expression states,
having a higher-than-ancestral expression level, and
having a lower-than-ancestral expression level, respect-
ively. The parameters x, y, w, and z define the transition
rates between these states. This system of equations was
solved in Maxima (http://maxima.sourceforge.net/
index.html) and best parameters for the observed distri-
bution of duplicates pairs were determined using ma-
ximum likelihood estimates calculated with the bbmle
package in R (https://cran.r-project.org/web/packages/
bbmle/index.htmll). Non-linear minimization was used
to approximate an initial guess, although the actual
initial parameters often needed to be adjusted to reach a
convergent solution. The best fit parameters for this
single duplicate expression state evolution model can be
found in Additional file 1: Table S12.
The loss of ancestral expression states in a pair of

duplicated TFs was modeled as a system of ordinary
differential equations such that:

d
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Where O, I, and II are the frequency of TF WGD
duplicate pairs where both, one, or neither duplicate
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retained the ancestral expression state. The parameters
x, y, w, and z define the transition rates between these
states. This system of equations was solved and the
initial and best parameters were estimated in the same
fashion as above. The best fit parameters for this pair-
wise expression state evolution model can be found in
Additional file 1: Table S12. The same model was also
applied to ancestral regulatory sites with O, I, and II
representing the frequency of TF WGD duplicate pairs
where both, one, or neither duplicate retained the ances-
tral regulatory site.

Additional files

Additional file 1: Table S1. Lists of Arabidopsis thaliana genes in each
GO category. Table S2. Variables considered for linear modeling and
their sources. Table S3. Parameter Estimation for α WGD Retention
Models. Table S4. Parameter Estimation for β WGD Retention Models.
Table S5. Parameter Estimation for γ WGD Retention Models. Table S6.
Number of experiments, samples, and inferred states from each expression
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β =middle, γ = right). Heatmaps show the z-scores of the observed
frequency of each difference compared to the expected frequency. Color
correlates with the magnitude of the z-score, with darker red values
indicated counts further above random expectation and dark blue values
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Additional file 6: Figure S4. Deviation of pairs of TF WGD-duplicates
from their ancestral state, defined as the difference value that each
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Additional file 7: Figure S5. ODE models of TF WGD-duplicate expres-
sion evolution relative to ancestral state for the Ctrl, Diff, and Stress
expression subsets. In this mode, we consider the transition of the WGD-
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showing the change in time (x-axis) of the frequency (y-axis) of each
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the continuous output of the models while the symbols indicate the
observed values on which the models were built (O = circle, I = square, II =
triangle). (PDF 432 kb)

Additional file 8: Figure S6. ODE models of evolution of ancestral
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