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Abstract

Background: Cis-regulatory sequences are often composed of many low-affinity transcription factor binding sites
(TEBSs). Determining the evolutionary and functional importance of regulatory sequence composition is impeded
without a detailed knowledge of the genotype-phenotype map.

Results: We simulate the evolution of regulatory sequences involved in Drosophila melanogaster embryo
segmentation during early development. Natural selection evaluates gene expression dynamics produced by a
computational model of the developmental network. We observe a dramatic decrease in the total number of
transcription factor binding sites through the course of evolution. Despite a decrease in average sequence binding
energies through time, the regulatory sequences tend towards organisations containing increased high affinity
transcription factor binding sites. Additionally, the binding energies of separate sequence segments demonstrate
ubiquitous mutual correlations through time. Fewer than 10% of initial TFBSs are maintained throughout the entire
simulation, deemed ‘core’ sites. These sites have increased functional importance as assessed under wild-type
conditions and their binding energy distributions are highly conserved. Furthermore, TFBSs within close proximity of
core sites exhibit increased longevity, reflecting functional regulatory interactions with core sites.

Conclusion: In response to elevated mutational pressure, evolution tends to sample regulatory sequence
organisations with fewer, albeit on average, stronger functional transcription factor binding sites. These organisations
are also shaped by the regulatory interactions among core binding sites with sites in their local vicinity.
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Background

Historically, the study of mathematical evolution was
practiced as the study of the changes in gene frequen-
cies, as a consequence of neutral and selective evolu-
tionary forces. For the sake of simplicity, many of these
early population genetic models analyzed these processes
without considering the complications imposed by includ-
ing genotype-phenotype mappings, such as descriptions
of the genetic regulatory networks (GRNs) involved in
development. Over the past several decades models of
gene regulatory networks (of varying degrees of realism)
have been developed and applied to fill this gap in evo-
lutionary research [1-4]. Studies lacking highly detailed
computational descriptions of relevant GRNs typically
draw inferences based solely on sequence, and the direct
properties thereof, potentially missing subtleties that can
only be deduced from a systems-level approach. For
instance, previous work suggests that the binding affinity
of a transcription factor binding site (TFBS) only weakly
predicts its phenotypic importance [5-8], contradicting
the naive notion that binding site strength strongly pre-
dicts selective importance. Consistent with this view, we
study the evolutionary dynamics of biological regulatory
sequences employing a systems level approach. We simu-
late sequence evolution using an experimentally derived,
computational model of a developmental network and
genotype-phenotype mapping [6].

We simulate expression of four segmentation genes
during early fruit fly development using a hybrid reaction-
diffusion and thermodynamic computational model, fit to
empirical expression patterns and to wild-type regulatory
sequences. Given a sequence, TFBSs and their respective
affinities are assigned, and gene product concentrations
(mRNA and proteins) are calculated [6]. Both reaction-
diffusion and ‘gene-circuit’ modelling approaches
have been successfully applied to study gene network
and enhancer evolution in Drosophila development
[4, 9-14].

The cumulative binding energy, and thus the net impact,
a regulatory sequence imposes on its target gene is a com-
plex function of, minimally: DNA accessibility, TEBS pres-
ence and quantity, and transcription factor/TFBS affinity.
As such, many different combinations of these variables,
in principle, can precipitate similar, if not identical, reg-
ulatory effects. However, as the regulatory sequences are
a consequence of gradual, neutral and selective evolu-
tionary changes, subsets of these functionally-equivalent
schemes may be more and less likely to emerge and
more and less stable through evolutionary time, given
specific historical, population, and mutational conditions.
Therefore, the sets of acceptable regulatory schemes
connected by either neutral or compensatory evolution-
ary changes are of particular interest to evolutionary
biologists.
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It is well documented and experimentally demonstrated
that there is tremendous regulatory sequence varia-
tion and divergence among even closely related species,
despite conservation of expression patterns and regula-
tory dynamics [15-19]. Presumably TFBS turnover and
sequence divergence occurs mostly as populations tra-
verse the set of equivalent regulatory schemes on a path
connected by neutral changes. However, it is not imme-
diately apparent what such evolutionary paths would look
like, and how neutral and selective forces bias this search.
Here we elaborate some of the consequences of high
mutational pressure on sequence complexity.

Prior simulation studies have suggested that evolution-
ary paths tend to sample “complex” regulatory schemes
(i.e. many, weaker TFBSs in contrast with fewer, stronger
TEBSs), simply as a result of the relative frequencies of
possible regulatory schemes [10]. It is further empha-
sized that patterns of seemingly nonrandom regulatory
sequence complexity (measured in part by TFBS quan-
tity) may simply be the result of non-adaptive processes
[20, 21]. Furthermore, in order to predict the likelihood of
evolutionary changes it may be helpful to catalogue both
the functional importance of specific regulatory regions
as well as the (in)visibility of regulatory regions (and
sub-regions) to natural selection.

To add to this discussion, we study the evolutionary
dynamics of a population of Drosophila melanogaster,
characterized and assessed by the expression of its early
developmental regulatory network under elevated muta-
tional pressure, focusing our analysis on binding energy
profile evolution. The developmental model employed
suggests that the regulatory sequences under study are
complex; composed of many weak (rather than a few
strong) binding sites. As such, there is only a weak cor-
relation between a binding site’s affinity and its impact
on gene expression. We emphasize a specific question:
given the small correlation between sequence binding
affinity and functional importance, how can the evolu-
tionary significance (if any) of regulatory sequence reor-
ganisation be assessed? We believe that a quantitative
answer to this question will be generalizable to systems
lacking such detailed computational genotype-phenotype
models.

In this simulation, we observe a quick and dramatic
drop in the total quantity of TFBSs in conjunction with
a positive shift in the distribution of remaining regula-
tory binding energies through evolutionary time. This
reorganisation is partially influenced by a sequence’s bind-
ing affinity annotation specificity and redundancy. TFBSs
determined to be functionally important (some with weak
binding affinities) are shown to be conserved during evo-
lution. Finally, TFBSs in close proximity to important
binding sites are more likely to be maintained through
evolutionary time.
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Methods

Regulatory sequences and binding sites for gap genes

We analyzed regulatory regions of the gap genes hunch-
back (hb), Kriippel (Kr), giant (gt), and knirps (kni) and
extracted TFBSs in these regions using the same proce-
dure as described in [6]. The putative regulatory regions
spanned 12 Kbp upstream and 6Kbp downstream of
the transcription start sites for each gene in the refer-
ence D. melanogaster genome (dm3 / BDGP5; the newer
version dmé6 contains these regions unchanged except
the shifted coordinates). We predicted TFBSs in these
regions for the transcription factors Bicoid (Bcd), Caudal
(Cad), Hunchback (Hb), Giant (Gt), Kriippel (Kr), Knirps
(Kni), Tailless (TIl), and Huckebein (Hkb) by using posi-
tion weight matrices (PWMs) [22]. The PWMs for these
TFs were presented in [23] (http://www.autosome.ru/
iDMMPMMY/), and the thresholds were selected as in [24].
We included a predicted TFBS in the model if it satisfied
at least one of the following conditions: (1) the binding
site had a high PWM-score and was located in the open
chromatin domain according to the DNase I accessibility
data [25], or (2) the site overlapped with one of the cis-
regulatory modules according to RedFly database [26], or
(3) the site overlapped with one of the footprint sites [26].

Gene expression model

We predicted gene expression in the Drosophila gap gene
network using a hybrid thermodynamic model reported
in [6] (denoted as ‘Model 4’ in the cited paper). The
model combines the thermodynamic approach for calcu-
lating the probability of transcriptional activation of target
genes and the reaction-diffusion equations for the spa-
tiotemporal dynamics of gene products, as we describe
briefly in what follows and in full details in Additional
file 1. The transcriptional activation of a gene is assessed
based on the information about the TFBSs in its regula-
tory sequence and concentrations of the TFs Bed, Cad,
Hb, Gt, Kr, Kni, TIl, and Hkb in nuclei at the A-P axis
of the blastoderm-stage embryos during cleavage cycles
13 through 14A. The TFs Bcd, Cad, Tll, and Hkb provide
external inputs to the model equations, and the mRNA
and protein concentrations for the gap genes kb, Kr, gt,
and kni are calculated as the model output. Therefore, the
model accounts for the regulatory interactions between
the four gap genes and the external influence from the
other four proteins.

We used values of free parameters in the model that
were previously obtained in [6] for D. melanogaster refer-
ence genome by fitting the model output to the wild type
gap gene expression data at cellular resolution (Additional
file 1) [27]. Using these parameter values, we calculated
the ‘wild-type’ solution U? (g, i, t), which is the concentra-
tion of gene product p (p = ‘mRNA’ or p = ‘protein’) for
gene a, nucleus i, and time ¢.
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Evolutionary algorithm

We simulated the evolution of 100 haploid, sexually
reproducing individuals, holding all parameters, including
population size, mutation rate (0.001 per base pair per
generation), and selection constant for 3,350 genera-
tions. Genotypes are represented as the DNAase accessi-
ble regions of four 18kb regulatory sequences (described
above) flanking the gap genes kb, Kr, gt, and kni. Phe-
notypes are the spatial and temporal mRNA and protein
expression dynamics of the respective Drosophila gap
gene regulatory network, and are derived by simulating
development with an individual’s specific regulatory geno-
type.

After mutation, phenotypes are computed and then
sorted in order of increasing rms-scores—a measure of
capability to mimic wild-type computational expression
patterns. The rms-score F is calculated as follows:

F= |4 Y @i - wrainy?, W

Dsa,ist

where ¥ (a, i, t) is the model output for the mutated reg-
ulatory sequence, and U?(a,i,t) is the wild-type model
output. The summation takes place over all values of the
indices for which the experimental data on the wild type
gene expression is available. The overall number of the
terms in this sum equals to N = 6800 [6]. From the sub-
population of genomes that produce expression patterns
sufficiently greater than or equal to the 20th best individ-
ual, two parents are randomly selected with replacement
and recombine regulatory sequences with equal probabil-
ity, until the following generation is populated. Recombi-
nation only shuffles disparate regulatory sequences, with
no recombination break points within the 18kb sequences.
The simulation is seeded with a population of genetically
identical wild-type regulatory sequences. The gap gene
expression patterns for the 20 best fit individual sequences
from the last generation are shown in comparison with the
initial patterns in Additional file 2.

TFBS tracking

The evolutionary trajectories of TEBSs were determined
by tracking binding site starting position coordinates.
First, we identified TFBSs present in all generations with
identical coordinates. For other TFBSs we discriminated
between site movement and site loss by comparing neigh-
boring generations. We assumed that a site S moved if in
the next generation there existed a site for the same TF
within the vicinity of S. This vicinity of S is defined as the
sequence, three times the site length, flanking and con-
taining S. If there were no TFBSs for the same TF in this
vicinity, S is considered to have disappeared. In addition
to site deaths, site births occur when a TFBS appears in
a generation where there were no sites within its vicinity
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previously. A birth event is considered to be a rebirth if
the new site is located in the above-stated vicinity of the
wild type coordinates of S. The algorithm stores the tra-
jectories of all TFBSs for a randomly chosen individual in
each generation. We used TFBS tracking for individuals
randomly chosen from the 20 most fit individuals from
each generation. For TFBSs other than the tracked ones,
the averaging of the binding energy E and other quanti-
ties is taken across the 20 most fit individuals from each
generation. This averaging is justified since the sequences
do not show significant multimodality in E distributions
(Additional file 2).

Results

We estimate the phenotypic importance of an individual
TFEBS in the initial (wild-type) regulatory sequence by cal-
culating the rms-difference between the model wild-type
expression patterns, with and without a particular TFBS.
We call this difference the regulatory rms-score of the
binding site, and larger values of this score correspond
to a stronger influence of the TFBS on expression, and
vice versa [6]. Our model reveals only a small correlation
between the binding affinity of a TFBS and its functional
importance assessed via its rms-score (Fig. 1; the Pear-
son correlation coefficient CC = 0.30). In what follows,
we investigate how this small correlation leads to the spe-
cific variability of the binding energy profile during the
simulated evolution of the regulatory sequences.

Sequence simplification

Evolution was simulated under an elevated mutational
pressure (mutation rate u = 0.001) leading to a decrease
in regulatory sequence complexity, as there was a signif-
icant drop in the total number of TFBSs for almost all
TFs (Fig. 2a). The dynamics of the total number of sites is
balanced by a steep decrease in the the number of initial

~10}

Log TFBS score for wt

—15-. ) ) ) ) ) ) )
0 1 2 3 4 5 6 7
TFBS E for wt
Fig. 1 Correlation between the binding energy £ and the
log-transformed regulatory rms-score of TFBSs from the gap gene
regulatory regions. The scatterplot is computed for the wild-type

conditions, i.e. for the initial regulatory sequence
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sites and a saturating increase of the number of sites born
throughout evolution (Fig. 2b). The sequence reacts to the
elevated mutation rate by changing its TFBS composition,
with new sites surviving twice as long as the initial sites.
The final quasi-steady numbers of TFBS for each TF is a
result of mutation selection balance.

The TFBS disappearance rate also depends on TFBS
motify redundancy, determined by the number of
sequence motify of similar affinity and nucleotide
sequence available to a TF. Such a TF should have a
large number of self-overlapping sites and, as a conse-
quence, a higher probability of site loss because a single
substitution in the overlapping region is able to destroy
multiple sites simultaneously. We can use the fraction of
self-overlapping events in the initial set of TFBSs as a mea-
sure of such redundancy. When this fraction is large, the
double site loss due to mutation in the overlapping region
is expected to be significant, leading to a decrease in this
fraction as the total number of sites decreases. On the
other hand, when the fraction of self-overlaps is initially
small, single sites will disappear predominantly with time,
hence, the fraction of self-overlaps will increase or stay
constant as the total number of sites decreases.

We observe a relationship between Hb TFBS motif
redundancy and Hb TEBS loss: there is a high positive
correlation between the fraction of self-overlaps and the
total number of TFBSs (Fig. 3a, ¢). This is consistent with
the fact that Hb TFBSs exhibit the steepest decline in
Fig. 2a. Initially Hb had the largest number of binding
sites because it binds to self-repeating polyA and polyT
segments (Fig. 3b) and, thus, has many self-overlapping
sites. This effect is present in other TFs but to a lesser
degree (Fig. 3c), i.e. the larger initial fraction of self-
overlaps, the more sites are lost due to the double-site
mutations.

The fraction of overlapping events among all TFBSs (not
only for the same TF) also decrease with time (Fig. 3d),
showing that the same logic holds for heterotypic over-
lapping. The essential part in this fraction is due to Hb
sites, however excluding these sites does not change the
reduction trend.

Variability of binding energy for different sets of sites and
sequence annotations

We follow individual TFBSs (referred to as “tracked sites”),
present in high fitness individuals, through the course of
the simulation. Tracked sites’ binding energy distributions
differ significantly from newly appearing sites’ distribu-
tions, and are also distinct from the total distribution
(Fig. 4a—c). The tracked sites exhibit an excess of higher
energy sites compared to the new sites (Fig. 4a). As the
new sites eventually form the majority (Fig. 2b), the total
E distribution follows that for the new sites. Mean energy
for the tracked sites increases with time, whereas the
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Fig. 2 Dynamics of the number of TFBSs. a The generation average number of all binding sites for each TF is shown normalized by the initial value of
this number. These are the generation average initial/final numbers of TFBSs for each TF: 507/135 (Hb), 122/57 (Kr), 125/60 (Gt), 116/43 (Kni), 150/69
(Bcd), 184/66 (Cad), 121/58 (Tll), 55/58 (Hkb). b The dynamics for all TFBSs (red), the initial set of sites (blue), and sites born during the simulation
(green). The red and green curves were obtained by averaging the corresponding numbers of sites across the 20 best individuals in the population,
while the blue curve stems from the site trajectories tracked across a randomly chosen sequence from the 20 best fit individuals from each generation

Generation

new sites’ mean energies oscillate stochastically around
a quasi-steady level (Fig. 4b). The tracked sites also have
lower energy variability compared with the majority of
sites (Fig. 4c). These results suggest that, despite being
in an environment of vast sequence variability, the initial
TFBSs do not dissolve with time in newly born sites and
keep robust function as a whole.

The within-generation distributions of E for the tracked
TEBSs are indistinguishable between the first and mid
generations (p 0.32 based on the bootstrapped

Kolmogorov—Smirnov (KS) test), while for the last gener-
ation the distribution shows a small bias towards larger E
values (p = 0.02; Fig. 5a). The statistical difference with
the first generation becomes persistent only after approx-
imately the 2500th generation and demonstrates rather
damping oscillations before that (Additional file 2). These
oscillations correspond to stochastic events during evolu-
tion associated with the appearance of many low energy
sites over a short time period (Fig. 4d), in opposition to
the main trend of such site loss within the tracked sites.
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Fig. 3 Analysis of TFBS overlapping events. a The generation average number of self-overlapping events for Hb TFBSs vs. the generation average
total number of TFBSs for the TF. The number of self-overlaps in a generation is shown as a fraction of the average total number of Hb sites in this
generation. b The sequence logo of the consensus TFBS motif for Hb. The analogs of (a) and (b) for other TFs are shown in Additional file 2. € The
number of TFBS self-overlaps for each TF in the initial regulatory sequence, as a fraction of the initial number of sites for each TF, vs. the correlation
coefficients for the TF-specific analogs of the scatterplot shown in (a). d The dynamics of the population average number of overlapping events
between all TFBSs (magenta) and between all but Hb sites (blue). The number of overlaps is computed as a fraction of the population average total
number of sites under consideration
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To further examine sequence simplification, we con-
sider a coarser grained sequence annotation and compare
its energy profile properties with TFBS energies. We arbi-
trarily break each gap gene regulatory sequence into 180
nucleotide bins (or segments), resulting in 104 bins for
the four genes. For each segment, we define a binding
energy (per bp) Ep;, as the sum of the TFBS binding ener-
gies within each segment, normalize by segment length,
and average across individuals in a generation. There-
fore, Epin represents the ‘binding capacity’ of a segment:
the more high affinity sites it contains, the larger Epin
it has.

This annotation leads to a qualitatively different pic-
ture of binding affinity variation. While the tracked
TEBSs evolve towards a larger average energy (Figs. 4b,
5a), the dynamics of the Epi, distribution exhibits a
shift towards smaller mean values and smaller vari-
ances (Fig. 5b). This shift is related to the loss of
TFBSs, as fewer sites in a bin lead to smaller energy
weights of nucleotides within each bin. The Epj, dis-
tribution is first distinguished from the distribution at
the initial generation at approximately generation 220.
Calculating the difference dE = E — E“!' between
the binding energy during evolution with its wild-type

(initial) value E"* for the sites and bins, we see that,
in contrast to the individual TFBSs, the difference
dEvin = Epin — E]‘)Vi; for the bins has a distribution
shifted towards negative values (Fig. 5c, d). Therefore,
the sequence simplification due to the elevated muta-
tional pressure leads to opposite trends at the level
of the binding energy for different sequence annota-
tions.

Correlations with rms-scores of individuals

The per generation mean and normalized SD of individ-
uals’ rms-scores saturates rapidly with a slight decline of
the CV through time (Fig. 6a, b). We may consider these
dynamics as a stochastic fluctuation of the system around
a quasi-steady state of constant fitness. We also see this
fast saturation in the figure of correlation between mean
rms-score and mean energy for various sets of TFBSs
(Fig. 6¢, d), where an rms-score increase is accompanied
with a decrease (increase) of the mean E for all (tracked)
sites. These figures also show that, in the quasi-steady fit-
ness regime, there are no significant correlations between
fitness of the individual and the mean energy. The same is
true for correlation between the CVs for E and rms-score
(Additional file 2).



The Author(s) BMC Evolutionary Biology 2016, 17(Suppl 1):4

Page 7 of 12

PDF

Frequency

0.25F

0.20¢

0.10¢

0.05¢

0.00t

gen. 1—
gen. 500 — ]
gen. 3350 — |

E for TFBSs

0.35
C

0.30
0.25
0.20
0.15
0.10
0.05
0.00

|

-6 -4 -2 0 2 4
dE for TFBS

0.05

0.00

gen. 1—
gen. 500 —
gen. 3350 —

0.0 0.2 0.4 0.6
E for bins
D 1 I
‘o6 -04  -02 0.0 0.2
dE for bin

Fig. 5 Binding energy variability for the tracked TFBSs and sequence segments. Results for TFBSs are shown in (a, ), and for the sequence segments
(bins) in (b, d). a, b The probability density functions (PDFs) for the within-generation distribution of the binding energy £ are shown for three
different generations: the first, mid, and last ones. ¢, d Distributions of df = E — £"* values for all TFBSs (or bins) and all generations

Mutual correlations between sets of sites and sequence

segments

The rapid change of binding energies throughout evolu-
tion inevitably leads to some general patterns of correla-
tions between temporal profiles of E for distinct TFBSs

and their groups. One such correlation pattern corre-
sponds to the fact that low affinity sites are maintained
through time only if their binding energies increase,
whereas high affinity sites are more likely to experience an
energy decrease. As a consequence, we may expect higher
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positive correlations within the groups of low and high sites that were born and then died within the first 500 gen-
affinity binding sites. erations with those from the last 500 generations, and did
In order to look at such correlations, we arranged the not find a statistical difference between these distributions
tracked TFBSs in order of their, increasing, initial (wild-  (Additional file 2). However, if we take into account the
type) binding energies and partitioned this list of sites into  initial sites that die in the first 500 generations, the average
non-overlapping 35 sets. Then for each generation, we lifespan for the group of early sites becomes larger than
averaged energy inside each site set. Finally, we correlated  that for the later sites.
the samples of averaged energies for all generations for We extracted 85 TFBSs that remained in the population
any pair of the site sets (Fig. 7a). The clusters of positive  for the entire simulation (‘core binding sites’) and inves-
correlations in the lower left and the upper right corners of  tigated their behavior (the placement of these sites in the
this figure correspond to the described correlation pattern  sequence is illustrated in the genome-browser like figures
for the low and high affinity sites, respectively. This gen-  in Additional file 2). The analog of Fig. 5a implies that the
eral correlation pattern may hide functional correlations  binding energy distribution across core sites is highly con-
between TFBSs at the level of binding energy, butit canbe  served during evolution (Fig. 8b: The appearance of the
used as a background model for finding such functional high-affinity mode in the last generation is not statistically
correlations by statistical methods. significant). The core sites are clearly segregated from
We can also use the correlation matrices to answer the  other tracked TFBSs with respect to their wild-type reg-
question about how fast the binding energy distribution  ulatory rms-scores (Fig. 8c). Functionally important TFBS
in the sequence changes throughout evolutionary time. In  are typically core sites as well.
this case, we calculated correlations between the distribu- We also studied how a TFBS’s local sequence envi-
tion of Epj, in the sequence for a given generation with  ronment influences its evolutionary dynamics. We con-
the same distributions for all other generations (Fig. 7b).  sidered two types of the tracked non-core TFBSs in
The narrow regions of small correlations in this figure the vicinity of the core sites. The first type are sites
illustrates the two properties of the evolutionary simula- located no farther than 50 bps from at least one
tion: the rapid early change of the energy profile and the core site of the same TF, being thus under condi-
later saturation, making more distant generations hardly  tions of the cooperative interactions with such core

distinguishable. sites (Additional file 1). There are 61 such coopera-
tive sites in total. The second type are TFBSs overlap-
Core TFBSs and their vicinity ping with at least one core site (and not present in the

The extensive loss of tracked TFBSs through time leads  set of cooperative sites); there are 127 such sites. We
to a broad longevity distribution, with a mode corre- call the joint set of TFBSs of both types neighboring
sponding to longer-living TFBSs (Fig. 8a). We checked  sites.

whether TFBS lifespans change during evolutionary time, Just like the core sites, the neighboring sites tend to
i.e. whether later born sites display increased or decreased ~ be maintained for longer periods of time (Fig. 8d), sug-
longevity compared with earlier born ones. We compared  gesting that sites within the vicinity of core TFBSs are
the lifetime distribution of the tracked binding sites for ~more highy conserved during evolution. Interestingly,
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the two types of the neighboring sites possess different
distributions of the wild-type rms-scores (Fig. 8c). The
cooperative sites are clearly distinguishable from the
majority of sites and hold a rather intermediate posi-
tion between the full distribution and the distribution for
the core sites. The sites overlapping with the core ones
are indistinguishable from the majority of sites, show-
ing no essential influence on gene expression for the
wild-type conditions. This difference can be explained by
different types of influences on the core sites. While the
cooperative sites actively influence the core TFBSs, the
sites overlapping with the core TFBSs may live longer
due to negative selection of mutations in the overlap-
ping region with the core site. Therefore the higher
retention rate for the sites overlapping with the core
TFBSs can be interpreted as an example of a selective
sweep.

The bimodality of the rms-score distribution of the core
sites is also related with the overlapping between sites.
The left peak of the red curve in Fig. 8c is formed by
the core sites that overlap with other core sites (Addition
file 2). As these sites have a small impact on gene expres-
sion (for the initial sequence), we may suggest that their
ultimate longevity is explained solely because they over-
lap with core sites that have a stronger influence on
expression.

Discussion
In this study, we have provided an example of regu-
latory sequence change through evolutionary time. We
pondered that given the large set of phenotypically and
functionally equivalent regulatory schemes (when vary-
ing TFBS quantity, affinities, availability, etc.) that only
a subset of these will be explored during evolution, and
are contingent upon specific acting population, molecular,
and historical forces. Previously, it was shown that high
quantity TFBS sequences make up a relatively larger por-
tion of acceptable sequence space and are consequently
more likely to be frequented during evolution [10]. Muta-
tional pressure seems to bias the evolutionary search of
suitable regulatory sequences towards fewer TFBSs.
Under significant mutational pressure, our simulations
demonstrate that the cumulative number of phenotyp-
ically important TFBSs diminishes in concert with an
increase in average binding site affinities. This is likely a
direct consequence of the mutation rate, as having fewer
TEBS, and thus fewer functionally relevant nucleotides,
minimizes the mutational target of the genome. Despite
this constraint, the Drosophila gap gene network ably
compensates by tweaking the binding energies of the
remaining TFBSs. The observed change in low- and
high-affinity binding sites is likely a result of compen-
satory actions. The tradeoff between TFBS frequency and
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affinity seems to be a general feature of regulatory net-
works [28]. This may also be consistent with claims that
much of regulatory sequence organisation is predomi-
nantly shaped by neutral forces [20].

In this simulation, we do not only observe sequence
drift, but we also notice qualitative changes in higher
level descriptors of the regulatory network (such as bind-
ing energy). One might reasonably expect that wild-type
regulatory sequences and higher-level network descrip-
tors would already be optimized and at equilibrium, and
that any of the observed qualitative changes here are a
consequence of specific experimental conditions. This is
seemingly a parsimonious explanation of our results and
further reveals the specific influence of the mutation rate
on the equilibrium values of higher-level network descrip-
tors. If fewer TFBSs than are present in the wild-type
sequence can achieve nearly identical expression patterns,
is there a selective advantage to the wild-type regulatory
strategy, or is it merely a consequence of neutral pro-
cesses [10, 20, 21]? Our results showing slightly larger
deviations of expression in derived populations could
hint at the involvement of selective forces (overwhelmed
in the present study). It is also important to note that
our methodology focuses solely on several minutes of
early development and our artificial version of selection
is restricted to assessing brief spatiotemporal expression
patterning, neglecting any extraneous potential function-
ality. Consequentially, a population at or near selective
equillibrium, experimentally subjected to only a subset of
selective criteria, may incorrectly appear to be unnecces-
sarily complex.

One non-neutral possibility is that the more TFBSs
involved in regulation, the more fine-tuned expression
patterns can be. However, the increased control pro-
vided by additional TFBSs may diminish as a function of
TFBS quantity. As such, the benefits provided by each
additional fine-tuning site will eventually be outweighed
by the cost of maintaining a larger mutational target.
Although beyond the scope of the present study, these
trade-offs, if necessary, may be better understood and pre-
dicted within the context of population genetic modeling.
Future research can add mathematical clarity to the above
speculations and further elaborate the connections among
specific population parameters and network descriptor
equilibriums. Originally developed within the context
of RNA evolution and mutation, mathematical models
that examine the tradeoffs among replicative fidelity of
a sequence, sequence length, and mutation rates, may
provide further insight [29].

Core TFBSs, TEBSs that remain throughout the entire
evolutionary history of the simulation, are identified and
shown to be extremely important towards maintaining
wild-type expression patterns. In contrast, many sites
with smaller phenotypic effects turnover often, and are
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suggested candidates responsible for observed sequence
drift in actual biological populations. Another result of
this simulation, consistent with previous work [5, 6], is
the fairly weak correlation between TFBS energy and the
impact of its removal on the entire system’s dynamics.
This further illustrates the necessity of realistic compu-
tational genotype-phenotype maps to assigning evolu-
tionary functionality. The selective importance of many
TFBSs can only be deeply understood within the context
of the system it operates in, and not solely from local
measurements.

We also note that TFBSs within close proximity of core
sites are retained at a higher rate than other non-core
TEBSs, despite sharing a similar perturbation distribution
with other non-core, non-proximal binding sites. In
accordance with our expectations of the influence of
mutational pressure, this pattern may be a consequence
of these non-core TFBSs sharing nucleotides with neigh-
boring core TFBSs, and thus containing fewer mutable
nucleotides. Others also observed increased longevity of
overlapping binding sites [21]. Additionally, close core
proximity TFBSs may be favorable due to cooperative
interactions of these sites with the core sites.

The presented results have some limitations. We ana-
lyzed the results of a single evolutionary simulation with
a fixed mutation rate. New simulations with varying
parameter schemes are likely to clarify and refine our
understanding of sequence evolution. In particular, the
core TFBSs and other aspects may be different in other
simulations, as evolution is a stochastic process. Despite
the complexity of our model and its detailed focus on
molecular mechanisms, it has mechanistic limitations as
well. Only a subset of the known mechanistic details in
regulation are simulated and, in particular, the 3D genome
organisation, is presently neglected. Models that include
these detials might disagree on the position of DNA
and on the regulatory role of certain TFBSs, and poten-
tially lead to different observations. Overcoming these
modelling limitations is a desirable condition for future
evolutionary studies.

Conclusions

Our simulations of genetic regulatory network evolution
suggest that in response to elevated mutational pressure,
the size of the functional regulatory sequence decreases to
minimize risk. To compensate for this organisational con-
straint, TEFBSs with, on average, stronger binding affinities
are selectively maintained. The small correlation between
TEBS affinity and functional importance means that gene
network evolution tends towards sequence organisations
having many weak TFBSs working in concert. This can
make conclusions solely based on the analysis of the bind-
ing affinity landscape vague and incomplete. However,
we show that core TFBSs, which form the regulatory
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backbone of the network, are highly conserved and can be
identified at the level of binding energy dynamics. TFBSs
that interact with these core binding sites also exhibit
increased longevity. Despite the present study’s focus on
a specific system and parameter regime, its results will
likely be relevant to more general studies of the TFBS evo-
lutionary landscape, and its conclusions useful to systems
lacking genotype-phenotype maps.
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