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Abstract

Background: Phylogenetic studies have provided detailed knowledge on the evolutionary mechanisms of genes and
species in Bacteria and Archaea. However, the evolution of cellular functions, represented by metabolic pathways and
biological processes, has not been systematically characterized. Many clades in the prokaryotic tree of life have now
been covered by sequenced genomes in GenBank. This enables a large-scale functional phylogenomics study of many
computationally inferred cellular functions across all sequenced prokaryotes.

Results: A total of 14,727 GenBank prokaryotic genomes were re-annotated using a new protein family database, UniFam,
to obtain consistent functional annotations for accurate comparison. The functional profile of a genome was represented
by the biological process Gene Ontology (GO) terms in its annotation. The GO term enrichment analysis differentiated the

losses of metabolic pathways in evolutionary history.

functional profiles between selected archaeal taxa. 706 prokaryotic metabolic pathways were inferred from these
genomes using Pathway Tools and MetaCyc. The consistency between the distribution of metabolic pathways in the
genomes and the phylogenetic tree of the genomes was measured using parsimony scores and retention indices. The
ancestral functional profiles at the internal nodes of the phylogenetic tree were reconstructed to track the gains and

Conclusions: Our functional phylogenomics analysis shows divergent functional profiles of taxa and clades. Such
function-phylogeny correlation stems from a set of clade-specific cellular functions with low parsimony scores. On the
other hand, many cellular functions are sparsely dispersed across many clades with high parsimony scores. These different
types of cellular functions have distinct evolutionary patterns reconstructed from the prokaryotic tree.
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Background

Bacterial and archaeal microorganisms are capable of very
diverse cellular functions. Some examples are nitrogen
fixation, organic matter degradation, and antibiotic resist-
ance. The full set of cellular functions, or the functional
profile, of a microorganism is encoded in its genome. For
a microbial species, some essential cellular functions are
maintained via vertical gene transfer, some beneficial ones
are gained via horizontal gene transfer or evolutionary
innovation, and some dispensable ones are lost in order to
maintain a compact genome. Phylogeny and environment
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are the two primary factors that shape the functional profile
of a microbial species. The phylogeny defines the evolution-
ary history of the species and dictates the cellular functions
available from inheritance. The environment, including the
physical and chemical conditions of the habitat and the bio-
logical cohorts of the microbial communities, applies select-
ive pressure on the species to acquire and retain beneficial
cellular functions and remove deleterious or dispensable
ones.

Decades of biochemistry research have uncovered the
molecular implementation of many cellular functions in
terms of biological processes and metabolic pathways.
Enzymes that carry out the reactions in pathways and
processes have been identified and linked with genes in
model organisms in databases, such as MetaCyc, KEGG,
and others [1-7]. As a result, many cellular functions in a
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microorganism can now be inferred computationally
from its genome in three steps. First, genes are pre-
dicted from the genome sequence. Then, the molecular
functions of the genes are inferred by sequence analysis
and database searching. Finally, a cellular function is
considered to be present in the microorganism if the es-
sential enzymes for the cellular function are encoded in
its genome. Owing to the progress in DNA sequencing
technology, a large number of genomes (>15,000) have
been sequenced and deposited in GenBank [8], covering
considerable phylogenetic diversity of the bacterial and
archaeal domains. Characterization of cellular functions
consistently predicted from the sequenced microbial
genomes in a phylogenetic context can shed light on
their evolution in Bacteria and Archaea. This is referred
to as functional phylogenomics analysis.

Evolution in the bacterial and archaeal domains has
been studied extensively based on species trees and gene
trees [9,10]. Functional phylogenomics studies can un-
cover the evolution of cellular functions at an intermediate
level between genes and species. Genes may evolve in par-
allel with species or in a divergent manner through hori-
zontal gene transfers and gene losses. Likewise, a cellular
function may evolve in parallel with both its host species
and its constituent genes. During this process, some genes
may be replaced with their non-homologues of equivalent
function, or conferred to a species by horizontal gene
transfer, gene sharing, or evolutionary innovation [11-13].
Reconstruction of a cellular function tree is difficult due
to the lack of an evolutionary model to account for all
these types of events. Instead, the evolution of cellular
functions can be studied by inferring their ancestral states
across the prokaryotic phylogenetic tree and tracking their
gains and losses along the evolutionary timeline. More
broadly used cellular functions should have earlier initial
appearances in the evolutionary history. We hypothesize
that the propagation of a cellular function through the
prokaryotic tree may follow the diversification of selected
clades, pass laterally across distant species, or discontinue
at certain lineages. Our functional phylogenomics analysis
provided a quantitative test of these hypotheses for a large
number of cellular functions in the phylogenetic tree of all
sequenced prokaryotic genomes in GenBank.

Microbiologists have long observed the association of
certain functions with certain clades of the phylogenetic
tree [14]. Recently, the PICRUSt algorithm [15] was devel-
oped to predict metagenome functional profiles of micro-
bial community members from 16S rRNA marker genes.
However, many genomics studies have also shown the
prevalence of horizontal gene transfer among bacteria
[16-20], which would disrupt the association of a cellular
function with some closely related taxa. Our functional
phylogenomics analysis measured the phylogeny-function
correlation for many cellular functions over the prokaryotic
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tree. On one hand, some functions are concentrated in
selected clades. As a result, many clades have distinct func-
tional profiles with enrichment of certain functions. On the
other hand, some other functions are sparsely dispersed
across distant clades, which would make it difficult to
predict the presence or absence of these functions in a
microorganism based on the functions of its phylogenetic
neighbors. The functional phylogenomics analysis provided
the parsimony scores of cellular functions as an empirical
measure of their consistency with the phylogeny, and gen-
erated the aggregate functional profiles of taxa at different
taxonomic ranks.

Results and discussion

Phylogeny reconstruction of the prokaryotic genomes
We downloaded from GenBank (Oct 2013) more than
15,000 bacterial and archaeal genomes, henceforth
referred to as the prokaryotic genomes. After discarding
genomes containing more than 1000 contigs and genomes
with less than 400 protein-coding genes, the remaining
14,727 prokaryotic genomes were analyzed in this study
and their metadata was provided in Additional file 1. A
phylogenetic tree of these genomes (see Figure 1) was
built using PhyloPhlAn [21] and FastTree [22] based on
proteins found by Prodigal [23]. Prodigal was chosen in
order to standardize gene calling across all genomes, as
GenBank gene predictions were shown to have more vari-
ation as a result of the different methods used by the sub-
mitters [24]. Prodigal predictions were also found to have
more consistent identification of translation initiation sites
than GenBank records, as in Burkholderia genomes [25].
The phylogenetic tree in the Newick format is available in
the Additional file 2. The full lineages of the genomes
were extracted from the NCBI Taxonomy database and
their phyla are color-coded in Ring 1 of Figure 1. Most
phyla were monophyletic and occupied contiguous sectors
of the Ring 1, except that Proteobacteria was separated
into two clades. This indicated a general agreement
between the taxonomic classification and phylogenetic
distribution of these genomes. Due to the errors in either
taxonomic classification or phylogeny reconstruction,
there was also occasional inconsistency, indicated by
distinct colored lines within some contiguous phylum
sections in Ring 1.

To compare the gene calling results from Prodigal pre-
dictions and GenBank annotations, we built two phylo-
genetic trees for the 10,075 genomes that had GenBank
annotations. One tree was based on proteins called by
Prodigal and the other was based on proteins provided
in GenBank (see Additional file 3). The Robinson-Foulds
[26] distance between the two trees, defined as the total
number of partitions of tips implied by one tree but not
the other, was 8494. This was 45% of 18,916 total parti-
tions in the two trees. The branch score [27] defined by
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Figure 1 Overview of the prokaryotic genomes. The phylogenetic tree contains 14,727 genomes with tips colored according to their phylum
classification. Rings: (1) Phylum classification of the genomes. Phyla with less than 5 genomes are in the “Others” category. (2) Completion status

of the genomes with black for finished genomes and white for draft genomes. (3) Number of contigs in each genome. (4) Number of proteins in
each genome. (5) Percentage of proteins annotated by UniFam in each genome. (6) Number of pathways inferred for each genome.

Phylum (Ring 1)

Acidobacteria
Actinobacteria
Aminicenantes
Aquificae
Atribacteria
Bacteroidetes
Calescamantes
Chlamydiae
Chlorobi
Chloroflexi
Cloacimonetes
Crenarchaeota
Cyanobacteria
Deinococcus-Thermus
Euryarchaeota
Firmicutes
Fusobacteria
Marinimicrobia
Nitrospirae
Others
Parcubacteria
Planctomycetes
Proteobacteria
Spirochaetes
Synergistetes
Tenericutes
Thaumarchaeota
Thermotogae
Verrucomicrobia

the square root of sum of squared differences between
branches in the two trees was 2.24, comparing to the
total internal branch length of 1074.04 in the two trees.
These two distance measures indicated that there were
many discordant internal branches between the two
trees, but the lengths of these branches were very small.
The taxonomic classification and the phylogenetic tree
(see Figure 1) exhibited highly uneven distribution of the
sequenced genomes among different phyla. 85% of the
genomes belonged to the three most sequenced phyla
(7120 genomes in Proteobacteria, 4137 in Firmicutes,
and 1294 in Actinobacteria), whereas 17 phyla have 3 or
fewer sequenced genomes. The completion status of the
genomes is indicated in Ring 2 of Figure 1 (finished
genomes in black lines and draft genomes in white lines)
and the number of contigs in a genome is shown by the

height of its corresponding bar in Ring 3. A few phyla
had very high percentages of finished genomes, includ-
ing Chlamydiae (71% of 146 genomes), Tenericutes (58%
of 133 genomes) in the bacterial domain, as did the most
phyla in the archaeal domain.

Re-annotation of the prokaryotic genomes

The prokaryotic genomes were annotated by their submit-
ters to GenBank. We observed a significant degree of in-
consistency between the GenBank annotations of different
genomes in the following aspects: (i) terminology: ge-
nomes have different names for orthologous proteins, (ii)
ontology: some genomes have extensive annotations in
GO terms and EC numbers and some others do not, and
(iii) annotation coverage: closely related genomes have dif-
ferent percentages of genes with assigned functions. The
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inconsistency probably stemmed from the submitters’
different annotation procedures that may involve a var-
iety of algorithms and databases for inferring functions.
In addition, the inconsistency also existed between
genomes deposited by the same submitter at different
times, because the algorithms and databases used for
annotation are continuously improved, but the genome
annotation in GenBank was rarely updated after initial
submission. Because such inconsistency in the existing
GenBank annotations may prevent accurate comparison
of cellular functions across genomes, we re-annotated
the 14,727 prokaryotic genomes in three steps: gene
calling, protein functional annotation, and metabolic
pathway inference.

Prodigal [23] was used to predict protein-coding genes
in the genomes. The numbers of predicted genes (shown
by the height of green bars in Ring 4 of Figure 1) were
comparable between neighboring genomes in the phylo-
genetic tree. The number of genes in a genome was not
correlated with the completion status of the genome or its
number of contigs. This suggested that, although draft ge-
nomes were likely fragmented by many repeat sequences,
most of them could still provide sufficient coverage of the
gene content of the genomes.

The predicted protein-coding genes were re-annotated
using UniFam_Prok. The UniFam protein family database
(freely available at http://unifam.omicsbio.org) was con-
structed from the UniProt database as described in the
Material and Methods. The manually curated annotations
of proteins in SwissProt were used as the source of func-
tion information in standardized terminology. Protein
families were built around the SwissProt proteins with
their close homologs in TrEMBL. Substantial sequence
diversity was obtained for many protein families, owing to
the enormous sequence space of TTEMBL. In comparison
with many existing protein family databases, UniFam pro-
vided the following advantages for genome annotation.
First, UniFam provided a comprehensive coverage to
alleviate the need for searching multiple databases and
combining the results. Ring 5 of Figure 1 shows the
percentages of annotated proteins for all the genomes. On
average, 70% of the predicted proteins were annotated in a
genome. 10,992 out of 14,727 genomes had more than
65% of their proteins annotated by UniFam. Second,
because only the manually curated annotations of proteins
in SwissProt were used as the source of function informa-
tion, the UniFam families were associated with standardized
protein product names, extensive GO term annotations,
and EC numbers. Third, because the UniFam families were
built from proteins with stringent whole sequence align-
ment requirement, we believe the genome annotation by
UniFam is reliable. Although it is difficult to rigorously
benchmark the accuracy of genome annotation, our man-
ual analysis of selected genomes indicated high quality
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annotation of UniFam. Finally, the annotation of a micro-
bial genome takes approximately 4 CPU hours on average
using UniFam, which made it computationally feasible to
re-annotate 14,727 genomes. UniFam will be updated in
synchronization with the UniProt database. The annota-
tion of the UniFam families will improve with the ongoing
SwissProt curation effort. The sequence diversity of the
UniFam families will increase with the expansion of the
TrEMBL database.

The UniFam annotation was compared with annota-
tions by RAST [28] and Prokka [29] on five representa-
tive genomes: two Escherichia coli K-12 genomes (a
finished W3110 genome and a draft MG1655 genome),
two Pseudomonas aeruginosa genomes (a finished M18
genome and a draft SJTD1 genome), and one finished
archaeal genome Methanocaldococcus jannaschii DSM
2661. The same proteins predicted by Prodigal were pro-
vided to the three annotation pipelines. The annotation
results in gene names, gene product names and EC
numbers from the three pipelines are available in
Additional file 4. Only UniFam annotations provided GO
terms. UniFam annotated more proteins in the two E.
coli genomes and the M. jannaschii genome, but less in
the two P. aeruginosa genomes, than Prokka and RAST
(see Additional file 5). The consistency between the gen-
ome annotations were measured based on EC numbers
(see Additional file 6), because two EC numbers can be
compared exactly, and the EC number annotation is a
primary information source for pathway inference by
Pathway Tools. The EC number consistency between the
three pipelines was highest in E. coli, followed by P. aer-
uginosa, and finally by M. jannaschii. The agreement
between UniFam and each of the other two methods was
better than that between Prokka and RAST. UniFam
annotation was more computationally expensive than
Prokka and RAST. The P. aeruginosa M18 genome was
annotated by UniFam using 4.2 CPU hours, by Prokka
using 1.3 CPU hours, and by RAST using 0.2 CPU
hours.

Metabolic pathways were inferred for all genomes with
Pathway Tools [30] based on UniFam annotations. In
comparison with pathway inference tools such as KEGG
[31] and others [32], Pathway Tools provides a compre-
hensive coverage of metabolic reactions and pathways
[33] and allows automatic processing of a large number
of genomes. The pathway inference was facilitated by
the extensive EC number and GO term annotation by
UniFam. 706 prokaryotic pathways in the MetaCyc data-
base [34] were found in the studied genomes. The num-
bers of predicted pathways across genomes are shown in
Ring 6 of Figure 1. Genomes in the Proteobacteria
phylum had more pathways inferred than other phyla,
whereas the archaeal genomes had much fewer inferred
pathways. The number of inferred pathways in a genome
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correlated with numbers of predicted and annotated
proteins of the genome. In addition, the distribution of
curated pathways in MetaCyc among different clades
also affected the number of inferred pathways in a
genome.

The genome annotation results are provided at http://
unifam.omicsbio.org and will be regularly updated to
keep pace with the growth of GenBank and newer re-
leases of Prodigal, UniFam and MetaCyc. Although every
annotation step was performed with stringent settings to
minimize errors, we cannot obtain the ground truth or
perform extensive manual curation for such a large set
of prokaryotic genomes. Thus, it was not the goal of this
study to examine the cellular functions of individual or-
ganisms. Instead, the functional phylogenomics analysis
was focused on the aggregate results of a large number
of diverse genomes to minimize the adverse effect of oc-
casional errors in the phylogenetic tree reconstruction,
genome annotation, and pathway inference.

Association of cellular functions with the taxonomic
classification

The overall functional profile of a taxon can be repre-
sented by the collection of the biological process GO
terms of the proteins encoded in its genomes. The
differentiation between the functional profiles of taxa at
a given taxonomic rank was measured using GO term
enrichment analysis [35]. Because there were too many
bacterial genomes for enrichment analysis and result
presentation, archaeal genomes were chosen to showcase
the differentiation at the phylum and family levels (see
Additional file 7). The enrichment analysis was con-
ducted only on taxa containing sufficient genomes: > 10
genomes for a phylum and>5 for a family. Additional
file 7 lists the top ten most enriched GO terms in each
phylum compared to the average in the whole archaeal
domain, and the top five most enriched GO terms of
each family compared to the average in the correspond-
ing phylum.

The Crenarchaeota phylum contains many thermo-
philic organisms. The enrichment of the biological
processes in defense response to viruses indicated that
Crenarchaeota has heavier genomic investment in virus
defense than the other phyla, which may suggest preva-
lent viral infection in its environments. Euryarchaeota
was specialized in methanogenesis as expected, but it
also appeared to have more “intelligence-related” cellular
functions, such as signal transduction and transcription
regulation. Out of eight families in Euryarchaeota, the
five known methanogen families were found to be
specialized in methanogenesis along with different sets
of other biological processes.

The metabolic pathway profile of a genome was repre-
sented by a 0-1 vector of length 706 with 0 for absence
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and 1 for presence of the 706 pathways in this genome.
The metabolic pathway profiles of individual genomes in
a genus were merged into an aggregate genus pathway
profile (a pathway profile of a genus pan-genome) to
reduce the effect of uneven genera representation on the
analysis. The 1206 genera were hierarchically clustered
based on their metabolic pathway profiles and 706 meta-
bolic pathways were clustered based on their distribution
across the genera (see Figure 2). There were some
universal pathways clustered in the right section, which
were detected in almost all genera. Examples included
tRNA charging, UTP and CTP dephosphorylation I,
adenosine ribonucleotides de novo biosynthesis, and glu-
tamine degradation I. Lack of these pathways in the very
few genera is likely due to the incompleteness of the ge-
nomes. There were also rare pathways that existed only
in very few genera, such as quinate degradation II (13
genomes in 2 genera: Corynebacterium and Ketogulonici-
genium) and myrcene degradation (4 genomes in 2 genera:
Gordonia and Nocardia).

The hierarchical clustering of the genera was based on
the similarity between their pathway profiles without
using the taxonomic or phylogenetic information. The
domain and phylum classifications of the genera are
marked in the left and right vertical strips, respectively,
in Figure 2. The archaeal genera are clearly clustered
together. They were distinguished by some Archaea-
specific pathways, such as methanogenesis from CO,,
tRNA splicing, starch degradation V, selenocysteine bio-
synthesis II, and chitin degradation I. They also lacked
some pathways universally found in Bacteria, such as
tRNA processing and thiazole biosynthesis I. The clus-
tering of genera was also relatively consistent with their
phylum classification, in that the clusters formed con-
tinuous blocks of genera from the same phyla. This was
a result of many taxa-specific pathways that were com-
monly found in only a few selected taxa. On the other
hand, genera from the same phylum were also often
separated into several disjoint clusters, indicating diver-
gence of the functional profiles of genera in the same
phylum.

Association of cellular functions with the

phylogenetic tree

The metabolic pathway profiles of genomes were superim-
posed on their phylogenetic tree to assess the phylogeny-
function correlation. Nine representative pathways are
shown in Figure 3. The tRNA charging pathway (Ring 1)
was found in 99.9% of the genomes and, therefore, was
likely to have been passed from an ancient ancestor to all
the descendants. The absence of this pathway in 3
genomes can be attributed to the low genome quality,
instead of biological effect. The mercury detoxification
pathway (Ring 6) existed in only 15.7% of the genomes,
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Figure 2 Hierarchical clustering of genera and metabolic pathways. The heatmap represents the presence (red) and absence (green) of all
706 pathways (columns) in all 1206 genera (rows). The dendrograms to the left and on the top of the heatmap represent the clustering results of
the genera and the pathways, respectively. Higher taxonomic classifications of the genera are marked on the two colored strips: the Bacteria/
Archaea domain classification on the left strip and the phylum classification on the right trip.

Cyanobacteria
Euryarchaeota
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but dispersed among many distant clades of the tree. The
phylogenetic distribution of this pathway suggested exten-
sive horizontal gene transfer events across the bacterial
domain, probably as a result of the selection force of
potentially mercury-contaminated environments and the
high transferability of this cellular function. In contrast,
the arsenate detoxification pathway (Ring 7) found in
14.8% of the genomes was much more concentrated on
selected clades. It was not clear why the two heavy-metal
detoxification pathways have such different levels of
correlation with the phylogeny.

A pathway can be viewed as a binary character
observed at the tips of the phylogenetic tree, with its
presence and absence in a genome as the two states.
The parsimony score [36] for a pathway on the tree is

the minimum number of state changes (from presence
to absence or vice versa) needed along the branches to
produce the observed presence/absence pattern of the
pathway at the tips. Retention index (RI) [37], which
normalizes the parsimony score of a pathway with the
number of its occurrences in the genomes, was also
calculated to measure how well a character conforms to
the phylogenetic tree. A higher RI indicates a better fit
of a character to the tree. For example, aerobic respir-
ation (cytochrome C) (Ring 2) was found in 9383 ge-
nomes with parsimony score 290 and RI 0.95, whereas
methylotrophy (Ring 5) was found in 1353 genomes with
a parsimony score 592 and RI 0.56. This is in line with
the previous observation that methylotrophy has under-
gone extensive horizontal gene transfer, while aerobic
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Figure 3 Distribution of selected pathways across the prokaryotic genomes. Each ring represents the presence pattern (colored) of a
pathway on the phylogenetic tree tips. The pathways and their ring colors are listed in the legend.
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17 Pathways

1 tRNA Charging

2 Aerobic respiration

3 Methylotrophy

4 Phosphate Acquisition

5 Nitrogen Fixation

6 Mercury Detoxification

7 Arsenate Detoxification Il
8 Isopenicillin N BioSynthesis
9 lysine biosynthesis |

respiration is consistent with the phylogeny [20]. The
parsimony scores and the genome occurrence frequen-
cies of the 706 pathways are shown in Figure 4. Path-
ways were categorized into consistent pathways with
RI> 0.9 and inconsistent pathways with RI < 0.7. Out of
the 706 pathways in Bacteria and Archaea, 31% were
consistent pathways and 26% were inconsistent pathways.
The complete list of the 706 pathways with their parsi-
mony scores, occurrence frequencies in the genomes, and
RIs is available in Additional file 8.

Phosphate acquisition was an example of consistent path-
ways (Ring 4). This pathway was found in 6005 genomes
with parsimony score 528 and RI 0.91. It was concentrated
in 16 bacterial phyla and 2 archaeal phyla. Of the bacterial
genomes, it was mostly found in Proteobacteria (3882 out

of 7120 genomes), Firmicutes (1343 out of 4137), Actino-
bacteria (434 out of 1294), Bacteroidetes (170 out of 488),
and Cyanobacteria (69 out of 173). Nitrogen fixation was
an example of inconsistent pathways (Ring 5). It was found
in 1121 genomes with parsimony score 409 and RI 0.64.
This pathway is known to have been horizontally trans-
ferred between many species [20]. Although both phos-
phate acquisition and nitrogen fixation provide essential
nutrients for microorganisms, they have very different oc-
currence frequencies and horizontal gene transfer behaviors
in the bacterial genomes.

Two biosynthesis pathways are also shown in Figure 3.
Isopenicillin N biosynthesis (Ring 8) occurred in 2236
genomes with parsimony score 387 and RI 0.83. Lysine
biosynthesis I (Ring 9), which involves succinylated
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Figure 4 Distributions of parsimony scores and occurrence frequencies of all pathways. The pathways are classified into consistent
athways with RI > 0.9 (colored in blue) and inconsistent pathways with Rl < 0.7 (colored in red).
p

intermediates, was found in 8372 genomes with parsi-
mony score 149 and RI 0.97, showing much higher
prevalence and consistency. The two pathways were
both mostly found in the phyla of Proteobacteria, Acti-
nobacteria and Bacteroidetes. However, isopenicillin N
biosynthesis had a very sparse distribution, while lysine
biosynthesis I had a nearly uniform distribution in these
phyla.

From the presence/absence pattern of a pathway at the
tips of the phylogenetic tree, the ancestral states of the
pathway at the internal nodes of the tree were inferred
with the parsimony method [36,38,39]. The divergence
time of the internal nodes of the tree was also estimated
[40] with a scaled reference age of 100 for the root. Com-
bining the ancestral states of a pathway and the divergence
time at internal nodes, the state changes (gain or loss) of
the pathway were clocked on the phylogenetic tree.

Figure 5 shows four pairs of subtrees for the representa-
tive pathways examined in Figure 3. Without considering
horizontal gene transfer from eukaryotes, the first red node
from the root on the subtree for a pathway marks the first
occurrence of the pathway in nature through evolutionary
innovation. The subsequent red nodes may result from
independent evolutionary innovation or horizontal gene

transfer. The first pair (5A and B) displayed very distinct
evolutionary patterns. Aerobic respiration had very early
first appearance and was well maintained in most clades,
whereas methylotrophy was a more recent innovation and
underwent many changes. The second pair (Figure 5C and
D) had similar parsimony scores (528 and 409), but very
different genome occurrence frequencies (6005 and 1121).
The gains of phosphate acquisition were concentrated in
only a few clades, while the gains of nitrogen fixation were
spread across many clades. The third pair (Figure 5E and F)
shows two heavy-metal detoxification pathways. The arsen-
ate one showed a small number of losses and gains in a few
clades, while the mercury one had a few ancient gains and
losses followed by considerable recent gains and losses in
many clades. For the two biosynthesis pathways (Figure 5G
and H), isopenicillin N biosynthesis went through frequent
gains and losses, probably in response to selection pressure
in specific environments; whereas lysine biosynthesis I was
maintained stably with few losses in almost all clades since
their ancestors first gained this pathway.

Conclusions
The phylogenetic tree and consistent annotations of
14,727 prokaryotic genomes provided the foundation for a
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Figure 5 Subtrees of selected pathways. The subtree of a pathway is reduced from the clocked phylogenetic tree of all genomes by collapsing the
entire clades without this pathway into tips. The root is colored red for the pathway's presence and blue for its absence. The colors of non-root nodes
mark the pathway’s status changes from their immediate ancestral nodes: red for gains, blue for losses, and none for no change. The branches
descending from nodes containing the pathway are colored green. The total number of blue and red nodes in a pathway’s subtree equals the
parsimony score of the pathway. (A) Aerobic respiration (cytochrome C) with parsimony score 290 from 9383 genomes. (B) Methylotrophy with
parsimony score 592 from 1353 genomes. (C) Phosphate acquisition with parsimony score 528 from 6005 genomes. (D) Nitrogen fixation with
parsimony score 409 from 1121 genomes. (E) Arsenate detoxification with parsimony score 196 from 2182 genomes. (F) Mercury detoxification

with parsimony score 944 from 2319 genomes. (G) Isopenicillin N biosynthesis with parsimony score 387 from 2236 genomes. (H) Lysine biosynthesis |
with parsimony score 149 from 8372 genomes.
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functional phylogenomics analysis across Bacteria and
Archaea. To our best knowledge, this is the first study that
systematically examined a wide variety of consistently
inferred cellular functions across prokaryotic genomes in
a phylogenetic context. The analysis systematically mea-
sured the correlation of the cellular function evolution
with the organism evolution in terms of function enrich-
ment in taxa, clustering of functional profiles and genera,
and parsimony score distribution of metabolic pathways.
Different evolution patterns of cellular function were
showcased using the phylogenetic distributions and subtrees
of selected metabolic pathways.

Methods

Construction of the UniFam database

All proteins between 30 and 5000 residues long were
collected from UniProt (535,849 proteins from SwissProt
and ~42 million proteins from TrEMBL, accessed in
October 2013). The 43 million proteins were sorted by
length in decreasing order and then clustered into ~13
million clusters using 64-bit USEARCH v7.0.1001 [41]
on a Linux workstation with 130GB of memory. The clus-
tering required every sequence in a cluster to have >80%
global alignment identity with the centroid sequence of
the cluster, which guaranteed >60% global alignment iden-
tity between any two sequences in a cluster. And the
shortest sequence was required to be >80% as long as the
longest sequence in a cluster. These two requirements
were used to prevent clustering of proteins that were only
locally similar. Default values for other parameters of
USEARCH were used for clustering.

267,579 clusters containing at least one SwissProt pro-
tein were used to construct UniFam families. The Uni-
Fam clusters included all SwissProt proteins and ~23%
of all proteins from UniProt. Additional file 9A shows
the distribution of the numbers of UniProt proteins in
the UniFam clusters. The average size of the UniFam
clusters was 37 proteins and the biggest cluster con-
tained 27,467 proteins. Singletons constituted 27% of the
clusters, but covered only 0.7% of all proteins included
in UniFam. 33,940 singletons were from Bacteria, 28,953
from Eukaryota, 6138 from Archaea, and 2026 from
Viruses. The organelle distribution of the singletons
was 1703 in plastids, 652 in plasmids, 466 in mitochon-
dria, 7 in nucleomorphs, 4 in hydrogenosomes, and the
remaining in chromosomes.

For non-singleton clusters, MAFFT v7.113b [42] was
used to create their multiple sequence alignments (MSAs).
MAFFT was set to automatically select an appropriate
strategy according to the cluster size. Because of the high
pairwise global alignment identities between sequences in
a cluster, even large MSAs were observed to have low
alignment uncertainty. HMMs were built using HMMER
3.1b1 [43] either from single sequences for singleton
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clusters, or from MSAs for non-singleton clusters, with
default options. The distribution of the HMM lengths was
centered at 250 residues with a long tail for long HMMs
(see Additional file 9B). These two steps were executed on
the supercomputer, Titan, at the Oak Ridge Leadership
Computing Facility.

The following fields from the annotations of the Swis-
sProt proteins in a cluster were extracted and used for
the annotations of the corresponding UniFam family:
recommended full name, EC number, gene name, and
GO terms. Database-specific annotations, such as Pfam
IDs [44] and COG categories [45], were not used, be-
cause they should be best assigned by searching those
specific databases. If there was more than one SwissProt
protein in a cluster and their annotations were not the
same for an annotation field, the union was taken for
that field as the annotation for the cluster. We observed
very consistent annotations between SwissProt proteins
in a cluster, because of the high sequence identity
between proteins in a cluster and the reliability of SwissProt
annotation.

Two sub-databases were created: UniFam_Prok (159,895
families) for annotating prokaryotic proteins and UniFa-
m_Euk (107,777 families) for annotating eukaryotic pro-
teins. The smaller sub-databases allowed faster database
searching. Families with bacterial and archaeal proteins
were combined to form UniFam_ Prok and those with
eukaryotic proteins formed UniFam_Euk. The few families
that had proteins from both prokaryotes and eukaryotes
were included in both sub-databases. However, only the
annotations for proteins from prokaryotic organisms were
transferred to UniFam_Prok and likewise for UniFam_Euk.
To illustrate the functional coverage of UniFam, the distri-
butions of the EC number assignment to UniFam families
were plotted for UniFam_Euk (see Additional file 10A) and
UniFam_Prok (see Additional file 10B).

Re-annotation and pathway reconstruction of prokaryotic
genomes

All bacterial and archaeal genomes, in finished or draft
completion status, were downloaded from GenBank [8]
(Oct 2013). Highly fragmented genomes with more than
1000 contigs were discarded. Every genome was annotated
in the following steps. First, Prodigal [23] was used to find
protein-coding genes and predict their protein sequences.
Genomes with less than 400 predicted genes were also
discarded. The proteins were then searched against Uni-
Fam_Prok using HMMER 3.1b1 [43]. The top matches
(ranked by whole-sequence e-value) of proteins were
selected by requiring the whole-sequence e-value to be
lower than 1.00E-3 and the aligned regions (not necessar-
ily contiguous) to cover at least 50% of both the matched
HMM and the query protein. Proteins were annotated
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with the function information of their best-matched
UniFam families.

For the comparison between Prokka, RAST and UniFam
in the five representative genomes, Prokka was run with-
out rRNA and tRNA searching using eight threads (2.8-
GHz AMD Opteron processors), Macintosh myRAST was
run with default settings (3.4-GHz quad-core Intel i7 pro-
cessor), and UniFam was run using two threads (2.3-GHz
AMD Opteron processors). Proteins predicted by Prodigal
were provided to all three pipelines as input.

The UniFam annotations of genomes in GenBank-
format were used to reconstruct metabolic pathways with
the PathoLogic module in Pathway Tools v17.5 [30].
PathoLogic was run in the batch mode, without hole filler,
cellular overview graph, or patch download. MetaCyc [34]
was used as the reference database and only pathways
whose predicted taxonomic range includes prokaryotes
were considered. From the output pathways report, only
the pathways with confidence factors =70 were kept for
the functional phylogenomics analysis.

Functional phylogenomics analysis

The R package, topGO [35,46], was used to find the
biological process GO terms that were enriched at two
taxonomic ranks for Archaea: phyla with more than 10
genomes and families with more than 5 genomes. The
enrichment in phyla and families were relative to the Ar-
chaea domain and the corresponding phyla, respectively.
Only GO terms annotated to more than 10 genes were
included. “Classic”, “weight”, and “elim” algorithms with
Fisher’s statistic were performed. GO terms with >0.01
p-values calculated by the “elim” algorithm were
discarded to eliminate very general and low-level GO
terms. The most enriched GO terms shown in Additional
file 7 were ranked by the p-values calculated by the
“weight” algorithm.

Hierarchical clustering was performed on a 0—1 matrix
with the dimension of 706 (pathways) by 1206 (genera). A
pathway was considered to be present in a genus with a
value of 1 in the matrix, if this pathway was inferred for
any genome in this genus. Manhattan distance was used
for the distance function in clustering, which was defined
as the total number of different entries between 2 vectors.
The clustering and plotting were performed with the
function “heatmap.2” in the R package gplots [47].

PhyloPhlAn [21] was used to reconstruct the phylo-
genetic tree of all prokaryotic genomes based on the
gene prediction results from Prodigal. After the align-
ments of 400 conserved genes were generated and
concatenated into a long protein sequence alignment,
FastTree v2.1.7 [22] was run separately to build the
phylogenetic tree with Normal + NNI + SPR search and
Jones-Taylor-Thorton [48] maximum likelihood model
for amino acid evolution. The sequence alignment and
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the tree building were completed in 10.4 hours and
7.1 hours, respectively, using 64 threads on a Linux ma-
chine with four 2.3-GHz 16-core AMD Opteron proces-
sors. The circular tree figures were produced using
GraPhlAn (https://bitbucket.org/nsegata/graphlan/wiki/
Home).

The Robinson-Foulds [26] distance and branch scores
[27] between the two phylogenetic trees for the 10,075
genomes were calculated with the R package APE [49].

Each pathway was mapped to the phylogenetic tree as
a binary character and its parsimony score was calcu-
lated with the R package phangorn [38]. Divergence
times in the phylogenetic tree of genomes were esti-
mated using PATHdS8 [40], with scaled reference age at
the root set to 100. Retention Index (RI) [37] of a char-
acter on a phylogenetic tree was defined as (g-s)/(g-m),
where g=maximum number of changes possible for a
character, s =number of changes observed on the tree,
m = minimum number of changes possible for a charac-
ter. In our calculation of the RI of a pathway, g was the
number of genomes with this pathway or the number of
genomes without this pathway, whichever was smaller; s
was the parsimony score of this pathway; and m was 1 if
both presence and absence states were observed in the
genomes, and O if this pathway was present in all
genomes.

Availability of supporting data
The data sets supporting the results of this article are
included within the article and its additional files.

Additional files

Additional file 1: Metadata for the studied prokaryotic genomes.

Additional file 2: Phylogenetic tree of prokaryotic genomes. Newick
format files can be opened by standard tree viewing programs, and most
phylogenetic programs.

Additional file 3: Comparison of phylogenetic trees reconstructed
from two different sets of proteins. (A) Tree based on existing genes
in GenBank. (B) Tree based on proteins predicted by Prodigal. Both trees
contain 10,075 genomes. The tips and the rings are colored according to
phylum classification of the genomes. Phyla with less than 5 genomes
are grouped in the “Others” category.

Additional file 4: Functional annotations by Prokka, RAST and
UniFam in representative genomes.

Additional file 5: Comparison of functional annotations by Prokka,
RAST and UniFam in representative genomes.

Additional file 6: Consistency of EC number assignments between
Prokka, RAST and UniFam in representative genomes.

Additional file 7: Top ten enriched GO terms for the archaeal phyla
and top five enriched GO terms for the archaeal families.

Additional file 8: Parsimony scores, occurrence frequencies and
retention indices of metabolic pathways.

Additional file 9: Summary statistics of the UniFam database. (A)
Histogram of sizes of UniFam families. (B) Histogram of the HMM lengths
of UniFam families.
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Additional file 10: Bubble plots of EC numbers in the UniFam
database and the studied prokaryotic genomes. Each bubble
represents the first three fields of an EC number. The first field is
represented by the colors of the bubbles, and the second field and third
field by the x- and y- coordinates of the bubbles, respectively. The dash
sign in a field is assigned with a value of 0. The areas of the bubbles are
proportional to the frequencies of the corresponding EC numbers in each
plot. (A) UniFam_Euk sub-database. EC 2.7.11.- has the highest frequency
of 2220. (B) UniFam_Prok sub-database. EC 2.1.1- has the highest
frequency of 5958. (C) Annotated proteins in the prokaryotic genomes.
EC 2.7.1- has the highest frequency of 839,278.
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