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Abstract

Background: Branched polymers of glucose are universally used for energy storage in cells, taking the form of
glycogen in animals, fungi, Bacteria, and Archaea, and of amylopectin in plants. Some enzymes involved in
glycogen and amylopectin metabolism are similarly conserved in all forms of life, but some, interestingly, are not. In
this paper we focus on the phylogeny of glycogen branching and debranching enzymes, respectively involved in
introducing and removing of the a(1-6) bonds in glucose polymers, bonds that provide the unique branching
structure to glucose polymers.

Results: We performed a large-scale phylogenomic analysis of branching and debranching enzymes in over 400
completely sequenced genomes, including more than 200 from eukaryotes. We show that branching and debranching
enzymes can be found in all kingdoms of life, including all major groups of eukaryotes, and thus were likely to have
been present in the last universal common ancestor (LUCA) but have been lost in seemingly random fashion in
numerous single-celled eukaryotes. We also show how animal branching and debranching enzymes evolved from their
LUCA ancestors by acquiring additional domains. Furthermore, we show that enzymes commonly perceived as
orthologous, such as human branching enzyme GBE1 and E. coli branching enzyme GlgB, are in fact related by a
gene duplication and consequently paralogous.

Conclusions: Despite being usually associated with animal liver glycogen and plant starch, energy storage in the
form of branched glucose polymers is clearly an ancient process and has probably been present in the last
universal common ancestor of all present life. The evolution of the enzymes enabling this form of energy storage
is more complex than previously thought and illustrates the need for explicit phylogenomic analysis in the study
of even seemingly “simple” metabolic enzymes. Patterns of conservation in the evolution of the glycogen/starch

branching and debranching enzymes hint at some as yet unknown mechanisms, as mutations disrupting these
patterns lead to a variety of genetic diseases in humans and other mammals.
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Background

In animals, glucose is stored as glycogen, whereas plants
store glucose as starch. Starch is a mixture of a-amylose,
a linear polysaccharide made of «(1-4) linked glucose
molecules and amylopectin, a branched polysaccharide
that varies from a-amylose by the presence of a(1-6)
linked branches every 24 to 30 residues. Glycogen differs
from amylopectin in that its a(1-6) branches occur
more frequently, typically every 8 to 14 residues [1]. In
animals, glycogen forms 100 to 400 A diameter cytoplasmic
granules, which in mammals are especially noticeable in
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cells that have the greatest need of glycogen—liver and
muscle cells, but it is also produced in other types of cells,
including neurons where it can have deleterious effects
[2]. The branching is important for fast response to meta-
bolic needs, because synthesis and degradation of the
glycogen polymer can only occur from the non-reducing
ends of the a-1,4 chains; therefore, highly branched glyco-
gen has a higher number of “ends” per volume. Addition-
ally, branching increases the water solubility of glycogen
[3-6]. While the glycogen role in mammals is best known,
it has also been shown to be used as a metabolic reserve
in yeast and various bacteria [7].

Glycogen synthesis and breakdown involves a number
of enzymes, such as glycogen synthase (EC 2.4.1.11),
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which adds glucose to the growing glycogen chain, and
glycogen phosphorylase (EC 2.4.1.1), which cleaves linear
a(1-4) linked glycogen chains to produce monomers of
glucose-1-phosphate. The activity of glycogen phosphor-
ylase, however, comes to a halt when it approaches an
a(1-6) linked branch point four units away. In this
situation, the action of a debranching enzyme, which
removes a(1-6) linkages, becomes necessary for con-
tinued glycogen breakdown [6,8]. Such debranching
enzymes—together with their enzymatic opposites, branch-
ing enzymes that introduce a(1-6) linkages—are the focus
of this work. Humans, and other mammals, possess one
branching enzyme and one debranching enzyme, occur-
ring in various isoforms [9] (see Figure 1 for an overview).

The human glycogen branching enzyme (EC 2.4.1.18),
also referred to as Amylo-(1,4—1,6)-transglycosylase, is
encoded by the gene GBEI. This enzyme is involved in
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glycogen synthesis by transferring a(1-4) linked glucosyl
blocks from the outer end of a growing glycogen chain to
an «a(1-6) position on the same or on an adjacent chain
[13]. Also, this enzyme (together with other glycogen and
starch branching enzymes) has been characterized in the
CAZy database [14] as a member of the Glycoside Hydro-
lase Family 57 [15,16]. The human glycogen branching
enzyme is a large, multidomain enzyme composed of
three domains. The N-terminal domain of this enzyme
is classified in Pfam [17] and CAZy as Carbohydrate-
Binding Module 48 (also called Isoamylase N-terminal
domain; and abbreviated as CBM_48) [18]. The central
domain is a TIM barrel glycosyl hydrolase superfamily
member (Pfam: Alpha-amylase) [19]; and localized at the
C-terminus is an all-beta domain (Pfam: Alpha-amylase_C).
The N- and C-terminal domains, CBM_48 and Alpha-
amylase_C, respectively, are distantly homologous and
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Figure 1 Overview of the phylogenomic distribution of glycogen branching and debranching enzymes and their architectures.
The evolutionary tree is based on [10-12] (the placements of Apusozoa and Rhizaria are under debate).
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structurally similar. Both are classified as members of the
Glycosyl hydrolase domain (GHD) superfamily (Pfam clan
CL0369), which contains substrate binding domains of
many carbohydrate hydrolases. Branching enzymes with
this domain architecture are well conserved throughout
all kingdoms of life, with homologs possessing all three
domains having been found in plants (as starch branching
enzymes) [20], yeast [21], and various Bacteria, including
E. coli (gene name glgB) [22]. The three dimensional
structures of human (PDB identifier: 4BZY) as well as
a variety of bacterial (for example, E. coli: IM7X [23],
Mycobacterium tuberculosis: 3K1D [24]) and archaeal
(Thermococcus kodakarensis: 3N8T, 3 N92, 3 N98 [15])
glycogen branching enzymes, together with plant starch
branching enzymes (rice Oryza sativa: 3AMK [25]), were
determined experimentally, allowing for precise domain
boundary definitions and detailed comparisons. For the
human glycogen branching enzyme, these data are shown
in Figure 2 which depicts the three-dimensional structure
of the GBE1 gene product, in concert with domain
boundaries as defined by Pfam HMMs and by the
three-dimensional structure itself.

The human glycogen debranching enzyme, is encoded
by the gene GDE (also called AGL). This enzyme, similar
to its homologs from some other species (such as other
mammals, yeast, and TreX from Sulfolobus acidocaldar-
ium [26,27]), has two biochemical functions—that of
amylo-alpha-1,6-glucosidase (EC 3.2.1.33) and of 4-alpha-
glucanotransferase (EC 2.4.1.25) [28-30]. 4-alpha-glucano-
transferase transfers a segment of three glucose units
from a(1-6) branched four-unit chains (the result of
glycogen phosphorylase activity) to an adjacent branch
of the glycogen chain. Amylo-alpha-1,6-glucosidase then
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cleaves the a(1-6) linkage to release the remaining glu-
cose [8]. In other species, such as plants and E. coli (GlgX
[31]), the glucosidase and glucanotransferase activities are
carried out by two distinct enzymes (despite the high
structural similarity between the E. coli glucosidase GlgX
and Sulfolobus acidocaldarium TreX [32]), in which case
only the glucosidase is referred to as a glycogen debranch-
ing enzyme [28-30].

The human glycogen debranching enzyme is almost
twice as large as the GBE1 enzyme and is composed of at
least four domains (using Pfam classification): hGDE_N—
hGDE_amylase—hGDE_central —GDE_C. The hGDE_a-
mylase domain and the central domain of the branching
enzyme, Alpha-amylase, are distantly related, as both are
members of the TIM barrel fold containing the glycosyl
hydrolase superfamily (Pfam clan CL0058) [33,34]. On the
other hand, the N_terminal DGE_C domain is predicted
to have an alpha/alpha toroidal structure, consisting of
several alpha hairpins arranged in a closed circular array,
similar to bacterial glucoamylases. As of this writing,
there are no experimentally determined three-dimensional
structures of human debranching enzymes or any of its
close homologs, albeit, as shown in Figure 3, reliable
predictions can be made for all its domains, except the
hGDE_central domain.

In contrast to the universally conserved branching en-
zyme, some bacterial—for instance E. coli (GlgX) [35], and
plant debranching enzymes [36]—are not homologous to
the human debranching enzyme. In fact, they are related
to the branching enzymes containing an N-terminal
CBM_48 domain followed by Alpha-amylase domains.
On the other hand, many Bacteria and Archaea do not
have E. coli-type debranching enzymes; instead, they have
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Figure 2 Domain and three-dimensional structure of the human glycogen branching enzyme GBE1. The three-dimensional structure for
PDB entry 4bzy is shown in the top panel. Domain boundaries are shown according to Pfam (middle panel) and according to the 3D structure
(lower panel). CBM_48 (boundaries are 75-162 according to Pfam, and 22-182 according to the 3D structure) is shown in red, Alpha_amylase
(Pfam: 218-338, 3D: 183-599) in blue, and Alpha_amylase_C (Pfam: 603-698, 3D: 599-698) in cyan.
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L_hDGE hDGE amylase hGDE central

Figure 3 Domain and predicted three-dimensional structure of human the glycogen debranching enzyme (GDE). No experimental
structure for human GDE or any close homologs is available as of this writing; however, three out of four predicted domains can be reliably
predicted. Note that no reliable prediction can be made for the hDGE_central domain (orange) and that it is likely that this region corresponds to
several small domains. One of the possible domains in this region is shown. Domain boundaries according to Pfam (middle panel) and according
to the predicted 3D structure (lower panel) are shown as well. h(DGE_N (30-117) is shown in purple, hDGE_amylase (120-550) in dark blue,
hGDE_central (Pfam: 697-975) in orange, and GDE_C (1044-1527) in green.

a homolog of the human debranching enzyme, consisting
of the prokaryote-specific C-terminal GDE domain pre-
ceded by a GDE_N domain. No direct experimental evi-
dence for the function of the bacterial proteins with the
GDE domain currently exists; however, because of their
distant homology to eukaryotic debranching enzymes
and their genomic distribution, where they are often
found in species that lack the E. coli—type of a debranch-
ing enzyme, it is often assumed that they indeed function
as debranching enzymes. As mentioned above, another
difference between human and plant/E. coli debranching
enzymes is that human glycogen debranching enzyme
possesses a second enzymatic activity, that of a 4-alpha-
glucanotransferase [28-30].

Glycogen storage diseases

Enzymes involved in glycogen metabolism and its regu-
lation are of great medical interest because mutations in
these enzymes have been shown to lead to a wide variety
of genetic diseases, collectively called glycogen storage
diseases (GSDs). At least ten different types (identified
with numerical sub-type designations) of GSDs have been
described, with the phenotypes depending on the enzyme
affected and the specific positions of the mutations within
a given enzyme. Some of the mutations result in the
abnormal accumulation of glycogen and/or abnormal
glycogen structure (or both). For example, Cori’s disease
(Type III GSD), a rare autosomal recessive genetic disorder,
is caused by mutations resulting in deficiencies in the glyco-
gen debranching enzyme, preventing depolymerization of
glycogen at the a-1,6 branching points and result in the
accumulation, in the liver and muscle, of abnormal glyco-
gen with very short outer chains that cannot be broken
down further. The symptoms, such as enlarged liver and

hypoglycemia, are similar, but tend to be less severe, than
those of Type I GSD. Interestingly, the liver symptoms
usually disappear after puberty [37,38]. One of the most
severe glycogen storage diseases is Anderson’s disease
(Type IV GSD) [39-41], a very rare autosomal recessive
genetic disorder caused by a defective glycogen branch-
ing enzyme (EC 2.4.1.18), leading to the formation and
accumulation of abnormal glycogen with long, unbranched
chains. GSDIV is also called amylopectinosis, since the
glycogen in the affected cells resembles plant amylopectin.
The abnormal, elongated glycogen particles lead to cell
degeneration and eventually death. The exact mechanism
of the cell death in GSDIV is still unknown. The pheno-
type of this disease is variable, involving the liver, skeletal
muscle, heart, and central nervous system, alone or in
combinations. The typical GSD Type IV disease presents
in the first 18 months of life with an enlarged liver and
cirrhosis, leading to liver failure and death by 5 years of
age [42]. Another manifestation of the same disease, in
the late-onset variant, is as a neurogenerative disease
called adult polyglucosan body disease (APBD) [43].
GSDIV is also found in horses and cats [13,44]. Table 1
lists some of the point mutations causing GSDIII, GSDIV
and APBD.

Although phylogenetic studies have been performed
on subsets of branching and debranching enzymes from a
limited range of species (e.g., [20,45,46]), and experimental
work (biochemistry, gene expression, protein structures,
and biotechnological applications [47]) has been done on
individual branching and debranching enzymes, especially
those from plants, Bacteria, and Archaea, not much is
known about the deep evolutionary histories of these
enzyme families. The objective of the analysis presented
here is to elucidate the evolution of glycogen and starch
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branching and debranching enzymes from a wide range of
species, covering Bacteria, Archaea, and all major groups
of eukaryotes. In particular, due to their involvement in
glycogen storage diseases, we are interested in the evolu-
tionary relationships of the human glycogen branching
and debranching enzymes to their well-studied bacterial
counterparts GlgB and GlgX/TreX. Due to the availability
of more than 200 completely sequenced eukaryotic ge-
nomes, we were able to perform a large scale, protein
domain-centric, comparative genomics analysis to assess
the linage specific distributions, domain compositions and
patterns of sequence conservation of these two important
enzymes.

Results and discussion

We extracted protein sequences of glycogen branching
and debranching enzyme homologs with the characteristic
combinations of CBM48 and GDE_C Pfam domains (using
a per domain cutoff E-value of 107%) from 276 completely
sequenced eukaryotic genomes, covering most major
eukaryotic groups, as well as from select archaeal and
bacterial genomes (listed in Additional file 1). Proteins
with these domains were then analyzed for their overall
domain architectures and for their phylogenetic rela-
tionships (listed in Additional files 2 and 3).

CBM_48—Alpha-amylase containing branching and
debranching enzymes

Phylogenetic analysis of enzymes with a CBM_48—Alpha-
amylase architecture (see Figure 4) shows that these en-
zymes can be divided into two well separated groups
(100% support based on Bayesian, ML, and distance
based methods): branching enzymes with a CBM_48—
Alpha-amylase—Alpha-amylase_C architecture and deb-
ranching enzymes with mostly a CBM_48—Alpha-amylase
architecture with either a very divergent form of the Alpha-
amylase_C domain, or, in some cases, containing additional
domains at the N- (such as the Bacterial pullanase-
associated domain, PUD [48]) and C-termini (such as
DUF 3372).

Proteins from the first group, with the well-defined
CBM_48—Alpha-amylase—Alpha-amylase_C architecture
are present in species from all kingdoms of life and per-
form branching functions in glycogen and starch biosyn-
thesis pathways (EC 2.4.1.18). This group includes human
GBE1, yeast GLC3, Dictyostelium GlgB, Arabidopsis SBEs,
and E. coli GlgB. Most organisms have just one repre-
sentative of this group, with the exception of land plants
and green algae (Viridiplantae, “green plants”) and the
photosynthetic cyanobacteria that tend to contain mul-
tiple paralogs from this group. For instance, in land plants
three sub-groups of starch branching enzymes exist,
usually named SBE1, SBE2, and SBE3. However, not all
plants possess one member of each subgroup; for example,
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Arabidopsis underwent a recent duplication of SBE2, result-
ing in SBE2-1 and SBE2-2, and also has one SBE3 member,
but lacks a representative of SBE1. Careful phylogenetic
analysis shows that this group, due to at least two ancient
gene duplications, one of which occurred pre-LUCA
(last universal common ancestor) and one pre-LECA
(last eukaryotic common ancestor), followed by lineage
specific gene losses, has to be divided into a minimum
of three sub-groups of orthologous proteins (labeled A,
B, and C in Figure 4). While the existence of a separate,
plant-specific subgroup containing SBE3 has been reported
previously [20,46], our results show that the well-studied
E. coli branching enzyme GIgB, together with GlgB from
the cyanobacterium Nostoc punctiforme, are clearly not
orthologous to human GBEL], yeast GLC3, Dictyostelium
GlgB, and plant SBE1, SBE 2, and SBE 3, but instead rep-
resent a branch that emerged by an ancient duplication
and was lost in most eukaryotes. On the other hand, other
bacterial branching enzymes, such as the one of Bacter-
oides thetaiotaomicron (UniProt: Q8A9P4), are indeed
orthologous to human GBE1. We employed the RIO ap-
proach (Resampled Inference of Orthologs) [55,56] on
MrBayes [49] output gene trees to confirm these findings.
In short, this approach allows to calculate the probability
of orthology relationships by integrating orthology assign-
ments over a distribution of gene trees (produced by
MrBayes, in this case) [57]. According to this, the pos-
terior probability of E. coli GlgB being orthologous to
human GBEL1 is 0.0, whereas the posterior probability of
Bacteroides thetaiotaomicron Q8A9P4 of being ortholo-
gous to human GBEL1 is 1.0. These results are further sup-
ported by analysis of conserved residues, as described
below (see Table 1). Finally, it is likely that this group was
affected by even more basal gene duplications, but due to
relatively poor phylogenetic resolution at the base of this
sub-tree, this remains speculative at this moment.
Enzymes from the second main group, with CBM_48—
Alpha-amylase architectures, are only found in land plants
and green algae, red algae (Rhodophyta), and some bac-
terial and archaeal species. Phylogenetic analysis further
subdivides this group into two sub-groups of orthologous
proteins, correlating with their annotated functions (100%
support based on Bayesian, ML, and distance based
methods). Enzymes in one sub-group perform debranch-
ing functions in glycogen and starch catabolic pathways
(EC 3.2.1.68). Similar to branching enzymes, these en-
zymes underwent expansion in land plants. For example,
Arabidopsis and Oryza sativa japonica (rice) contain three
paralogs—Isoamylase 1, 2, and 3. The E. coli glycogen
debranching enzyme GlgX is a member of this group as
well. Pullanases (EC 3.2.1.41) form the second sub-group.
These enzymes are found in land plants and green algae,
red algae, and Bacteria (we were unable to detect any
likely archaeal orthologs in our set of complete genomes)
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(See figure on previous page.)

Figure 4 Bayesian phylogeny of CBM_48—Alpha-amylase containing branching and debranching enzymes. Only select protein names
are shown (such as human GBE1 and E. coli GIgB and GIgX). The CBM_48 domain is shown in red, Alpha-amylase in blue, Alpha-amylase_C in
light blue, and DUF3372 and PUD in gray. The E-value cutoff used for domains was 10~ (exceptions are indicated in parentheses). For this figure,
only representative species were analyzed (see Additional file 4); some taxonomy-dependent colors are: red—animals, bright green—green plants,
light blue—Alveolata, light gray—Archaea, dark gray—Bacteria. The tree shown was inferred by MrBayes [49] based on a MAFFT [50] multiple
sequence alignment. The support values shown are: minimal-evolution based bootstrap values normalized to 1.0 (ML distances calculated by
TREE-PUZZLE [51], tree inference by FastME [52]) /ML based probabilities inferred by PhyML [53] /posterior probabilities calculated by MrBayes.
Support values are only shown for branches for which all three values are at least 0.5. Branch length distances are proportional to expected
changes per site. High-confidence gene duplications are shown as red circles [54].

and have additional domains (Bacterial pullanase-associated
domain, PUD [48], or DUF3372). The significantly different
lengths of the Alpha_amylase domain of different species
depicted in Figure 4 are likely artifacts of the Pfam HMM
used to identify them. The three dimensional structure
of the human glycogen branching enzyme shows that
Alpha_amylase occupies most of the space between
CBM_48 and Alpha_amylase_C (Figure 2). This is likely
to be the case in all species.

GDE_C domain containing debranching enzymes

Phylogenetic analysis of the debranching enzymes paints
a very different picture from that of branching enzymes
(see Figures 1 and 5). These proteins are found in animals
and fungi and their relatives (members of the Unikonta)
and in certain single-celled eukaryotes form the Bikonta
group (such as Paramecium tetraurelia), as well as in
Bacteria and Archaea, but are not present in land plants,
green algae, and Rhodophyta (which are all members of
the group Archaeplastida). They exhibit diverse domain
architectures, especially between eukaryotes and Bacteria/
Archaea. In eukaryotes, the Pfam domain architecture
is generally hGDE_N—hGDE-amylase—hGDE_central—
GDE_C, whereas bacterial and archaeal enzymes are
much shorter and have a different domain architecture,
with a GDE_N domain substituting for the three N-
terminal domains of the eukaryotic enzymes, resulting in
a GDE_N—GDE_C arrangement. As mentioned above, no
direct experimental evidence for the function of these
bacterial and archaeal proteins currently exists, although
because of their distant homology to eukaryotic debranch-
ing enzymes and their genomic distribution, we speculate
that they function as debranching enzymes. Furthermore,
no three-dimensional structure of any protein from this
group of bacterial and archaeal GDE_N—GDE_C en-
zymes is available as of this writing, and no reliable predic-
tions can be made about possible relationships between
hGDE_central and GDE_N domains and any other
protein domains. A preliminary of analysis of the draft
genome of Cyanophora paradoxa [58] indicates that
this representative of the Glaucophyta (a small group of
freshwater algae [59] which, together with Rhodophyta,
are estimated to be the earliest branching members of
Archaeplastida [60]) contains a putative debranching

enzyme with a hGDE_central —GDE_C architecture (see
Additional file 3) and thus is conceivable to have a pattern
of branching/debranching enzymes dissimilar to that
of other Archaeplastida. More genomic data from
Glaucophyta will be needed to precisely determine
where and when during Archaeplastida evolution the
loss of the hGDE-amylase, hGDE_central, GDE_C, and
hGDE_N domains occurred.

Distribution of branching and debranching enzymes in
major groups of eukaryotes

We also investigated the distribution of branching and
debranching enzymes over all major groups of eukary-
otes with at least one completely sequenced genome (see
Figure 6 for percentages, and Figure 1 for a simplified
overview). The result is that branching and debranching
enzymes can be found in all major groups of eukaryotes.
The only possible exception to this is Rhizaria (a large
group of mostly unicellular eukaryotes [61]), even though
with only two completely sequenced genomes in this
group, a conclusive answer is impossible at this point.
Animals (and their closest relatives, the single-celled
choanoflagelates), land plants, and green algae have the
highest percentage of genomes with both branching and
debranching enzymes (we suspect that the real number
is close to 100%; missing enzymes in either category in
some animal and plant genomes are mostly likely due to
sequencing, assembly, and gene prediction errors and
do not represent actual gene losses, as the “losses” appear
randomly). For fungi and Amoebozoa, these percentages
are lower but are still above 60% and 80%, respectively.
On the other hand, the majority of the Alveolata, strameno-
piles, and Excavata lack both enzymes but still contain some
species with both enzymes (see Additional 4). For other
groups, due to limited genomes sequenced, a reliable per-
centage cannot yet be calculated.

Human disease mutations in GSD3 and GSD4 and their
counterparts

Finally (see Table 1), we investigated the amino-acid con-
servation in the positions mutated in the human glycogen
storage diseases GSD3, GSD4, and APBD in orthologs of
the human proteins (i.e. from sub-tree “A” for CBM_48—
Alpha-amylase branching enzymes; see Figure 4) from a
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(See figure on previous page.)

Figure 5 Bayesian phylogeny of GDE_C domain containing (putative) debranching enzymes (EC 3.2.1.33). Only select protein names are
shown (such as human AGL and yeast GDB1). The GDE_C domain is shown in bright green, GDE_N in light blue, hGDE-amylase in blue, hGDE_central
in orange, and hGDE_N in purple. The E-value cutoff used for domains was 107, For this figure, only representative species were analyzed (see
Additional file 4); some taxonomy dependent colors are: red—animals, light blue—Alveolata, light gray—Archaea, dark gray—Bacteria. The tree shown
was inferred by MrBayes [49] based on a MAFFT [50] multiple sequence alignment. The support values shown are: minimal evolution based bootstrap
values normalized to 1.0 (ML distances calculated by TREE-PUZZLE [51], tree inference by FastME [52]) /ML based probabilities inferred by PhyML [53]

/posterior probabilities calculated by MrBayes. Support values are only shown for branches for which all three values are at least 0.5. Branch length
distances are proportional to expected changes per site. High-confidence gene duplication is shown as red circle [54].

wide variety of species, as well as in the paralogous GlgB
enzymes from E. coli and Nostoc punctiforme. Our results
show that all disease mutations occur in highly conserved
positions, even when compared to species as distantly
related as plants and bacteria, stressing the importance
of these positions/residues (strong conservation of the
glycine at position 1448 in the human glycogen deb-
ranching enzyme, mutated in GSD3, has been noted
previously [62]). On the other hand, in the case of
CBM_48—Alpha-amylase branching enzymes, this con-
servation is not maintained in the paralogous enzymes
from E. coli and Nostoc punctiforme. We have no explan-
ation for unexpectedly low conversion in these positions
in the putative enzyme from Tetrahymena thermophila,
especially since our phylogenetic analysis reveals nothing
unusual in its sequence.

Conclusions

Branching enzymes (EC 2.4.1.18) with a CBM 48—Alpha-
amylase—Alpha-amylase C architecture are present in all
the major group of eukaryotes, as well as in Archaea and
Bacteria, and are therefore likely to have been present
in the last universal common ancestor (LUCA). While
they are found in the vast majority of all animal and
plant genomes (including green algae) sequenced so
far, and are fairly common in fungi, many individual

species of single-celled eukaryotes lack identifiable
homologs of these enzymes, likely due to gene loss.

For debranching enzymes (EC 3.2.1.68 and EC 3.2.1.142)
with a CBM 48—Alpha-amylase architecture, the distribu-
tion is very different. On the eukaryotic side, these enzymes
are limited to plants and green algae (for which they are
found in the vast majority of all sequenced genomes).
They are also fairly widespread in Bacteria and Archaea.
In contrast, non-homologous debranching enzymes (EC
3.2.1.33) containing the GDE_C domain can be found in
species from all kingdoms of life, except green plants and
algae.

Comparing these two families allows us to conclude,
that in plants, GDE_C-containing debranching enzymes
have been replaced by CBM48-containing enzymes. In
certain Bacteria (e.g. Nostoc punctiforme) both types of
debranching enzymes exist in parallel.

The only major eukaryotic groups for which we are
unable to make reliable conclusions are Rhizaria and
Glaucophyta. Rhizaria is the only major group of eukary-
otes with at least two fully sequenced genomes for which
we were unable to detect any glycogen/starch branching
or debranching enzymes (such enzymes could be found
neither in the two completely sequenced species from
Rhizaria, Bigelowiella natans and Reticulomyxa filosa,
nor by searching for homologs in Rhizaria in UniProt

genome (see Additional file 1).
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Figure 6 Distribution of branching and debranching enzymes in major groups of eukaryotes. Percentages of completely sequenced
genomes with at least one branching enzyme, at least one debranching enzyme, and at least one of each ("Both”) are shown. Branching enzymes
are defined by their CBM_48—Alpha-amylase domain architecture, debranching enzymes are of either CBM_48—Alpha-amylase or hGDE_N—
hGDE-amylase-hGDE—hGDE-central—GDE_C architecture. Distinction between CBM_48—Alpha-amylase branchers and debranchers is based on
phylogenetic analysis. A domain cutoff E-value of 10 was used. Groups marked with an asterisk are only represented by one fully sequenced
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and Genbank). Despite their importance in the study of
plant evolution (due to their placement at the root of
the Archaeplastida sub-tree), only one draft genome for
Glaucophyta has been released as of this writing; pre-
venting us from conclusively determining whether the
pattern of branching/debranching enzymes in this group
of alga is indeed not like that of plants and more like
that of the rest of eukaryotes (as our preliminary results
indicate).

As for human glycogen branching enzyme GBE1, the
evolutionary history of this protein can be traced back to
Bacteria, for a putative ortholog of human branching
enzyme exists in several bacteria, for instance, in a
dominant human gut symbiont—Bacteroides thetaio-
taomicron. In contrast, our study shows that the well-
known E. coli branching enzyme GlgB is not an ortholog
of its human homolog, but a member of a separate
branch that has been lost in many eukaryotes (including
mammals). This obeservation, combined with the low
conservation of residues mutated in human diseases in
E.coli GlgB, has implications against its use as a model
for studying human GSD4/APBD. On the other hand,
the Bacteroides thetaiotaomicron branching enzyme is an
attractive target for modeling human glycogen storage
diseases in Bacteria.

Finally, these results show that not only regulatory
proteins, such as those involved in apoptosis regulation
[63], but also basic metabolic enzymes may have a com-
plex evolutionary history, rich in ancient and recent gene
duplications, combined with lineage specific gene losses
and dynamic domain architectures, with frequent and
surreptitious addition and loss of individual domains.
Such a history can only be revealed by explicit phylogen-
etic and comparative domain architecture analysis.

Methods

Genomes

Protein predictions for organisms with a completely se-
quenced genome were obtained from the sources listed in
Additional file 1, covering the following species: 93 animals,
2 choanoflagellates, Capsaspora owczarzaki, Sphaeroforma
arctica, 78 fungi, Fonticula alba, 7 amoebozoans, 30 land
plants, 10 green algae, Cyanidioschyzon merolae, Cyano-
phora paradoxa (draft), Emiliania huxleyi, Guillardia
theta, 12 Alveolata, 16 Stramenopiles, Bigelowiella natans,
Reticulomyxa filose, Thecamonas trahens, 8 Excavata, 49
Archaea, and 133 Bacteria. Hmmscan from HMMER 3.0
[64] together with HMMs for Carbohydrate-binding
module 48 (Isoamylase N-terminal domain, CBM_40,
PF02922) and Amylo-alpha-1,6-glucosidase (GDE_C,
PF06202) from Pfam 27.0 [17] were used to extract
putative branching and debranching enzyme sequences.
We experimented with different per-domain E-value
thresholds to ensure that the results presented here are
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robust and not simply artifacts of an arbitrarily chosen
threshold. For the phylogenetic analyses we generally
used a per-domain E-value threshold of 107 (unless
noted otherwise).

Multiple sequence alignments

Multiple sequence alignments were calculated using
MAFFT 7.017b (with “localpair” and “maxiterate 1000”
options) and ProbCons 1.12 (default options) [65]. Prior
to phylogenetic inference, multiple sequence alignment
columns with more than 50% gaps were deleted; for
comparison we also performed the analyses based on
alignments for which we only deleted columns with
more than 90% gaps.

Phylogenetic analyses

Distance-based minimal evolution trees were inferred by
FastME 2.0 [52] (with balanced tree swapping and “GME”
initial tree options) based on pairwise distances calculated
by TREE-PUZZLE 5.2 [51] (using the WAG substitution
model [66] as recommended by PROTTEST 1.4 [67], a
uniform model of rate heterogeneity, estimation of amino
acid frequencies from the dataset, and approximate
parameter estimation using a Neighbor-joining tree).
For maximum likelihood and Bayesian approaches we
employed PhyML 2.4.4 [53] (using 100 bootstrapped
data sets, the WAG substitution model, 4 substitution
rate categories, estimated proportion of invariable sites,
estimated Gamma distribution parameter, and an initial
tree calculated by the BIONJ algorithm) and MrBayes
3.2.2 [49] (with 10° generations, a sample frequency of
100, a mixture of amino-acid models with fixed rate
matrices and equal rates, and 25% burn-in). For the
calculations of typed support values from different
sources, confadd 1.01 was used [56]. Tree and domain
composition diagrams were drawn using Archaeopteryx
[56]. All conclusions presented in this work are robust
relative to the alignment methods, the alignment process-
ing, the phylogeny reconstruction methods, and the pa-
rameters used. All sequence, alignment, and phylogeny
files are available upon request.

Availability of supporting data

The data sets supporting the results of this article are
available in the Dryad repository, doi:10.5061/dryad.34vql,
http://dx.doi.org/10.5061/dryad.34vql [54], in phyloXML
format [68].

Additional files

Additional file 1: Complete genomes analyzed.

Additional file 2: CBM_48- and Alpha-amylase-containing branching
and debranching enzymes. Protein identifiers (mostly from UniProt; for
others, see legend for Additional file 4) for branching and debranching
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enzymes with CBM_48 and Alpha-amylase domains are listed (per-domain
E-value cutoff: 10). For eukaryotic enzymes, taxonomic groups (such as
Alveolata) are indicated. Simplified domain architecture overviews are given
for each enzyme (“~"is used to indicate linkers between domains shorter
than 11aa, whereas "——"stands for linkers longer than 10aa). Individual
E-values for CBM_48 and Alpha-amylase domains are shown as well.

Additional file 3: hGDE-amylase- and GDE_C-containing eukaryotic
debranching enzymes. Protein identifiers (mostly from UniProt; for
others, see legend for Additional file 4) for debranching enzymes with
hGDE-amylase and GDE_C domains are listed (per-domain E-value cutoff:
10°). Taxonomic groups (such as Alveolata) are indicated. Simplified
domain architecture overviews are given for each enzyme (*~" is used to
indicate linkers between domains shorter than 11aa, whereas “——" stands
for linkers longer than 10aa). Individual E-values for hGDE-amylase and
GDE_C domains are shown as well.

Additional file 4: Representative examples of branching and
debranching enzymes from completely sequenced genomes. Protein
identifiers are generally from the UniProt database, except for those
marked with an asterisk, which are from GenBank, and those from
Sphaeroforma arctica, Thecamonas trahens, and Fonticula alba which
originate from the Origins of Multicellularity Sequencing Project (Broad
Institute of Harvard and MIT: http://www.broadinstitute.org), and those
from Cyanidioschyzon merolae which are from the National Institute of
Genetics, Japan [69]. All examples are from completely sequenced
genomes (see Additional file 1).
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