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Abstract
Background: Biological invasions can be considered one of the main threats to biodiversity, and
the recognition of common ecological and evolutionary features among invaders can help
developing a predictive framework to control further invasions. In particular, the analysis of
successful invasive species and of their autochthonous source populations by means of genetic,
phylogeographic and demographic tools can provide novel insights into the study of biological
invasion patterns. Today, long-term dynamics of biological invasions are still poorly understood and
need further investigations. Moreover, distribution and molecular data on native populations could
contribute to the recognition of common evolutionary features of successful aliens.

Results: We analyzed 2,195 mitochondrial base pairs, including Cytochrome b, Control Region
and rRNA 12S, in 161 Italian and 27 African specimens and assessed the ancient invasive origin of
Italian crested porcupine (Hystrix cristata) populations from Tunisia. Molecular coalescent-based
Bayesian analyses proposed the Roman Age as a putative timeframe of introduction and suggested
a retention of genetic diversity during the early phases of colonization. The characterization of the
native African genetic background revealed the existence of two differentiated clades: a
Mediterranean group and a Sub-Saharan one. Both standard population genetic and advanced
molecular demography tools (Bayesian Skyline Plot) did not evidence a clear genetic signature of
the expected increase in population size after introduction. Along with the genetic diversity
retention during the bottlenecked steps of introduction, this finding could be better described by
hypothesizing a multi-invasion event.

Conclusion: Evidences of the ancient anthropogenic invasive origin of the Italian Hystrix cristata
populations were clearly shown and the native African genetic background was preliminary
described. A more complex pattern than a simple demographic exponential growth from a single
propagule seems to have characterized this long-term invasion.

Background
The widespread introduction of non-native species has
long been regarded as one of the major anthropogenic
global changes and threats to biodiversity [1,2]. The
remarkable economic and ecological costs of biological

invasions make the management of invaders one of the
leading challenges in conservation biology [3,4]. Standard
methodologies implemented in population biology and
new statistical tools recently developed in genetic analysis
could help elucidate features and patterns relevant to
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invasive biology [5]. Likewise, a comprehensive investiga-
tion of ecology and phylogeography of native source pop-
ulations may suggest new insights into colonization and
rapid evolutionary dynamics of invasive species [6]. The
scarcity of genetic data on the native range of successful
aliens has recently been highlighted, along with the sug-
gestion that further comparative studies could address
these data in order to recognize some common evolution-
ary features among invaders [7].

Recently, a general warning on the importance of long-
term perspective in invasion biology studies has been
raised. Indeed, many researches have dealt with the acute
phase of an invasion (i.e., the period soon after the intro-
duction event), often lacking an adequate temporal con-
text (see review in [8]). In particular, scientific efforts
should be directed to better understand the long-term
changes that occur in the environment and community of
both invading and invaded species [9]. In order to clarify
the patterns and the evolutionary consequences of biolog-
ical invasions, long-term perspective studies should focus
on different aspects of the introduced populations, such
as their genetic diversity and structure, population size at
introduction (propagule pressure), growth rate and
demographic trend [7]. Considering the usefulness of
molecular investigations in such retrospective studies
[10], in this paper we focus on the analysis of genetic
diversity, population structure and demographic trend of
a putative ancient European invader, the crested porcu-
pine Hystrix cristata.

Three species of the old world porcupines (Hystricidae,
Rodentia), morphologically grouped in the Hystrix subge-
nus, occur all over Asia (H. indica) and Africa (H. cristata
and H. africaeaustralis). The Cape porcupine (H. africae-
australis) inhabits the South Africa region, from Cape of
Good Hope to the borders of Central Africa tropical rain-
forests, while the crested porcupine (H. cristata) lives in
North Central Africa, from the Mediterranean coast to
Northern Zaire and Tanzania, and in mainland Italy and
Sicily [11]. These species are characterized by an extremely
wide ecological tolerance: they can be found in arid grass-
land and semi-desert habitats, in Mediterranean shrub
lands and deciduous forests, as well as on the Atlas and
Kilimanjaro mountains, up to 3,500 m (a.s.l) of altitude.
The origins of the Italian populations of H. cristata have
long been debated. Based on the timescale of fossil and
archaeological records [12] and on historical chronicles
(Plinius, Naturalis Historia, VIII, 53), it was hypothesized
that this species was introduced from Africa, in the late
Roman Age, as a game animal. However, such hypothesis
has recently been questioned, and a native European ori-
gin of the Italian porcupine has been suggested [13]. A
recent spread in North and Central-East Italy over the last
century has been well documented, and the presence of

archaeological and distributional records from areas
where the species is now absent has also been recorded
[14]. Given a maximum density of 2–4 specimens/
Km2[15] and the current area of occurrence, the popula-
tion living in North-Central Italy can be estimated as ca.
80,000–120,000 individuals.

The main aim of this study is to highlight the geographical
origin and the history of the Italian Hystrix cristata popu-
lations by means of genetic analyses, considering the
hypothesis of their introduction in recent times. We also
investigate the demographic parameters that characterize
this putative invasion, on the basis of the genetic diversity
and structure of the Italian populations. Moreover, pre-
liminary genetic data on the African native range are
shown.

Results
A total of 2,195 mitochondrial bp, including 726 bp of
the cytochrome b (cyt b) gene, 881 bp of the Control
Region (CR) and 588 bp of tRNA-Phe and partial rRNA
12S genes, were successfully sequenced and aligned in
179 individuals of H. cristata, 9 of H. africaeaustralis and
one of H. indica (Fig. 1). The summary statistics of the
molecular diversity, considering different geographical
and phylogenetic partitions, were calculated for the whole
mtDNA fragment as well as for each gene, separately [See
Additional file 1]. As a whole, 23 segregating sites in H.
africaeaustralis and 113 in H. cristata identify 20 and 9 dif-
ferent haplotypes, respectively. The cyt b fragment is char-
acterized by a 36/4 Synonymous/Non-Synonymous
substitutions ratio in H. cristata, 1/1 in H. africaeaustralis
and 63/7 in the pooled sample. Considering the whole
mtDNA fragment, net genetic distances are: 0.057 (SD
0.002) between H. cristata and H. africaeaustralis; 0.138
(SD 0.002) between H. cristata and H. indica; 0.112 (SD
0.01) between H. africaeaustralis and H. indica. The Italian
populations of H. cristata have the lowest values for each
statistic, with a total of 5 segregating sites and 7 haplo-
types, haplotype diversity (Hd) ranging from 0.28 to 0.62
and average nucleotide diversity per site (π) ranging from
0.0001 to 0.0004. All newly recognized haplotypes have
been submitted to GenBank database [Accession Num-
bers: FJ472530–FJ472546].

Hystrix cristata haplotypes were organized in two well-sup-
ported clades as evidenced by both Maximum Likelihood
and Bayesian (data not shown) analyses: a Mediterranean
clade, including the samples from Italy, Tunisia and
Morocco, and a Sub-Saharan clade, comprising those
from East Africa, Burkina Faso, Libya and a Tunisian hap-
lotype (Fig. 2). A clear separation of the two African Hys-
trix species is also supported. Tree topology reveals a close
relationship between the Italian samples and Tunisian
haplotype Tun-A and an association between this group
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and the Moroccan sub-clade. Tunisia samples show a par-
ticular phylogeographical structure, as the haplotypes
from this region were both found in the Moroccan sub-
clade and in the Sub-Saharan clade; moreover, Tunisia-
Libya samples formed a well-supported group with Eri-
trean samples. The whole H. indica mtDNA fragment and
partial rRNA 12S sequences of H. brachyurus, Aterurus
macrurus and A. africanus were used as outgroup [Gen-
Bank Accession Numbers: AY012117; U12451;
AY093658].

Median-Joining Network of the Mediterranean haplo-
types is shown in Figure 3a, applying a 0.90% parsimony
threshold [16]. In Italy, two common haplotypes (Ita-A
and -B) are present in the North-Central and Sicilian pop-
ulations; three less common haplotypes (Ita-C, -D and -F)
were found in Central Italy population, while haplotype
Ita-E has a broad area of occurrence in the North-Central
region (from 42,356° S to the upper limit of the recent
northward colonization front). Another haplotype (Ita-G,
1 substitution in the cyt b gene), was sampled only in
South Italy. As stated above, Tun-A is the closest relative of

the Italian haplotypes and it was found in the North and
in the Centre of Tunisia. A close relationship between the
other Mediterranean haplotype (Tun-C) sampled in Tuni-
sia and those from Northern Morocco was identified.
Here, Mor-B and Mor-C were sampled in West-Central
Morocco while Mor-A and Mor-D belong to the Northern
Mediterranean coast. Extended branching links, corre-
lated with an extremely wide geographical distribution of
the samples, characterize the Sub-Saharan haplotypes
median-joining network (data not shown). Global FST of
African H. cristata native source populations is 0.66 (p =
0).

The timescale of Italian invasion was inferred by means of
coalescence-based Bayesian analyses, under two different
tree priors which model population size changes through
time. Only CR data were used in these analyses. The time
to the most recent common ancestor (tMRCA) posterior
densities of all introduced haplotypes and of two sub-
groups are shown in Figure 3b and Figure 3c. Given an
intraspecific CR substitution rate of 0.4 subs/site/Myr (see
Methods), the root of all samples ranges from 3.35 kyrbp

Samples distributionFigure 1
Samples distribution. Geographical location of the analyzed samples: 179 H. cristata and 9 H. africaeaustralis [see Additional 
file 2]. Occurrence areas of the two major H. c. clades and of H. a. are coloured (modified from [11]). Colour of Italian samples 
correspond to haplotype network in Figure 3a.
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ML phylogenyFigure 2
ML phylogeny. ML haplotypes tree. Significant node bootstrap support is given. Refer to Additional file 1 for haplotype 
names; A.afr: Aterurus africanus; A.mac: A. macrurus; H.bra: Hystrix brachyurus.

Mor-B

Mor-A

Tnz-A

BuF-A

Eth-A

Eri-A

Zam-A

SAf-C

ITA-B

Nam-C

ITA-E

Nam-D

Mor-C

A.afr

ITA-A

Eri-B

ITA-F

ITA-D

ITA-G

Zam-B

Nam-A

Tun-C

Lib-A

In02
H.bra

Tun-A

A.mac

Nam-B

SAf-B

Mor-D

SAf-A

Tun-B

ITA-C

100

98

100

95

96

H
.c. M

editerranean clade
H

.c. Sub-Saharan clade
H

. africaeaustralis



BMC Evolutionary Biology 2009, 9:109 http://www.biomedcentral.com/1471-2148/9/109

Page 5 of 10
(page number not for citation purposes)

Mediterranean clade Median-Joining Network and Italian haplotypes timescaleFigure 3
Mediterranean clade Median-Joining Network and Italian haplotypes timescale. Median Joining Networks of H. 
cristata Mediterranean clades. Circle size is proportional to sample size (a). TMRCAs posterior probability density in Subs/site 
(S/s) of all introduced haplotypes and of two sub-groups, considering a population size expansion model (b) or a constant pop-
ulation size model (c); mean and 95% HPD are given in kyr.
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(0.6 – 7.3 kyrbp HPD 95%), under the Cons_s model, to
2.9 kyrbp (0.4 – 6.7 kyrbp HPD 95%), under the Expa_g
model.

North-Central Italy population was used to investigate the
demographic parameters that might have characterized
the Italian expansion. Neutrality tests did not give signifi-
cant results (Fu's Fs: -0.815, p: 0.36; R2: 0.100, p: 0.62).
Similarly, mismatch distribution in the CR sequences (τ =
0.931, time since expansion ≈ 1.8 kyrbp, 1.3 – 2.7 kyrbp
according to 95% CR) did not agree with a sudden expan-
sion model, being the sum-of-squared-differences (SSD)
statistics equal to 0.01, with p = 0.04 (Fig. 4). Genetic
traces of past demographic trend were also inferred in a
Bayesian framework. The demographic analysis using the
Bayesian Skyline Plot as tree prior (data not shown) did
not give significant results. In particular, there was no evi-
dence of demographic expansion of the North-Central
Italy H. cristata population in the recent past. A Bayes Fac-
tor (BF) evaluation between pairs of three analyses, which
employed different coalescent tree priors, allowed us to
fully reject the Expo_g model (lnBF: Cons_s – Expo_g =
9.7; Expa_g – Expo_g = 9.9), but did not significantly pre-
fer either of the two other models (lnBF Expa_g – Cons_s
= 0.117). Indeed, the demographic reconstruction under
the Expa_g tree prior suggested a population size increase
only in very recent times, after a long period of size stasis
post-introduction (data not shown).

Discussion
Our results confirm the ancient non-native origin of the
Italian H. cristata populations: i) the summary molecular
statistics, derived from three mitochondrial genes, high-
lights the African genetic diversity as being more complex
when compared with the Italian; ii) the phylogenetic anal-
ysis shows the close relationship between the Italian and
the Tunisian populations; iii) the median-joining network
analysis suggests that a Tunisian and the most widespread
Italian haplotypes share a common ancestor. These results
indicate the Tunisian area as being the most probable
source of the Italian introduced populations. In our sam-
ple the native geographic range is represented by only five
individuals with a global native range FST of 0.66. This
supports the assignation of introduced haplotypes to a
particular source region with a confidence index of 0.95
(accuracy at regional level of 0.9) as shown by Muirhead
et al. [17]. The median-joining network analysis also
reveals the simple genetic structure of the introduced Ital-
ian populations i.e., a single mitogenetic clade of strictly
related haplotypes. Both Central-North Italy and the Sicil-
ian populations share the common haplotypes (Ita-A and
Ita-B), while Ita-B seems to be absent from southern Italy.

Archaeological records and historical chronicles (Plinius,
Naturalis Historia, VIII, 53) do not support an introduc-

tion of this species in Italy before the late Roman Empire.
The first calibrated sub-fossil of H. cristata was found in
South Italy (Basilicata) and dates back to 1.5 kyrbp [13].
Since we found a close relationship between the Italian
and the Tunisian haplotypes, a putative time frame for
introduction could span from the early colonization of
Sicily by the Phoenicians (ca. 2.5 kyrbp) [18] to the first
Italian sub-fossil record. In the light of these considera-
tions, H. cristata could have been introduced in Sicily or in
mainland Italy during this 1 ky-time frame as a game spe-
cies, as threatening beasts in circus games or as exotic ani-
mals in rich Roman country homes. Considering the
coalescent-based Bayesian approach, the time-measured
phylogeny of introduced haplotypes partially agrees with
this historical framework. However, even if the molecular
clock was calibrated using a very fast intraspecific substi-
tution rate [19,20], the mean value of Italian haplotypes
tMRCA was dated back to ca. 3 kyrbp, farther than the
above hypothesized time span. Conversely, the two recog-
nized Italian subgroups seem to have evolved in situ, dur-
ing the early phases of colonization and spread (2.1–1.1
kyrbp). Nevertheless, this scenario would need to be sup-
ported by a rare event of molecular diversity retention in
the bottlenecked population during the founding event
[21], since genetic drift reduces genetic variation in small
populations [22]. Likewise, since Central-North Italy and
Sicily share the common Ita-A and Ita-B haplotypes, this
rare genetic event during introduction might have
occurred in both regions. The possibility of a further accel-
eration of the molecular substitution rates in extremely
recent events as this could also be taken into account [23].
In fact, a time-dependency of the molecular clock rates has
been recently proposed and discussed [24,25]. As for H.
cristata introduction, a substitution rate of 0.5 – 0.6 subs/
site/Myr in the mtDNA CR has to be accepted if we con-
sider that the whole Italian molecular diversity was gener-
ated in situ.

A review of the most recent literature of the demographic
parameters that characterize the colonization dynamics
does not provide clear evidence of a common pattern dur-
ing colonization. A successful invasion can take place as a
multiple introduction of few individuals from genetically
differentiated native populations [26,27], or as a single
founder event from extremely bottlenecked gene pools
[28]. Being an invasive species, the present population
size of Italian H. cristata is the result of a demographic and
spatial expansion though the genetic signature of this
remarkable growth is not revealed by molecular statistics.
Although there is evidence of an extremely recent demo-
graphic increase, the coalescent-based Bayesian analysis
does not clearly support a population expansion model.
Since this demographic analysis is based on the assump-
tion of a single panmittic population at mutation/drift
equilibrium, the results may be better explained by
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hypothesizing more than one event of introduction of iso-
lated propagules.

As for the genetic background of H. cristata native range,
the phylogenetic reconstruction highlighted the existence
of two different haplogroups, Sub-Saharan and Mediterra-
nean. The high level of genetic differentiation of the Sub-
Saharan clade advocates for a complex evolutionary his-
tory, probably related to the broad geographical area of
occurrence. Indeed, the haplotypes belonging to this clade
were sampled in Central Africa as well as in Tunisia and
Libya. The close relationship between the Tun-B/Lib-A
and the Eritrean haplotypes suggests the existence of an
ecological connection going from East to North Africa,
encompassing the Sahara region. This hypothesis is sup-
ported by strong evidence of humid phases characterizing
North African climate (15-8 kyrbp) [29]. As for the second
haplogroup, a low level of genetic differentiation can be
detected. This could be the consequence of a less complex
evolutionary history or a more recent diversification from
a common ancestor when compared with the Sub-Saha-
ran haplogroup. However, the evolution of native range
H. cristata should be analyzed along with the environ-
mental changes which occurred in Africa over the Late

Pleistocene and the Holocene [30]. As widely acknowl-
edged in the Palaearctic Region [31], the distribution and
the phylogeographical structure of several African taxa
have largely been shaped by these past climatic shifts
[32,33]. Further investigation in the North African native
range would help to clarify the relationship between the
evolutionary history of the African populations and the
high invasive potential of the propagules coming from
such populations.

Conclusion
Molecular data strongly evidenced the invasive origin of
the Italian Hystrix cristata populations from North Africa
(Tunisia) introduced during the Roman Age. Although
demographic analyses failed to support a population size
expansion from a single introduced propagule, they sug-
gest a different scenario in favour of a multi-invasion
event. Moreover, this study produced preliminary data on
the genetic diversity of native range populations, and pro-
vides a useful contribution for further comparative studies
on successful aliens.

Methods
Samples
A total of 179 H. cristata samples (blood and quills) were
collected in the field and analyzed between 2006 and
2007: 161 samples came from all over Italy and 18 sam-
ples from different African populations in Burkina Faso,
Eritrea, Ethiopia Libya, Morocco, Sierra Leone, Tanzania,
and Tunisia. Moreover, nine H. africaeaustralis samples
from Namibia, South Africa and Zambia were analyzed as
representatives of the sister taxon species. One H. indica
specimen from Israel was added in the phylogenetic anal-
yses as outgroup. Location of specimens used in the statis-
tical analyses are given in Figure 1 [see Additional file 2].

Genetics
Whole genomic DNA was extracted from blood and from
modified hairs (quills) of each individual, and the Con-
trol Region (CR) sequence was PCR amplified according
to Trucchi et al. [34]. Two semi-nested primer pairs were
developed in order to amplify a 726 bp fragment of cyto-
chrome b (CytF1-Cyt06R and Cyt05F-Cyt02R), while the
tRNA-Phe and rRNA 12 S partial sequences (588 bp) were
amplified using the primer pairs: HyF4-H293 and L82-
H618 [35]. All newly designed primers were successfully
tested on the three species under investigation. Primer
details are given in Table 1. PCR amplifications of Hystrix
mitochondrial Cyt b, and rRNA 12S were carried out
applying the following conditions: each 50 μL PCR reac-
tion contained 3–4 μL genomic DNA elution, 100 pmol
of each primer, 5 μL 10× PCR buffer, 0.2 mM dNTPs, 1.5
mM MgCl2, and 1.5 U Taq DNA polymerase (Eurotaq,
EuroClone). PCR thermal profile included: initial pre-
heating step at 95°C for 3 min, 35 cycles of 95°C for 30

North Central Italy population MMDFigure 4
North Central Italy population MMD. Mismatch distri-
bution of pairwise differences in CR sequences among North 
Central Italy samples in comparison with the expected distri-
bution from a non-constant population size model.
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sec, 56-54°C for 30 sec, 72°C for 30–60 sec, and a 7 min
final extension at 72°C. (9700 Thermal Cycler, Applied
Biosystem). We did not perform microsatellite analyses
since low-quality genetic material, as DNA obtained from
our non-invasive sampling strategy, is prone to genotyp-
ing errors like allelic dropouts and false alleles identifica-
tion (rev. in [36]). In our case, the possibility to reduce the
errors collecting duplicate samples was not achievable.

Data analyses
The sequences were edited and aligned using BIOEDIT[37].
Haplotype diversity Hd, segregating sites S, nucleotide
diversity averaged per site π [38] and, Synonymous/Non-
Synonymous ratio (as regards cytochrome b gene) were
calculated using DNASP[39]. The same software was used
to describe number and frequency of different haplotypes
and to calculate θ per sequence from segregating sites
[40], being this diversity value an informative synopsis of
the metrics used. Net genetic distances based on the pro-
posed GTR + Γ + I [41] model of sequence evolution were
calculated on the whole analyzed mtDNA fragment,
exporting tip-to-tip distances obtained from Maximum-
Likelihood phylogeny calculated in TREEFINDER[42]. A
Maximum-Likelihood (ML) and a Bayesian (Ba) methods
were used to assess the phylogenetic relationships among
mitochondrial haplotypes. TREEFINDER was used to evalu-
ate the best-fit model of sequence evolution for each ana-
lyzed data set, using the Akaike Information Criterion. As
regards the whole dataset, the proposed model was a GTR
+ Γ + I with unequal base frequencies. TREEFINDER was
used to build the ML phylogeny, while BEAST[43] was used
to reconstruct the Ba phylogeny. Robustness of the ML
trees was tested with 1,000 bootstrap replicates. The rela-
tionship among the haplotypes belonging to each tree
sub-clade was reconstructed by means of a Median-Join-
ing network analysis, as implemented in NETWORK[44].

According to Muirhead et al. [17], global Fst among native
populations was used to assess the confidence index to
classify introduced individuals to a source geographic
area. It could prevent incorrect identification of invasion
source when a low number of individuals has been sam-
pled in putative source populations. Three putative Afri-
can sources were considered: Tunisia-Libya, Morocco, and
East Africa comprising Eritrean, Ethiopian and Tanzanian
samples. A Kimura 2-parameters distance method and
10,000 permutations was used to calculate global Fst with
the software ARLEQUIN[45].

TMRCAs of all Italian haplotypes and of 2 sub-clades were
estimate on the base of Control Region data using BEAST.
Constant_size (Cons_s) and Expansion_growth (Expa_g)
tree priors were compared as well as the Relaxed and the
Strict molecular clock models. At least three independent
runs 3 × 106 steps long were performed for each dataset.

Convergence of chains, effective sample size, estimates
and credible intervals for each parameter were analyzed
with the program TRACER[43]. TMRCAs were dated using a
0.4 subs/site/Myr substitution rate. This rate has been pro-
posed by Rajabi-Maham et al. [19] for intraspecific poly-
morphism analyses in Mus musculus domesticus. Since
similar mitochondrial substitution rates were recorded in
Hystricidae and Muridae [46], this molecular rate was also
considered in our study.

The mtDNA sequences were analyzed in order to find
traces of demographic trend from introduction, growth
rate and present population size. Several approaches were
attempted. These analyses were performed only on the
North Central Italy samples, which can be considered, to
a large extent, as a panmittic expanding population. Only
the fast-evolving mtDNA CR-I was used in these investiga-
tions. Two different neutrality tests, which have been
shown to be the most powerful [47], were used to investi-
gate for population expansion or bottleneck on the sam-
pled CR-I sequences: Fu's Fs [48] statistics were calculated,
as implemented in ARLEQUIN and R2 [47] as implemented
in DNASP. Significance of Fs was assessed by 10,000 rand-
omization, while significance of R2 was determined by
means of 10,000 coalescent simulation on the basis of
observed number of segregating sites in the sample. The
mismatch distribution of pairwise differences between
sequences was examined to find genetic traces of the
demographic trend. The sum-of-squared-differences
(SSD) statistic was used to test the goodness-of-fit
between the observed mismatch distribution and that
expected under a sudden expansion model. The signifi-
cance of SSD was assessed by 10,000 parametric bootstrap
re-sampling [49], using ARLEQUIN. Past population
demography was also investigated with a Bayesian Skyline
Plot (BSP) [50], as implemented in BEAST. This coalescent-
based approach calculates the effective breeding popula-
tion size (Nef) through time directly from sampled
sequence data and not from previously recognized phyl-
ogeny. This procedure can therefore account for uncer-
tainty associated with reconstructed phylogeny. The
analysis was done using a different time segmentation
ranging from 5 to 10 groups (past Nef points) and substi-
tution model (HKY + I) [51]. Three independent runs of
50 × 106 iterations for each grouping scenarios were per-
formed. In addition, separate runs were performed, using
different coalescent tree priors which model population
size through time: Cons_s, Expa_g and
Exponential_growth (Expo_g). Three independent runs of
30 × 106 iterations for each scenario were done. Conver-
gence of chains, effective sample size, estimates and cred-
ible intervals for each parameters and demographic
reconstructions were analyzed with the software TRACER.
The three different demographic models were then com-
pared to each other in order to assess their relative fit to
Page 8 of 10
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the data. Comparisons were made under TRACER work-
space evaluating the marginal likelihood ratio (marginal
with respect to the tree prior) of pairs of models (Bayes
Factor calculation). The best approximation to the mar-
ginal likelihood comparison was found calculating the
Bayes Factor on the tree Likelihood trace [52,53].
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