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Abstract
Background: The L-lactate and D-lactate dehydrogenases, which are involved in the reduction of
pyruvate to L(-)-lactate and D(+)-lactate, belong to evolutionarily unrelated enzyme families. The
genes encoding L-LDH have been used as a model for gene duplication due to the multiple paralogs
found in eubacteria, archaebacteria, and eukaryotes. Phylogenetic studies have suggested that
several gene duplication events led to the main isozymes of this gene family in chordates, but little
is known about the evolution of L-Ldh in invertebrates. While most invertebrates preferentially
oxidize L-lactic acid, several species of mollusks, a few arthropods and polychaetes were found to
have exclusively D-LDH enzymatic activity. Therefore, it has been suggested that L-LDH and D-
LDH are mutually exclusive. However, recent characterization of putative mammalian D-LDH with
significant similarity to yeast proteins showing D-LDH activity suggests that at least mammals have
the two naturally occurring forms of LDH specific to L- and D-lactate. This study describes the
phylogenetic relationships of invertebrate L-LDH and D-LDH with special emphasis on
crustaceans, and discusses gene duplication events during the evolution of L-Ldh.

Results: Our phylogenetic analyses of L-LDH in vertebrates are consistent with the general view
that the main isozymes (LDH-A, LDH-B and LDH-C) evolved through a series of gene duplications
after the vertebrates diverged from tunicates. We report several gene duplication events in the
crustacean, Daphnia pulex, and the leech, Helobdella robusta. Several amino acid sequences with
strong similarity to putative mammalian D-LDH and to yeast DLD1 with D-LDH activity were
found in both vertebrates and invertebrates.

Conclusion: The presence of both L-Ldh and D-Ldh genes in several chordates and invertebrates
suggests that the two enzymatic forms are not necessarily mutually exclusive. Although, the
evolution of L-Ldh has been punctuated by multiple events of gene duplication in both vertebrates
and invertebrates, a shared evolutionary history of this gene in the two groups is apparent.
Moreover, the high degree of sequence similarity among D-LDH amino acid sequences suggests
that they share a common evolutionary history.

Published: 1 October 2008

BMC Evolutionary Biology 2008, 8:268 doi:10.1186/1471-2148-8-268

Received: 26 November 2007
Accepted: 1 October 2008

This article is available from: http://www.biomedcentral.com/1471-2148/8/268

© 2008 Cristescu et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 10
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18828920
http://www.biomedcentral.com/1471-2148/8/268
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Evolutionary Biology 2008, 8:268 http://www.biomedcentral.com/1471-2148/8/268
Page 2 of 10

Background
The reduction of pyruvate to L(-)-lactate and D(+)-lactate
is catalyzed by different NAD-dependent enzymes, the L-
lactate (L-LDH: L-lactate:NAD+ oxidoreductase, EC
1.1.1.27) and D-lactate dehydrogenases (D-LDH: D-lac-
tate:NAD+ oxidoreductase, EC 1.1.1.28) as well as by
NAD-independent (cytochrome) enzymes (DLD: D-lac-
tate ferricytochrome c oxidoreductase, EC 1.1.2.4).
Despite their apparent functional similarity, these classes
of enzymes are selective for the D/L chirality of the sub-
strate [1]. Studies on the primary amino acid structures of
L-LDH and D-LDH suggest that the genes encoding them
are not evolutionarily related [2,3] and that their products
belong to larger families of enzymes: L(-)-LDHs belong to
the L-specific NAD-dependent dehydrogenases, while
D(+)-LDHs belong to the D-isomer specific 2-hydroxy
acid dehydrogenases and the FAD-binding oxidoreduct-
ase/transferase type 4 family.

L-LDH has been among the most studied enzyme families,
but very little is known about the structure, function, and
kinetics of D-LDH [4,5]. The main question in the evolution
of L-LDH relates to the orthology of the gene loci encoding
the proteins with various enzyme activities [6,7]. While L-
LDHs have been extensively studied in vertebrates, there is
much less information on these enzymes in invertebrates.
With the availability of new L-Ldh sequences from two crus-
taceans (Daphnia pulex in the Branchiopoda, and a second
malacostracan, the porcelain crab, Petrolisthes cinctipes in the
Decapoda) and a few other invertebrates such as the leech
Helobdella robusta, the polychaete Capitella capitata, and the
tunicate Ciona intestinalis, we sought to gain a deeper under-
standing of the relationship between invertebrate and proto-
chordate L-LDHs and those of vertebrates, and to elucidate
the evolutionary relationship among invertebrate L-Ldhs.
Moreover, the recent description of mammalian D-LDH
enzymes that show significant similarity to yeast proteins
with D-LDH activity [5] prompted our search for sequences
with putative D-LDH activity in both vertebrate and inverte-
brate genomes.

Results
Alignments and phylogenetic analyses of L-LDH amino 
acid sequences
The L-LDH alignment used in phylogenetic analyses
includes 315 amino acids, with 68 constant characters
and 214 parsimony-informative characters. Maximum-
parsimony (MP) analysis of 49 L-LDH sequences using
the tree-bisection-reconnection (TBR) algorithm found
two most parsimonious trees of 1982 steps long with a
consistency index (CI) = 0.48, a homoplasy index (HI) =
0.51 and a retention index (RI) = 0.63. The uncorrected
number of amino acid differences per site between inver-
tebrate and chordate groups is 0.38 ± 0.019.

Phylogenetic trees generated by MP and Neighbor-joining
(NJ, Figure 1) and Bayesian Inference (BI, Figure 2) all

support a deuterostome cluster. The only exception is the
echinoderm, Strongylocentrotus purpuratus, which groups
with nematodes, although bootstrap support for this phy-
logenetic relationship is extremely low (Figure 1). The ver-
tebrate sequences form a well-supported cluster with the
LDH-A and LDH-B isozymes separating into distinct
groups. Even so, there are examples of species whose A, B
and C isozymes cluster with one another (e.g. Xenopus
laevis).

The arthropod LDH sequences form a well-resolved clus-
ter, as do the insects within it. Two copies of Ldh were
found in the Daphnia pulex genome, and three copies in
the Helobdella robusta genome. As with other cases of gene
duplication outside chordates, the suffixes A, B and C do
not denote orthology to the vertebrate A, B and C iso-
zymes. The predicted protein sequences from the two
Daphnia paralogs show 0.17 ± 0.012 amino acid diver-
gence (p-distance) and 0.224 ± 0.014 nucleotide diver-
gence (p-distance) in the coding regions. They cluster with
one another indicating that this gene duplication occurred
after the divergence of Daphnia from the other crusta-
ceans, the decapods Carcinus maenas and Petrolisthes cinc-
tipes (Figure 1 and 2). The insects and crustaceans are
reciprocally monophyletic in the MP and NJ trees (Figure
1), although bootstrap support for the crustacean node is
very low. Conversely, very strong support for an arthro-
pod clade in which the crustaceans are paraphyletic rela-
tive to the insects was obtained in the BI tree (Figure 2).

The level of amino acid divergence between the three
Helobdella robusta LDH proteins (0.32 ± 0.026, 0.46 ±
0.028, 0.52 ± 0.028) is higher than that between the Daph-
nia copies or Fundulus heteroclitus (LDH-B and LDH-C,
0.21 ± 0.028) and much higher than that between the
recently diverged Xenopus laevis copies (0.019 ± 0.008,
0.049 ± 0.013, 0.063 ± 0.014). Moreover, the relation-
ships among the three genes differs among the phyloge-
netic trees. Only two of the three H. robusta genes (Ldh-A
and Ldh-B) are clearly paralogous in the MP/NJ tree, and
duplicated after the divergence of H. robusta from the
other annelid in the analysis (the polychaete, Capitella
capitata). However, the annelid cluster also contains the
trematode flatworm, Clonorchis sinensis, although boot-
strap support for these relationships is low (Figure 1). The
annelid/trematode clade is also recovered in the BI tree
(Figure 2), although in this case, C. capitata is the sister
group to the three leech and the flatworm sequences.

Alignments and phylogenetic analyses of D-LDH amino 
acid sequences
The D-LDH alignment included 486 amino acids with 73
conserved sites and 319 parsimony informative sites. The
uncorrected number of amino acid differences per site
averaged over all sequence pairs between chordates and
invertebrates is 0.41 ± 0.015.
(page number not for citation purposes)
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Neighbor-joining tree based on 49 L-Lactate dehydrogenase amino acid sequences from 31 taxaFigure 1
Neighbor-joining tree based on 49 L-Lactate dehydrogenase amino acid sequences from 31 taxa. Numbers at 
nodes indicate the Neighbour-joining and Maximum Parsimony percentage bootstrap support with 2,000 and 100 replicates, 
respectively. Nodes supported only by the Neighbor-Joining analysis show a single bootstrap value. The scale bar indicates lev-
els of amino acid sequence divergence. The tree was rooted using the plant LDH sequences.
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Bayesian inference, 50% majority rule consensus tree based on 49 L-Lactate dehydrogenase amino acid sequencesFigure 2
Bayesian inference, 50% majority rule consensus tree based on 49 L-Lactate dehydrogenase amino acid 
sequences. The numbers at the nodes are posterior probabilities expressed as percentages.
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In general, the topology of the NJ tree generated from these
sequences (Figure 3) shows that the deuterostomes form a
distinct cluster relative to the other animals, as expected.
For example, there is strong bootstrap support for a verte-
brate cluster, and the non-vertebrate deuterostomes (C.
intestinalis and S. purpuratus) cluster with them, although
unexpectedly, C. intestinalis (a tunicate) clusters with S. pur-
puratus (an echinoderm) instead of the vertebrates. Rela-
tionships among the other invertebrates are not well
resolved. For example, the annelids, H. robusta and C. capi-
tata, do not cluster with each other, and the protostomes
themselves do not form a monophyletic group (H. robusta
is the sister taxon to all the other animals except C. elegans),
but bootstrap support for several of the invertebrate nodes
is low. Overall, this tree strongly suggests that D-Ldh was
present in the common ancestor of animals.

Discussion
L-lactate dehydrogenases in vertebrate and invertebrate 
evolution
The majority of taxa of jawed vertebrates contain three iso-
zymes of L-LDH (LDH-A, LDH-B and LDH-C) encoded by
three loci. The M form (LDH-A) is found predominantly
in white skeletal muscle (fast twitch glycolytic fibers) and

is best suited for pyruvate reduction in anaerobic condi-
tions, while the H form (LDH-B) is found in more aerobic
tissues such as heart and brain and is most efficient for lac-
tate oxidation. The X form (LDH-C) is found in various
tissues such as the spermatozoa of mammals and birds,
the eye lenses of birds and crocodilian and the liver and
eye of teleosts [8,9].

It is commonly accepted that new metabolic capacities of
L-LDH enzymes have often arisen by gene duplications in
addition to more orthodox evolutionary changes in exist-
ing genes. For this reason the Ldh gene family has been
used as a model for gene duplication in vertebrate evolu-
tion [8,10]. It is generally accepted that the Ldh genes of
jawed vertebrates arose as a series of gene duplications in
early vertebrate evolution, after the divergence of verte-
brates from tunicates. However, the succession of these
gene duplication events is not well understood [9,11,12].
Two main evolutionary scenarios have been proposed.
The classical scenario involves the duplication of an Ldh-
A-like locus in Agnatha (lampreys have a single LDH
form) that gave rise to Ldh-A and Ldh-B. A second round
of gene duplication involved Ldh-B and gave rise to Ldh-B
and Ldh-C. Several phylogenetic studies support this

Neighbor-joining tree based on D-Lactate dehydrogenase amino acid sequences from 21 taxaFigure 3
Neighbor-joining tree based on D-Lactate dehydrogenase amino acid sequences from 21 taxa. Numbers at nodes 
indicate the percentage of NJ bootstrap analyses with 2,000 replicates and posterior probabilities expressed as percentages. 
The scale bar indicates levels of amino acid sequence divergence. The tree was rooted using the fungal DLD1 proteins.
Page 5 of 10
(page number not for citation purposes)



BMC Evolutionary Biology 2008, 8:268 http://www.biomedcentral.com/1471-2148/8/268
hypothesis of an original Ldh-A and Ldh-B gene duplica-
tion followed by more recent and independent origins of
the Ldh-C genes in teleost fish, Xenopus laevis, pigeon and
mammals [7,10,13]. A second school of thought suggests
that the primordial vertebrate LDH was an LDH-C like
enzyme. This hypothesis emerged from phylogenetic
reconstructions and from the observation that the single
LDH isozyme of the primitive agnathan, the sea lamprey,
is immunologically more similar to LDH-C in teleost fish
than to LDH-A or LDH-B [14-16].

Our phylogenetic analyses of L-LDH isozymes are consist-
ent with the general view of a major gene duplication
event near the origin of vertebrates. Both NJ and MP phy-
logenies suggest that the vertebrate isozymes LDH-A and
LDH-B evolved through a series of gene duplications soon
after the vertebrates diverged from tunicates. The main
difference between the MP, NJ and BI reconstructions is
that MP and BI supports a sister group relationship
between LDH in Petromyson marinus, the only chordate
with a single LDH locus, and all of the other vertebrate
LDHs. Conversely, this sequence clusters with fish LDH-A
in the NJ tree. Although the controversial phylogenetic
position of the LDH-C isozymes cannot be easily settled,
it is clear from our results that Ldh-C in mammals, X. laevis
and Fundulus have independent, derived origins from
either Ldh-A or Ldh-B-like ancestors.

The relationship of invertebrate and protochordate Ldh to
vertebrate Ldh is not well understood. Although most
invertebrates seem to possess one copy of L-Ldh [17-19],
several events of gene duplication involving nonverte-
brates have been reported in crustaceans, barley [20] and
in the psychrophilic bacterium, Bacillus psychrosaccharolyti-
cus [21]. In studies of crustacean LDH, protein electro-
phoresis has detected the presence of two Ldh loci in the
northern krill Meganyctiphanes norvegica, the Antarctic krill
Euphausia superba [22], the lobster Homarus americanus
[23], the snow crab Chionoecetes opilio [24], the amphipod
Hyallela azteca (J. Witt personal communication), the
cladoceran Daphnia magna [25] and possibly Daphnia car-
inata [26] and Daphnia cephalata [27]. All of these crusta-
ceans except Daphnia belong to the class, Malacostraca.
Further work will be required to determine if a gene dupli-
cation occurred early in this crustacean lineage (as
occurred in vertebrates), or if these duplicated genes have
independent origins within the class. The two copies of L-
Ldh in D. pulex group with one another in our phyloge-
netic analyses, suggesting that they do not represent an
ancient crustacean duplication, but analysis of other bran-
chiopods will be required to determine when this duplica-
tion occurred. Moreover, the MP and NJ trees suggest that
insects and crustaceans are reciprocally monophyletic, but
the crustaceans are paraphyletic relative to the insects in
the BI tree, with strong support. The possibility of crusta-
cean paraphyly has been suggested in other phylogenetic

studies involving a variety of markers [28-30], but these
relationships have not been definitively resolved.

The only other invertebrate in our analysis with multiple
copies of L-Ldh is the leech, H. robusta, with three copies.
Two of the copies appear to be unique to this taxon, but
our sample of sequences is not sufficient to determine
when this duplication occurred. A very long branch con-
nects Ldh-C in H. robusta with the flatworm instead of the
other annelids in the NJ tree, while Ldh-B clusters with the
flatworm in the BI tree. Additional annelid and flatworm
taxa must be analyzed to "break up" these branches, and
to examine the relationship between these two phyla.
What is clear from our phylogenetic analyses is that the
LDH genes of Arthropods are significantly distinct from
the LDH genes of other invertebrates, including annelid
and nematode worms.

LDH allozyme polymorphism has been intensely studied
in Daphnia including species with strong habitat specifi-
city. For example,D. pulex inhabits mainly freshwater
ponds throughout North America and Europe that lack
fish, while its closest relative, Daphnia pulicaria, inhabits
lakes and is able to coexist with fish, which are efficient
predators of these limnetic zooplankters. The two ecolog-
ical species can be distinguished based on a diagnostic
LDH allozyme polymorphism with a "slow" (S) allele in
D. pulex and a "fast" (F) allele in D. pulicaria [31]. How-
ever, the situation is complicated by hybridization and
transitions from cyclical to obligate parthenogenesis
[32,33]. Although there are distinct mitochondrial line-
ages in the two species in North America [34], there are
many lake populations of Daphnia that have a D. pulicaria
LDH profile (F), but a D. pulex-like mitochondrial DNA
(T. Crease, unpublished data).

The maintenance of the LDH-F allele in lake populations of
Daphnia, regardless of maternal origin, suggests that LDH
genotypes differ in physiological performance, which may
affect fitness. This is the case in the teleost, Fundulus hetero-
clitus [35], where the frequency of two LDH-B alleles shows
clinal variation with latitude and environmental tempera-
ture. In addition, the fish allozymes show differences in
kinetics related to temperature suggesting selection has
favored a particular form of the LDH protein. Further stud-
ies on Ldh genes from populations of both the lake and
pond Daphnia species are necessary to determine which of
the two L-Ldh loci is responsible for the S/F polymorphism,
and to provide evidence for the presence or absence of
selection on the polymorphic locus. This work will be com-
plemented by the examination of the enzyme kinetics of
the allozymes themselves.

D-lactate dehydrogenases
Enzymes that oxidize D-lactic acid have been mainly iden-
tified in lower organisms such as prokaryotes and fungi
Page 6 of 10
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(e.g., Lactobacillus, Escherichia coli, yeast) in which they
play an important role in anaerobic energy metabolism.
While most invertebrates preferentially oxidize L-lactic
acid, several species of mollusks (the oyster Crassostrea vir-
ginica, the mussel Mytilus edulis, the limpet Acmaea uni-
color, the chiton Middendorffia caprearum, the octopus
Eledone cirrosa), a few arthropods (horseshoe crab, spiders,
scorpions) and one polychaete, Nereis sp., were found to
have exclusively D-LDH enzymatic activity [36,37]. There-
fore, it had been suggested that the L-LDH and D-LDH
enzymes are mutually exclusive. However, Flick and
Konieczny [5] identified and characterized a putative
mammalian D-LDH enzyme that shows substantial simi-
larity to three yeast proteins with D-LDH activity. This
suggests that mammals have the two naturally occurring
forms (D- and L-) of LDH. Moreover, we identified a D-
Ldh gene in the genomes of several taxa that also possess
L-Ldh including D. pulex, several non-mammalian verte-
brates, the urchin, S. purpuratus, and C. elegans, suggesting
that the possession of both forms of this enzyme is phyl-
ogenetically widespread. Further research will be required
to determine the phylogenetic distribution of D-Ldh in
animals, to understand why it has been retained in some
groups but not others, and to determine the different roles
that L-LDH and D-LDH play in such diverse animals.
Comparisons of taxa with both types of enzymes to close
relatives with only one type would be informative in this
regard. In addition, it will be interesting to determine
whether the "missing" enzyme in such cases is the result
of gene inactivation, degradation into a pseudogene, dele-
tion, or is expressed at such low levels that the enzyme is
not detected in typical assays.

Conclusion
The presence of both L-Ldh and D-Ldh in several chordates
and invertebrates suggests that the two enzymatic forms
are not necessarily mutually exclusive. Moreover, the high
degree of sequence similarity among D-LDH amino acid
sequences suggests that they share a common evolution-
ary history. No recent duplications of D-Ldh have yet been
observed. In contrast, the L-Ldh gene family is character-
ized by a history of duplication and deletion events, par-
ticularly within vertebrates. However, duplications have
also been identified in several invertebrate taxa suggesting
that the occurrence of isozymes whose activity is specific
to different tissues or developmental stages is a common
theme in L-LDH evolution.

Methods
Alignments and phylogenetic analyses
LDH sequences from vertebrates, invertebrates and plants
were obtained from the GenBank and Swiss-Prot/EMBL
data bases (Table 1) using a combination of queries based
on the term "Lactate dehydrogenase" and BLAST searches.
In the latter case, several well described vertebrate and

invertebrate sequences were used as the query. Blast
searches were also performed on invertebrate genome
projects from which a few unannotated sequences were
retrieved. The deduced amino acid sequence for the porce-
lain crab, Petrolisthes cinctipes was obtained from a cloned
EST that contained the full length cDNA sequence [38].
The alignment of amino acid sequences was conducted
using CLUSTAL W [39] with a gap opening penalty of 10
and a gap length penalty of 0.1. Minor adjustments to the
alignments were made manually. To avoid ambiguity due
to extensive sequence variability and length variability in
the amino terminal arm, alignment positions 1–30 were
removed from the L-LDH alignment in all analyses. With-
out this ambiguous region, the alignment of the ingroup
taxa included six gaps, while the addition of plant
sequences to the alignment resulted in four additional
gaps. Phylogenetic analyses were inferred in MEGA4 [40],
PAUP, version 4.0 [41] and MrBayes V3.1.2. [42] using
three analytical approaches: Neighbor-joining (NJ), Maxi-
mum parsimony (MP) and Bayesian inference (BI). NJ
trees were constructed from pairwise amino acid distances
estimated using a Poisson correction. MP trees were esti-
mated using a heuristic search algorithm with 100 repli-
cates, sequences added at random and tree bisection-
reconnection branch swapping. Amino acids were treated
as unordered characters with equal weight and gaps were
treated as "missing". The stability of both phylogenetic
hypotheses was assessed with bootstrap analyses (100 rep-
licates for MP and 1000 replicates for NJ). Analysis of the
amino acid data was also conducted using the Bayesian
inference (BI) method with a fixed rate model of amino
acid substitution. The fixed rate model WAG was estimated
by allowing "model jumping" between nine fixed-rate
amino acid models. Runs of 1,000,000 generations were
executed, with a sampling frequency of 10, a burn-in
parameter of 25,000. Stability of the likelihood scores was
assessed in preliminary trials before setting the burn-in
parameter. To confirm that the results converged to the
same topology, we repeated the analysis three times.
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Table 1: List of sequences included in the phylogenetic analyses.

Assignment Organisms Accession number Reference

L-LDH
EC 1.1.1.27
LDH Aedes aegypti yellow fever mosquito [Swiss-Prot:Q16ND1] [43]
LDH-A Alligator mississippiensis American alligator [Swiss-Prot:Q9PW06] [13]
LDH-B Alligator mississippiensis American alligator [Swiss-Prot:Q9PW05] [13]
LDH Anopheles gambiae African malaria mosquito [Swiss-Prot:Q7Q981] [44]
LDH Arabidopsis thaliana mouse-ear cress [Swiss-Prot:O49191] Dolferus et al. 1998 unpublished
LDH Caenorhabditis briggsae nematode [Swiss-Prot:Q61ZF2] [45]
LDH Caenorhabditis elegans nematode [Swiss-Prot:Q27888] [46]
LDH Capitella capitata segmented worm gi 134102 unpublished
LDH Carcinus maenas green crab [Swiss-Prot:DY308423] [47]
LDH-B Chelodina siebenrocki turtle [Swiss-Prot:Q6S5M2] Ho and Li 2003 unpublished
LDH Ciona intestinalis tunicate gi 149293 unpublished
LDH-A Cyprinus carpio common carp [Swiss-Prot:Q9W7K5] Tsoi et al. 1998 unpublished
LDH Clonorchis sinensis flatworm gi 56131044 unpublished
LDH-A Danio rerio zebrafish [Swiss-Prot:Q9PVK5] Tsoi et al. 1998 unpublished
LDH-B Danio rerio zebrafish [Swiss-Prot:Q9PVK4] Tsoi et al. 1998 unpublished
LDH-A Daphnia pulex water flea gi 230172 unpublished
LDH-B Daphnia pulex water flea gi 61140 unpublished
LDH Drosophila melanogaster fruit fly [Swiss-Prot:Q95028] [48]
LDH Drosophila pseudoobscura fruit fly [Swiss-Prot:Q29FH9] [49]
LDH-A Fundulus heteroclitus killifish [Swiss-Prot:Q92055] [50]
LDH-B Fundulus heteroclitus killifish [Swiss-Prot:P20373] [9]
LDH-C Fundulus heteroclitus killifish [Swiss-Prot:Q06176] [51]
LDH-A Gallus gallus chicken [Swiss-Prot:P00340] [52]
LDH-B Gallus gallus chicken [Swiss-Prot:P00337] Tsoi et al. 1998 unpublished
LDH-A Helobdella robusta segmented worm gi 115469 unpublished
LDH-B Helobdella robusta segmented worm gi 156879 unpublished
LDH-C Helobdella robusta segmented worm gi 166102 unpublished
LDH-A Homo sapiens human [Swiss-Prot:P00338] [53]
LDH-B Homo sapiens human [Swiss-Prot:P07195] [54]
LDH-C Homo sapiens human [Swiss-Prot:P07864] [55]
LDH-A Hordeum vulgare barley [Swiss-Prot:P22988] [20]
LDH-B Hordeum vulgare barley [Swiss-Prot:P22989] [20]
LDH Litomosoides sigmodontis nematode [GenBank:DN558179] Gregory W. 1995 unpublished
LDH-A Monodelphis domestica gray short-tailed opossum [Swiss-Prot:Q9XT87] Tsoi et al. 1998 unpublished
LDH-B Monodelphis domestica gray short-tailed opossum [Swiss-Prot:Q9XT86] Tsoi et al. 1998 unpublished
LDH-A Mus musculus house mouse [Swiss-Prot:P06151] [56]
LDH-B Mus musculus house mouse [Swiss-Prot:P16125] [57]
LDH-C Mus musculus house mouse [Swiss-Prot:P00342] [58]
LDH Petrolisthes cinctipes flat porcelain crab [GenBank:FE768558FE768559] [35]
LDH Petromyzon marinus sea lamprey [Swiss-Prot:P33571] [10]
LDH-A Squalus acanthias spiny dogfish [Swiss-Prot:P00341] [59]
LDH-B Squalus acanthias spiny dogfish [Swiss-Prot:Q9YI05] [60]
LDH Strongylocentrotus purpuratus purple urchin [GenBank:XP_001196488] unpublished
LDH Styela plicata tunicate [Swiss-Prot:O44340] [7]
LDH Tribolium castaneum red flour beetle [GeneBank:XM_963110] unpublished
LDH-A Xenopus laevis African clawed frog [Swiss-Prot:P42120] [11]
LDH-B Xenopus laevis African clawed frog [Swiss-Prot:P42119] [11]
LDH-C Xenopus laevis African clawed frog [Swiss-Prot:P42121] [11]
LDH Zea mays maize [Swiss-Prot:P29038] [61]

1.1.2.4
Arabidopsis thaliana mouse-ear cress [GeneBank:NM_120741] unpublished
Bos taurus cattle [Swiss-Prot:Q148K4] Moore et al. 2006 unpublished
Caenorhabditis elegans nematode [GeneBank:NP_001023872] unpublished

DLD1 Candida sphaerica yeast [Swiss-Prot:Q12627] [62]
Canis familiaris dog [GeneBank:XP_852976] unpublished
Ciona intestinalis tunicate gi: 289925 unpublished
Capitella capitata segmented worm gi: 177524 unpublished
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05CH11231; W-7405-ENG-36. Additional analyses of the Daphnia genome 
sequence were performed by wFleaBase, developed at the Genome Infor-
matics Lab of Indiana University with support to D. Gilbert and J. Col-
bourne. The crab sequence was generated by the Joint Genome Institute, 
2006 Community Sequencing Program.
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Tetraodon nigroviridis Green puffer [Swiss-Prot:Q4T6R2] [65]
Xenopus laevis African clawed frog [Swiss-Prot:A1L2R0] [66]

Table 1: List of sequences included in the phylogenetic analyses. (Continued)
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