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Abstract
Background: Dispersal between habitat patches is a key process in the functioning of
(meta)populations. As distance between suitable habitats increases, the ongoing process of habitat
fragmentation is expected to generate strong selection pressures on movement behaviour. This
leads to an increase or decrease of dispersal according to its cost relative to landscape structure.
To limit the cost of dispersal in an increasingly hostile matrix, we predict that organisms would
adopt special dispersal behaviour between habitats, which are different from movements associated
with resource searching in suitable habitats.

Results: Here we quantified the movement behaviour of the bog fritillary butterfly (Proclossiana
eunomia) by (1) assessing perceptual range, the distance to which the habitat can be perceived, and
(2) tracking and parameterizing movement behaviour within and outside habitat (parameters were
move length and turning angles distributions). Results are three-fold. (1) Perceptual range was < 30
m. (2) Movements were significantly straighter in the matrix than within the habitat. (3) Correlated
random walk adequately described movement behaviour for 70% of the observed movement paths
within habitat and in the matrix.

Conclusion: The perceptual range being lower than the distance between habitat patches in the
study area, P. eunomia likely perceives these habitat networks as fragmented, and must locate
suitable habitats while dispersing across the landscape matrix. Such a constraint means that
dispersal entails costs, and that selection pressure should favour behaviours that limit these costs.
Indeed, our finding that dispersal movements in the matrix are straighter than resource searching
movements within habitat supports the prediction of simulation studies that adopting straight
movements for dispersal reduces its costs in fragmented landscapes. Our results support the
mounting evidence that dispersal in fragmented landscapes evolved towards the use of specific
movement behaviour, different from explorative searching movements within habitat.

Published: 22 January 2007

BMC Evolutionary Biology 2007, 7:4 doi:10.1186/1471-2148-7-4

Received: 03 August 2006
Accepted: 22 January 2007

This article is available from: http://www.biomedcentral.com/1471-2148/7/4

© 2007 Schtickzelle et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 15
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17241457
http://www.biomedcentral.com/1471-2148/7/4
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Evolutionary Biology 2007, 7:4 http://www.biomedcentral.com/1471-2148/7/4
Background
Dispersal, the movement of organisms between spatial
units of habitat, is an essential life-history trait shaping
the characteristic texture of populations, communities
and ecosystems in space and time. Despite the numerous
books and papers on the subject ([1-6] among several oth-
ers), dispersal remains one of the least understood factors
in evolutionary biology, especially the behavioural mech-
anisms that underlie this complex phenomenon [7].

Dispersal has been defined as a three-stage process: (1)
emigration (crossing habitat boundaries), (2) travelling
through a more or less hostile landscape matrix, and (3)
immigration (settlement in a new habitat) [8]. When the
degree of habitat fragmentation increases, the distances to
be covered through the landscape increase as well, which
may result in dispersal-related deferred costs (i.e. lower
fitness of immigrants due to loss of time and energy dur-
ing travel in the matrix) or even mortality (e.g. [9,10]).
Hence, we may predict that behavioural responses have
evolved to limit costs and risks of dispersal. Indeed,
empirical studies show that organisms are more reluctant
to cross the border of the habitat (i.e. where they find
resources to complete their life cycle) in fragmented land-
scapes (e.g. [11,12]). This was particularly clear in our
study species, the bog fritillary butterfly (Proclossiana euno-
mia), a habitat specialist species restricted to unfertilized
alluvial wet meadows and peat bogs [13,14]. This behav-
ioural response affects the first stage of dispersal, i.e. emi-
gration.

Changes in behaviour during travel in the matrix, the sec-
ond stage of dispersal, can be another adaptive answer to
reduce the cost of dispersal. We recently suggested that
dispersal can be realized in two ways: as a by-product of
routine movements associated with resource exploitation
(like foraging or mate-searching) with high levels of
returning, or as special, fast and directed movements
designed for net displacement [7]. We also predict that the
latter, directed flight behaviour should occur more fre-
quently in fragmented landscapes as it allows maximizing
the probability to end up in another unit of habitat by
limiting travelling time across the landscape matrix (e.g.
[13,15,16]). A simulation model [17] predicts that evolu-
tion towards straighter movement paths is to be expected
both when (1) dispersing individuals travel through a
more hostile landscape and (2) inter-habitat distances
increase. Several empirical studies show variation in dis-
persal behaviour relative to landscape structure (e.g. [18-
27]). Most of those studies investigated dispersal in the
landscape without reference to movement behaviour
within the habitat (but see [28]) and there are only few
quantitative analyses.

In this paper, we test for differences between movement
behaviour within habitat and outside habitat (i.e. in the
matrix) in two habitat networks of southern Belgium (Fig-
ure 1), one largely fragmented (denoted FRAG), the other
more aggregated (denoted AGGREG). Assuming that spe-
cialist butterflies perceive their environment as frag-
mented (i.e. individuals are not able to perceive other
suitable habitat patches when they leave their current
patch), we hypothesize that dispersal movements in the
matrix are relatively straight whereas search movements
when foraging within habitat are rather tortuous. Habitat
fragmentation in the study area occurred since > 50 years
or butterfly generations [29]. Such a time frame allows
evolutionary changes to habitat fragmentation in flying
insects [30].

Experimental evidence indicates that butterflies respond
to visual and/or olfactory cues to locate landscape ele-
ments and to detect suitable habitat [31]. We first quanti-
fied the distance component of the perceptual range (i.e.
the distance at which the habitat is detected: [32,33]) to
test the assumption that the study landscapes were per-
ceived as fragmented by P. eunomia butterflies. Next, we
recorded movement paths of butterflies in the matrix and
compared movement parameters to those previously
recorded within habitat [14], to test our prediction that
movements are straighter in the matrix. Finally, we
assessed whether movement behaviour in the matrix may
be adequately described by a correlated random walk.
This would allow the use of simulation models of move-
ment to predict dispersal at the metapopulation level.

Results
Perceptual range
We measured perceptual range by assessing the maximum
distance at which butterflies could orientate towards the
habitat when released in the matrix (i.e. outside suitable
habitat). P. eunomia adults (both males and females)
showed a highly significant response to return into the
habitat patch when released at 15 m of the patch. This
response completely vanished at wider distance: at 30 and
60 m of the patch they flew at random in all directions
(Figure 2). Perceptual range of P. eunomia was therefore
estimated to be below 30 m.

Movement behaviour
Adults were tracked individually to record movement
paths. Every stop or turn was marked by a numbered flag,
and coordinates mapped by triangulation. Movements
were approximated as sequences of straight lines moves
and turning angles (Figure 3). In the habitat (data pub-
lished in [14]), we recorded 17 female paths (223 posi-
tions) in FRAG and 36 female paths (524 positions) in
AGGREG. In the matrix (new data collected for the
present study), we recorded 42 male paths (625 posi-
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tions) in FRAG, 15 male paths (117 positions) and 15
female paths (155 positions) in AGGREG. Differences in
numbers mainly reflect different weather conditions
affecting sampling opportunities via their effect on butter-
fly abundance (highly variable from year to year: [34])
and responsible for tracking interruptions.

Movement parameters in habitat and matrix
Whatever the habitat type and the landscape, movement
parameters fit the same distribution: a lognormal distribu-
tion for move length (Figure 4, Table 1), with frequent
short and rare long moves between successive stops/turns,
and a symmetrical around zero von Mises distribution for
turning angle (Figure 5, Table 2): butterflies did not show
a preference for left or right turns and made more often
small than large turns.

Moves were on average twice as long in the matrix as in
the habitat (Figure 4, Table 1). They were similar for FRAG
and AGGREG within habitat, but slightly longer and more
variable in FRAG matrix than in AGGREG matrix. More

importantly, there was an obvious difference of path line-
arity between matrix and habitat: (1) the concentration
parameter K was much higher in the matrix while nearly
absolutely identical in the two networks (Figure 5, Table
2); (2) the fractal dimension was lower in the matrix while
here again nearly identical in FRAG and AGGREG (Table
3); and (3) for a given number of moves, the net displace-
ment was larger in the matrix (Figure 6).

Goodness-of-fit to correlated random walk
There were no differences in the frequency of departures
from Correlated Random Walk (CRW) between FRAG
and AGGREG, nor between habitat and matrix (Fisher's
exact test all P > 0.05). Overall, the majority of the paths
(around 70% in both habitat types) were well described
by CRW, only 3% (4/125, 1 in habitat and 3 in matrix) are
underpredicted by CRW (too straight movements), 26%
(32/125, 16 in habitat and 16 in matrix) overpredicted by
CRW (returns towards a previously visited area, mainly
due to the existence of some boundaries to dispersal, like
tree lines). CRW is an adequate description of movement

Map of the study sites in southern BelgiumFigure 1
Map of the study sites in southern Belgium. Favourable habitat (wet meadows or peat bogs with Polygonum bistorta) is 
delineated in grey; the rest of the landscape is unsuitable and called the matrix. Patches 1 and 9 did not exist in the AGGREG 
network at the time of previous studies of P. eunomia, including the within-habitat movement study [14].
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Orientation of butterflies towards the habitatFigure 2
Orientation of butterflies towards the habitat. Starting direction of butterflies released in the AGGREG landscape 
matrix (i.e. outside habitat) at 15, 30 and 60 m of the habitat. Each dot represents one release (30 releases per distance and 
sex); lines around the 0° (arrow) delimit the angles directed towards the habitat patch. O: observed numbers of individuals ori-
entating towards the patch; E: expected numbers under hypothesis of random starting direction; P: p-value for the one-tailed 
binomial test of orientation towards the habitat patch vs. random [54 p. 533]. No female was released at 60 m to limit the 
impact of lost females on reproduction rate in this protected and threatened species.
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paths both within and outside habitat; differences in line-
arity are achieved by distributions of move length and
turning angle differing between habitat and matrix.

Discussion
Our results support four main conclusions. (1) The per-
ceptual range of P. eunomia is relatively low. Hence, it con-
firms the assumption that butterflies perceived both
habitat networks as fragmented. (2) The behavioural
nature of movements differs significantly between habitat
and matrix: butterflies were found to fly straighter (longer
distances, smaller turns) in the matrix (Figure 6). (3)
Movements differed between FRAG and AGGREG land-
scapes in the matrix, but not within habitat. (4) Move-
ment behaviour can be adequately modelled by a
correlated random walk (CRW), both within habitat and
in the matrix.

Perceptual range is low
Our experiments indicated a relatively low perceptual
range in P. eunomia, between 15 and 30 m only. As a con-
sequence, both the FRAG and AGGREG landscapes arise
as fragmented habitat networks for these butterflies, i.e.
individuals are not able to perceive other suitable habitat
patches when they leave their current patch. This percep-
tual range is in agreement with the few other studies exist-
ing on butterflies: 10–22 m in Icaricia icarioides fenderi
[12], a few meters in Pieris napae [35], 8 m in Phoebis sen-
nae and Eurema nicippe [36]. Of course, our experiment
does not allow discriminating between the two alterna-
tives that butterflies were unable or unmotivated to orien-
tate towards the habitat patch. Indeed, we observed some
butterflies flying towards a habitat patch from a distance
longer than 30 m, but this may be done by chance only.
The finding that orientation towards habitat patch is done
from a distance far lower than the distance individuals are
able to disperse successfully -P. eunomia is able to disperse

between relatively distant patches (> several kilometres:
[13,37,38])- has also been observed in Euphydryas editha
bayensis [39], and Pararge aegeria [40]. If habitat detection
is visually cued, this is in line with the 20–30 m distance
of large object detection predicted from optical properties
of butterfly eyes [41]. Alternatively, olfactory clues may be
used to orientate towards habitat. Both senses can also be
involved [42,43]. Navigation clues used during dispersal
require further mechanistic research, as well as parallel
studies on perceptual range of species with different hab-
itat requirements.

Dispersal flights in the matrix are straighter movements 
than search flights within habitat
Both networks being perceived as fragmented by butter-
flies, selection pressure due to costs of dispersal are likely
to occur. We showed previously that mortality during dis-
persal was higher in FRAG than in AGREG [13,14]. There-
fore, we predicted the use of specific dispersal behaviours
limiting these costs. Accordingly, within-habitat move-
ments differed from those in the matrix. Several lines of
evidence showed that paths were relatively straight in the
matrix while largely tortuous within habitat. The same
conclusion was drawn for both FRAG and AGGREG land-
scapes, and these two landscapes present similar path lin-
earity for a given environmental condition (habitat or
matrix). This observation is in line with the view of [7]
that special dispersal movements may differ behaviour-
ally from routine, explorative movements associated with
resource (food, mate, etc.) searching. Our results are also
in line with predictions of simulation models [17], where
relatively straight CRWs have been shown to be among
the best search strategies to find habitat patches over long
distances in fragmented landscapes, especially when per-
ceptual range is small compared to the average between-
patch distance. It is worth noting that in landscapes where
habitat patches are highly aggregated, the reverse is
expected: more tortuous movements are expected to
increase dispersal success [17,44].

Moves in matrix are longer in the more fragmented 
landscape
Differences in movement behaviour between FRAG and
AGGREG landscapes were clearly small compared to
those between matrix and habitat. We previously showed
that movements did not differ between landscapes within
habitat, except for behaviour at habitat patch boundaries
[14]. The present results complete the picture for move-
ments in the matrix: linearity was similar in the two land-
scapes but moves were longer in FRAG. This latter result
might be related to fragmentation level (higher in FRAG)
and the nature of the matrix (more hostile in FRAG). We
have previously shown that mortality during dispersal was
higher than mortality within habitats [13,14], which
should favour individuals with a higher dispersal success,

Schematic representation of a movement pathFigure 3
Schematic representation of a movement path. 
Movement paths are approximated by a sequence of straight 
line moves and turning angles. Li: length of the ith move; θi: 
turning angle between moves i and i + 1.
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Distributions of move lengthFigure 4
Distributions of move length. Distribution of move length for movements within habitat and in the matrix in the two land-
scapes, showing that movements were longer and straighter in the matrix. Black: observed (a few observations longer than 50 
m in the matrix have been omitted). Grey curve: fitted lognormal distribution with mean µ and variance σ2.
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notably through longer and straighter moves as discussed
above. On the other hand, there is a growing body of evi-
dence that variation in landscape heterogeneity affects
movement behaviour in animals, including butterflies
(e.g. [23,24,26,45-48]). Nevertheless, we acknowledge
that, given the present experimental design with one rep-
licate per fragmentation level (often inevitable in prac-
tice), this difference between FRAG and AGGREG
matrices (and only this one) could also be due to another
particular difference between landscapes.

Movement behaviour of P. eunomia can be adequately 
modelled as a correlated random walk
Movement behaviour could be adequately modelled in
70% of the cases by a correlated random walk (CRW) with
lognormal move length and von Mises (circular normal)
turning angles; these distributions are environment-spe-
cific (matrix vs habitat) (Figure 4, Figure 5), which allows
modelling both tortuous movements in the habitat and
straight movements in the matrix under the same CRW
framework. The most frequent departures from CRW were
caused by disruptions in the path due to the presence of
some barriers to dispersal (e.g. habitat patch boundaries
in habitat, tree lines in matrix), which reflect individuals
towards their point of origin [14]. These departures do not
alter the adequacy of CRW to model movement in barrier-
free zones.

Conclusion
Dispersing individuals suffer costs from mortality, or fit-
ness depletion due to a loss of time and energy on the way

between habitats. Those costs are expected to shape adap-
tive answers on dispersal behaviours in highly fragmented
landscapes where distance between suitable habitats
increases. We showed previously that dispersal propen-
sity, i.e. the probability that an individual decided to cross
habitat boundaries to engage the dispersal process,
decreased according to the fragmentation level of the
landscape. This was proved to be associated with an
increase in the mortality risk associated to dispersal. Here
we show that dispersal in two fragmented landscapes was
achieved by special directed movements significantly
straighter and longer than those movements that are asso-
ciated with resource searching within habitat. We showed
previously that even if the overall dispersal mortality was
higher in fragmented than in continuous landscapes, for a
given patch connectivity mortality was lower in more frag-
mented landscapes [13]. This is likely associated to the use
of straighter flight in the matrix, a good strategy to
improve dispersal success.

Methods
Species
The bog fritillary (Proclossiana eunomia ESPER) is a habitat
specialist butterfly living in unfertilized alluvial wet mead-
ows and peat bogs. In Western Europe, these are the only
places where the unique food plant of larvae and adults
(the bistort Polygonum bistorta L.) grows in reasonable den-
sities [49,50]. Modern land-use has transformed consider-
able amounts of former habitat into improved or
overgrown pastures, or into spruce plantations. Conse-
quently, the amount of remaining suitable habitat

Table 1: Statistical tests of differences in move length (log-transformed) for habitat vs matrix and FRAG vs AGGREG.

Test 1: Goodness-of-fit for lognormal distribution: D (P)

FRAG AGGREG Pooled
Habitat 0.050 (> 0.150) 0.018 (> 0.150) 0.023 (> 0.150)
Matrix 0.024 (> 0.150) 0.056 (0.067) 0.029 (0.087)

Test 2: Equality of means µ: 2-way ANOVA
Factor F1;1515 P

Habitat type 295.33 < 0.0001
Landscape 10.04 0.002
Interaction 0.17 0.677

Test 3: Equality of variances σ2: Bartlett: χ1
2 (P)

FRAG AGGREG Pooled
Habitat 3.061 (0.080) 129.900 (< 0.0001)
Matrix 16.928 (< 0.0001)

Note: Test numbers refer to Table 4, where more details on tests and references are available. Legend of table content is given in corresponding 
test title. While it is possible to obtain full test of the two factors and their interaction at once for µ using 2-factor ANOVA, there is no such test 
for σ2. Therefore, in this case, we decided to compare groups in two steps: first the landscape comparing FRAG vs AGREGG for each habitat type 
separately, then the environment type (our major interest) comparing habitat patch vs matrix on landscape-pooled data.
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Distributions of turning angleFigure 5
Distributions of turning angle. Distribution of move length for movements within habitat and in the matrix in the two land-
scapes, showing that movements were straighter (smaller turning angles) in the matrix. Black: observed (kernel density esti-
mate using h = 0.5*h0, i.e. a kind of moving average: [53] p. 24 ff). Grey curve: fitted von Mises (i.e. circular normal) distribution 
with mean m and concentration K.
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decreased and the degree of fragmentation increased [29].
It is a vulnerable species in Western Europe and is legally
protected in the study area (Wallonia, S-Belgium).

Study systems
P. eunomia occurs as metapopulations in the Plateau des
Tailles upland in southern Belgium [38]. We previously
selected two habitat networks showing different levels of
fragmentation to study the movement behaviour within
suitable habitat [14] (Figure 1). The fragmented network
(FRAG) is the Prés de la Lienne nature reserve, where P.
eunomia has a metapopulation distributed among nine
habitat patches (in total c. 2.3 ha of suitable habitat) in a
highly fragmented landscape. The edge-to-edge mean
inter-patch distance to closest neighbour is 54 m with a
range of 5–222 m [34,37]. The more aggregated network

(AGGREG) is situated in the Pisserotte nature reserve. It
sustains a metapopulation distributed among nine habi-
tat patches (c. 2.5 ha of suitable habitat; mean edge-to-
edge inter-patch distance to closest neighbour 23 m, range
13–37 m) in a natural and relatively undisturbed peat
bog. The main difference between the two sites lies in the
fragmentation level (higher in FRAG) and the nature of
the matrix: cultivated land in FRAG (mainly fertilized pas-
tures), natural vegetation in AGGREG (areas of the peat
bog that lack the host plant). Both networks are isolated
from other metapopulations in the landscape [13].

Measuring perceptual range
We measured perceptual range (sensu Euclidian detection
distance: [33]) by assessing the maximum distance at
which butterflies could orientate towards the habitat; this

Table 3: Statistical tests of differences in fractal dimension for habitat vs matrix and FRAG vs AGGREG.

FRAG AGGREG Pooled

Habitat 1.2641 (1.2318–1.2965) 1.2882 (1.2343–1.3422) 1.2805 (1.2431–1.3180)
Matrix 1.1525 (1.1318–1.1732) 1.1576 (1.1346–1.1806) 1.1546 (1.1396–1.1696)

Note: Significance is determined by no overlap of 95% confidence interval (given into brackets)

Table 2: Statistical tests of differences in turning angle for habitat vs matrix and FRAG vs AGGREG.

Test I: Uniform vs unimodal distribution with mean m = 0: R (P)

FRAG AGGREG Pooled
Habitat 0.195 (0.0002) 0.196 (< 0.0001) 0.196 (< 0.0001)
Matrix 0.509 (< 0.0001) 0.533 (< 0.0001) 0.516 (< 0.0001)

Test II: Symmetrical distribution around 0: W+ (P)

FRAG AGGREG Pooled
Habitat -0.207 (0.836) 1.442 (0.149) 1.009 (0.313)
Matrix 0.295 (0.768) 0.900 (0.368) 0.797 (0.425)

Test III: Goodness-of-fit for von Mises distribution: U2 (P)

FRAG AGGREG Pooled
Habitat 0.045 (0.200) 0.056 (0.100) 0.039 (0.300)
Matrix 0.032 (> 0.500) 0.094 (0.035) 0.036 (> 0.500)

Test IV: von Mises mean m = 0: En (P)

FRAG AGGREG Pooled
Habitat -0.775 (0.438) -0.605 (0.545) -0.929 (0.353)
Matrix 0.609 (0.542) -0.652 (0.514) 0.174 (0.862)

Test V: Equality of von Mises concentrations K: fr (P)

FRAG AGGREG Pooled
Habitat 0.127 (0.722) 10.821 (< 0.0001)
Matrix 0.132 (0.725)

Note: Test numbers refer to Table 5, where more details on tests and references are available. Legend of table content is given in corresponding 
test title.
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Maps of selected paths in AGGREG illustrating the main findingsFigure 6
Maps of selected paths in AGGREG illustrating the main findings. The major conclusion is that butterflies made tortu-
ous paths (small moves interrupted by frequent and large turns) when flying within habitat (path 1), but flew straighter (long 
moves, small turns) in the matrix (paths 4, 5 and 6). Path 2 shows the tendency to return into the patch after having crossed 
the habitat patch boundary [14]. Path 3 resulted from a spontaneous flight (without experimental manipulation) and illustrates 
that experimental artefacts due to manipulation were very unlikely the cause for straighter paths in the matrix (see Methods 
for details). Path 4 illustrates the return to a suitable habitat patch, with the last turn at a distance of c. 25 m from the patch, 
well around the estimate of perceptual range. Grey: habitat patches; +: release site in the matrix.
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experiment was conducted during the 2004 flight season
(June). Adults were netted one at a time, kept in the net
and released a few minutes later in the matrix at 15, 30
and 60 m of the habitat patch. Butterflies were carefully
placed on a natural substrate. Usually, they spent some
time basking before taking off spontaneously. Several pre-
cautions were taken to ensure the reliability of measure-
ments and prevent artefacts that could originate from
three sources. (1) Releases were done only when weather
conditions were favourable, i.e. when many butterflies
were observed flying; weather conditions (air temperature
and wind speed) during releases were recorded and
proved not to influence orientation nor differ between
release distances (not shown). (2) Releases were rand-
omized between sexes and distances to prevent confusion
of these factors with weather conditions. (3) Butterflies
were marked to control for pseudoreplication arising from
the repeated use of the same individuals.

The overall starting flight direction (averaged during the
first 5 m) of each individual was recorded using a com-
pass. Orientation ability at a given distance from the hab-
itat was inferred when the proportion of butterflies
starting towards the habitat patch was significantly higher
than expected if they would fly randomly. The expected
number of butterflies starting towards the patch under the
hypothesis of no orientation was computed as the
number of releases (30) times the proportion of the circle
oriented towards the patch, and compared to the observed
number using Chi square tests.

Mapping and quantifying movement behaviour
Each adult was followed until it was lost from sight or
rested for 15 min. Every stop or turn was marked by a
numbered flag. During tracking, disturbance was avoided
by following the butterflies from a distance. Adults are
only rarely observed leaving a patch of habitat. Therefore
to record sufficient numbers of flight paths in the matrix,
adults were netted in a habitat patch nearby and immedi-
ately released in the matrix using the same standard
method as for measuring perceptual range; the same
requirements of favourable weather conditions were
applied.

Coordinates of all the stops/turns in each path were sub-
sequently determined by triangulation using measured
distances to three reference points of known coordinates.
To allow a quantitative statistical analysis of movement
parameters, flight paths were represented as sequences of
straight-line moves (between two consecutive turns/
stops) and associated turning angles (Figure 3). This is
widely used to represent animal movements in random
walk models ([51] and references therein). Analysis was
done with two major aims: (1) estimation and compari-
son of movement parameters between the habitat and the

matrix, and (2) goodness-of-fit (GOF) test to correlated
random walk (CRW). Unless otherwise specified, all data
management and analyses were done using SAS software
with home-written programs [52].

Estimation and comparison of movement parameters in habitat and 
matrix
Three path variables were analyzed: move length, turning
angle (direction and amplitude), and path linearity. Move
length and turning angles were pooled for all paths of a
group and analyzed by statistical methods appropriate for
linear [53,54] and circular data ([55] and references
therein; see also [54] chapters 26–27), respectively (See
Table 4 and Table 5 for a full description of the tests and
references). Firstly, we assessed the GOF to a specific dis-
tribution: lognormal for move length, von Mises for turn-
ing angle (i.e. the circular equivalent of the Normal
distribution for linear quantities: [[55] p. 48–56]). Sec-
ondly, we tested for equality of distribution moments
between groups: mean µ and variance σ2 of log-trans-
formed move-length, mean m and concentration K of
turning angle (K is analogous to the variance of a linear
distribution but varies inversely: with higher K, angles are
more concentrated around the mean). The third variable
to be analyzed, the linearity (or inversely the "tortuous-
ity") of the path, was evaluated by the fractal dimension d
(a straight line has d = 1, and d increases as the linearity of
the path decreases: [56]) using the VFractal software [57].

Goodness-of-fit (GOF) to correlated random walk
To test for the GOF to correlated random walk (CRW), we
used another measure of linearity: the net squared dis-
placement (i.e. square of the distance between position
after n moves and starting point: R2

n; [51,58]). The more
linear the path, the steeper is the increase of R2

n with n.
Using a bootstrap procedure [59] based on 1000 simula-
tions per path, we assessed whether each path could be
explained by specific movement rules defining CRW:
move length follows a lognormal distribution and turning
angle follows a von Mises distribution, both with param-
eters estimated in homogeneous groups of paths defined
by the analysis of these variables. If R2

n is significantly too
small, it indicates the tendency to return (i.e. barrier effect
on movement), whereas a R2

n that is significantly too high
indicates a movement straighter than average CRW.

Assessment of possible artefacts due to experimental design
As far as experimental design is concerned there is a clear
trade-off for experimental evolutionary ecological field
studies between rarity/threat status of study species and
the experimental freedom or flexibility. Several research-
ers opt for working with common species that easier allow
a balanced experimental design in the field. However, we
share the view of [60] that studies on rare species are nev-
ertheless important to ecological and evolutionary theory.
Page 11 of 15
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In particular, P. eunomia is a narrow habitat specialist,
making it more reliable to define habitat and non-habitat.
This is, however, often more difficult -but frequently
neglected- in more common species that find ample but
often dispersed resources across the landscape matrix
[61]. Hence, a perfect experimental design but a less relia-
ble distinction of habitat vs non-habitat categories dem-
onstrates that even then some weakness may remain in
such a study. The issue of habitat vs matrix is extremely
clear-cut in the case of our study species P. eunomia [62].

P. eunomia is a threatened and protected species of clear
conservation concern that is mainly confined to nature
reserves in our study area [49,50]. This status limits the
application of some potentially harmful experiments. As
in all our previous studies on P. eunomia, we decided to
minimise harmful experiments when we were intimately
convinced that the knowledge we had on the species
would allow maintaining the high quality standard we
require with less harmful experiments, even if those were
suboptimal in terms of experimental design. We therefore
address here potential artefacts in our experimental
design, and discuss why these were inevitable in the
present field study though unlikely to confound our con-
clusions. Potential artefacts relate to (1) the flight motiva-

tion of butterflies outside suitable habitat and the
possible influence of netting and translocating, (2) the
potential of sex-related biases in the observations, (3) the
recording of turns and not only stops in the matrix, and
(4) the comparison of data recorded in different years.

Individuals released outside habitat were netted and
induced to fly whereas they were not necessarily moti-
vated to do so. Hence, one could argue that the results do
not reflect natural dispersal behaviour. Butterflies leave
only rarely habitat patches during observation sessions at
habitat borders. This was in any case far too rare to allow
proper statistical analysis. Although netting and releasing
may in principle have caused changes in individual
behaviour ([63], but see e.g. [64]), we argue, based on our
long-term experience with butterfly behaviour after cap-
ture (15 years for P. eunomia in the Prés de la Lienne study
site: [13] and references therein), that this was at the
utmost limited. For instance during capture-mark-recap-
ture studies, some individuals were netted several times
within a timeframe of a few minutes as it was not possible
to detect any behavioural difference between recently
caught and other individuals. In some other butterfly spe-
cies, escape behaviour has occasionally been observed
after being marked, while in again some others there is

Table 5: Statistical tests of differences in turning angle between males and females.

Null hypothesis tested Test name Test statistic P Reference*

Test Ia Uniform vs unimodal distribution with mean m = 0: 
females

Modified Rayleigh test for 
uniformity against a unimodal 

alternative with mean = 0

R = 0.602 < 0.0001 [55] (p. 69)

Test Ib Uniform vs unimodal distribution with mean m = 0: 
males

R = 0.433 < 0.0001

Test IIa Symmetrical distribution around 0: females Wilcoxon signed-rank test W+ = 0.747 0.455 [55] (pp. 80–81)
Test IIb Symmetrical distribution around 0: males W+ = 0.154 0.877
Test IIIa Goodness-of-fit for von Mises distribution: females Watson's U2 U2 = 0.115 0.020 [69]†
Test IIIb Goodness-of-fit for von Mises distribution: males U2 = 0.070 0.085
Test IVa von Mises mean m = 0: females Unnamed specific test En = -0.182 0.856 [55] (pp. 93–94)
Test IVb von Mises mean m = 0: males En = -0.782 0.434
Test V Equality of von Mises concentrations Ki between 

sexes
Fisher fr; p value estimated by 

permutation test
fr = 3.861 0.052 [55] (pp. 131–132)

* Original and complementary references can be found there.
† [55] (p. 84) presents a mistake.

Table 4: Statistical tests of differences in move length between males and females.

Null hypothesis tested Test name Test statistic P Reference*

Test 1a Goodness-of-fit for lognormal 
distribution: females

Kolmogorov-Smirnov D = 0.071 0.083 [53] (pp. 708–715)

Test 1b Goodness-of-fit for lognormal 
distribution: males

D = 0.054 > 0.150

Test 2 Equality of means µi between sexes 1-way ANOVA (on log-transformed move 
length)

F1;240 = 0.58 0.449 [53] (pp. 272–320)

Test 3 Equality of variances σ2
i between sexes Bartlett (on log-transformed move length) χ1

2 = 2.11 0.146 [53] (pp. 396–401)

* Original and complementary references can be found there.
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often a substantial recovery period in the vegetation after
being marked [65,66]. Moreover, we did also observe a
few P. eunomia individuals flying naturally in the matrix,
of which two were recorded when tracking butterflies
within AGGREG habitat [14], as they started in the habi-
tat. The flight behaviour of these "free flying" butterflies,
which were neither netted nor translocated, was in all
aspects similar to the behaviour of released ones (see path
3 on Figure 6); but too few such paths were available to
allow statistical testing to confirm the similarity.

In the habitat, only females were tracked because of the
biological importance of female movements spreading
eggs: in such a polygynous species the reproduction rate in
the population mainly depends on laying rate by females,
male abundance being likely a non-limiting factor [14]. In
the matrix, both sexes were tracked in AGGREG, while
only males were tracked in FRAG to avoid a significant
impact on reproduction rate in this limited population
following the potential death of females in case they were
definitely lost in the matrix after release. There was no dif-
ference between sexes in terms of movement parameters,
for both move length (Table 4) and turning angle (Table
5). Furthermore, the existing differences between habitat
and matrix were even more pronounced when the com-
parison was achieved by keeping only data for the same
sex (females in AGGREG; not shown). Hence, our com-
parison is conservative in this respect and the risk of spu-
rious effects due to the sex is considered extremely
limited.

Using stops instead of sampling at fixed time intervals is
biologically more meaningful. Each stop corresponds to a
decision made by the individual. It prevents problems of
over- or undersampling due to the choice of the time
interval between samplings [51,67]. In the matrix, we also
recorded turns because stops are too rare to allow a correct
representation of the path followed by the butterfly;
indeed, butterflies do not find reasons to stop because the
matrix is host plant, food source and mate free. Recording
turns is more subjective because it requires a decision of
the observer and may lead to oversampling when too
many small turns are considered [51]. Serial correlation
(autocorrelation) in movement parameters was tested for
each path using Pearson's correlation coefficient for move
length and circular-circular (T-linear) correlation coeffi-
cient (with P value estimated by permutation test: [55] pp.
151–153) for turning angle, using lag value from 1 to 5.
Few autocorrelations were significant: for move length
and turning angle respectively, 1 and 4/55 for FRAG
within habitat, 6 and 6/115 for AGGREG within habitat,
2 and 0/40 for FRAG outside habitat, and 9 and 4/90 for
AGGREG outside habitat. Furthermore, these few signifi-
cant autocorrelations appeared at various lags in the vari-
ous paths (not shown). Consequently, there was no

indication that the recording of turns could have biased
the data on move length and turning angles.

Finally, the path data analysed in our study were collected
in different years (all in June, during the flight season of
P. eunomia): 1994 for FRAG habitat, 2002 for AGGREG
habitat, and 2004 for FRAG and AGGREG matrix. How-
ever, as we only focused on adult behaviour, weather con-
ditions are clearly more important than any other kind of
year effect. Weather is a major determinant of butterfly
activity and behaviour [68], and varies more largely
between days of a given years than between years. By
restraining path recording to favourable weather condi-
tions, it becomes reliable to compare such data even col-
lected from different years.

Abbreviations
AGGREG: aggregated patch network (see methods); CRW:
Correlated Random Walk; FRAG: fragmented patch net-
work (see methods); GOF: Goodness-of-fit
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