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Abstract
Background: In this paper we describe an analysis of the size evolution of both protein domains
and their indels, as inferred by changing sizes of whole domains or individual unaligned regions or
"spacers". We studied relatively early evolutionary events and focused on protein domains which
are conserved among various taxonomy groups.

Results: We found that more than one third of all domains have a statistically significant tendency
to increase/decrease in size in evolution as judged from the overall domain size distribution as well
as from the size distribution of individual spacers. Moreover, the fraction of domains and individual
spacers increasing in size is almost twofold larger than the fraction decreasing in size.

Conclusion: We showed that the tolerance to insertion and deletion events depends on the
domain's taxonomy span. Eukaryotic domains are depleted in insertions compared to the overall
test set, namely, the number of spacers increasing in size is about the same as the number of
spacers decreasing in size. On the other hand, ancient domain families show some bias towards
insertions or spacers which grow in size in evolution. Domains from several Gene Ontology
categories also demonstrate certain tendencies for insertion or deletion events as inferred from
the analysis of spacer sizes.

Background
Proteins evolve through gene duplication, diversification
and domain shuffling, which allow novel proteins to
emerge via different domain combinations. Many evolu-
tionary mechanisms shaping protein sequence and struc-
ture can be probed by studying the length distributions of
proteins and protein domains. Fusion of single domain
proteins and domain accretion, for example, play an
important role in the evolution of eukaryotic proteins [1-
3]; as a result eukaryotic proteins on average are longer
than bacterial and archaeal proteins [4-6]. Moreover, it

was shown previously that there exists a correlation
between sequence length and protein conservation [7,8],
sequence length and protein expression [9].

Diverse multi-domain proteins may consist of homolo-
gous domains and knowledge of protein domain evolu-
tion may considerably help in reconstructing the
evolutionary history of entire proteins. Changes in pro-
tein domains result mostly from point mutations, inser-
tion and deletion processes. Although amino acid
insertion and deletion (indel) events in proteins are less
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frequent than amino acid substitutions [10-12], they can
have a major effect in metazoan protein evolution and
indel bias can influence the overall genome size [13-15].
It has been observed that indels most often occur in non-
conserved protein loop regions. While proteins seem to be
rather tolerant to indels in loops compared to core struc-
ture elements, protein loops can not be viewed as "ran-
dom coils" and indels are under constant evolutionary
pressure [16]. At the same time, indels can relax structural
tension occurring due to amino acid substitutions in
some proteins and can lead to significant structural
changes [17].

The mechanisms of indel events are not very well under-
stood and there are only few statistical models describing
these events in evolution [18-20]. Traditionally, indels in
sequence alignments are scored using affine gap penalties
despite the fact that this model does not adequately
describe the evolution of insertions and deletions. In par-
ticular, the empirical distribution of indel lengths was
analyzed for the alignment of closely related proteins and
it was shown that it can be well approximated by the Zip-
fian distribution [10,21,22]. It has also been found that
the probability of a gap in the alignment of two homolo-
gous sequences depends on the evolutionary distance and
there exists a strong relationship between the evolutionary
distance and the indel lengths [10,11].

In this paper we analyze the size evolution of whole pro-
tein domains and indels in protein domains, as judged by
changing sizes of whole domains or individual unaligned
regions. We study intra-domain events which are not
affected by domain shuffling and domain accretion in
multidomain proteins. To examine these events on a wide
scale of evolutionary distances we use the Conserved
Domain Database (CDD) [23] that provides accurate
domain alignments of diverse sequences. We are inter-
ested in whether the insertion and deletion events in pro-
tein domains as a whole or in individual fragments are
balanced and if there exist trends toward increasing or
decreasing indel or domain lengths. To answer these ques-
tions, we perform an extensive analysis of protein domain
families spanning a wide range of different taxonomic and
functional categories. The answers which we provide in
this paper give the means to model indel events in the
evolution of different domain families and to understand
the nature of protein domain size diversity.

Results
Domain size evolution
Protein domain size evolution was studied by examining
the correlation between the domain size (which is
inferred from the sum of the spacer lengths; block ele-
ments give a constant contribution to the size for all
sequences from the same CD family) and the evolutionary

distance from the root of the tree to a given node. We note
that there are other domain classifications [24,25] which
may define domain boundaries somewhat differently, but
none of them provides conserved domain definitions
with the block-based multiple sequence alignments nec-
essary for our study. The regression coefficients (slopes)
were calculated by approximating this dependence with
the linear model and by quantifying the rate of domain
size change in evolution in terms of the number of resi-
dues per unit of evolutionary distance. The sign of its
regression coefficient indicates the tendency of the
domain to increase/decrease in size. As a result of the cor-
relation analysis we found that 59–63% (the range is
given for two internal node mapping models) of all
domains do not show a statistically significant correlation
while for 37–41% of the domains the size does correlate
with evolutionary distance (with P-values < 0.01). Accord-
ing to the stringent multiple comparison Bonferroni test
and modified Bonferroni tests [26] the fraction of
domains with statistically significant correlations is about
19–25%. Among domain families exhibiting particularly
good linear correlations were tubulin/Ftsz (cd00286, ρ =
0.94), Phosphoribosyltransferase (cd00516, ρ = 0.77),
HMG-CoA_reductase (cd00365, ρ = -0.83) and LMWPc
(cd00115, ρ = -0.70). Two examples of positive and nega-
tive correlations are shown in Figures 1 and 2.

The first example represents the Ribonuclease A family
(cd00163, Figure 1), which shows a significant trend to
increase domain sizes (inferred from the total sizes of all
spacers in the domain alignment) (ρ = 0.57). As can be
seen from this Figure, the frog ribonucleases (red) have
the smallest domains with about 9–16 residues in spacer
regions, angiogenins (blue, 22–23 residues) and the
mammalian RNase 1 (green, 28–30 residues) have inter-
mediate size domains and finally the eosinophil ribonu-
cleases (brown) have the largest domains with about 33–
36 residues in spacer regions. The second example of the
Lysozyme/Lactalbumin domain family (cd00119, Figure
2) shows a negative correlation with respect to domain
sizes. In this family there are three main groups, the mam-
malian lysozymes (green), the insect lysozymes (red), and
the mammalian alpha-lactalbumins (blue). The mamma-
lian lysozymes are nearest to the root of the tree and have
the largest domains. The insect lysozymes and alpha-lac-
talbumins are at about the same distance from the root
and they have similar domain sizes, smaller than the
mammalian lysozymes.

Figure 3 shows the histogram of regression coefficients
using model #2 for domains which increase (black shad-
ing), decrease (in white) in size and those that do not
change in size (so called "stable" domains with no statis-
tically significant tendency to change the domain size,
grey shading). As can be seen from this figure, the fraction
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Figure 1
The evolution of domain sizes for RNAase family (cd00163) as inferred from the overall spacer lengths. The 
phylogenetic trees were constructed using neighbor-joining method and the sum of spacer lengths from all family members 
were mapped to the external nodes of the trees. Values for internal nodes were inferred using model #2 and the branches 
associated with the bootstrap values larger than 50 are shown as thick lines. At the bottom the overall spacer lengths are plot-
ted versus the evolutionary distance (measured in number of amino acid substitutions per site) from the root to a given exter-
nal/internal node. This is an example of positive significant correlation with the correlation coefficient of 0.57. Dashed line 
shows the approximation of the data by linear regression model. 
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Figure 2
The evolution of domain sizes for lysozyme family (cd00119) as inferred from the overall spacer lengths. The 
phylogenetic trees were constructed using neighbor-joining method and the sum of spacer lengths from all family members 
were mapped to the external nodes of the trees. Values for internal nodes were inferred using model #2 and the branches 
associated with the bootstrap values larger than 50 are shown as thick lines. At the bottom the overall spacer lengths are plot-
ted versus the evolutionary distance (measured in number of amino acid substitutions per site) from the root to a given exter-
nal/internal node. This is an example of negative significant correlation with the correlation coefficient of -0.54. Dashed line 
shows the approximation of the data by linear regression model. 
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of domains having a significant tendency to increase in
size (25–29%) is twofold larger than the fraction of
domains decreasing in size (11–12%). A modified Bonfer-
roni test yields 14–18% domains increasing in size and 5–
8% domains decreasing in size respectively. Limiting the
correlation analysis only to the internal nodes results in
25–31% of domains increasing in size versus 12–19% of
domains decreasing in size.

Assuming equal distribution of families among these two
increasing and decreasing classes we expect that, half of
families (51 out of 102 for model #2) will exhibit an
increasing pattern and another half will decrease in size.
However, we observed 71 cases instead of 51 and the
probability to observe such bias given the above assump-
tion can be estimated from the binomial distribution and
is very small (P < 0.00005). We also estimated an average
rate of domain size change which was found to be 7.2
(5.7) residues per domain per unit of evolutionary dis-
tance for domains of increasing and decreasing size
respectively. Unlike for the number of domains, there is
no statistically significant difference between the two aver-
age rates.

Analyzing domain families with large spacers of more
than 50 residues long (so-called "inserted domains", 32
domains altogether), we investigated the functional and
taxonomic assignments for these domains and found that
27 of them represent enzyme domains and 31 of them
belong to the "Root" taxonomic category (with the back-
ground of 117 enzyme domain families and 183 ancient

domain families in the overall test set). The probability to
observe such bias, given the assumption that families with
"inserted domains" are distributed equally among differ-
ent functional/taxonomic classes, can be estimated from
the binomial distribution, which yields a p-value of < 10-

6 for enzymatic domains and a p-value < 3*10-5 for
ancient domains. Thus, ubiquitous domains with enzy-
matic activity have a tendency to accommodate very long
indels, a similar observation for enzymes having been
reported earlier [27]. In our dataset we found that the long
insertions predominate over long deletions, the number
of enzymatic domains with spacers longer than 50 resi-
dues inserted (12 domains) is three times larger than the
number of domains with long spacers deleted in evolu-
tion (4 domains). In general, the evolutionary mechanism
of inserting the whole domain into another protein
domain might be different from the mechanisms of short
indel evolution, but excluding those domain families with
spacers longer than 50 residues does not change the over-
all conclusions reported in this paper (data not shown).

Spacer size evolution
We assigned individual spacers to the functional and tax-
onomic categories of corresponding CDs and performed
an analysis similar to that described in the previous sec-
tion with the only difference that instead of domain sizes,
the individual spacer lengths were mapped to the nodes of
phylogenetic trees. Using this mapping we can calculate
the regression coefficients for each individual spacer in
each domain. Figure 4 shows the histogram of regression
coefficients for individual spacers from the entire test set
(2451 individual spacers), among them 67–71%
(depending on the internal node mapping model) are
"stable" and do not exhibit any statistically significant ten-
dency to increase/decrease in size with evolutionary dis-
tance while 29–33% of spacers show significant
correlation (P < 0.01). Similar to the trend observed for
entire domain sizes, the majority of spacers (18–21%)
systematically increase their size in the course of evolution
while a small fraction of them (11–12%) decrease in size
(the probability to observe such bias is < 7*10-11).
Although the number of spacers which increase in size
exceeds the number of spacers which decrease in size, the
rate of spacer size change is approximately equal, 1.8(1.9)
amino acids per spacer per unit of evolutionary distance.

To analyze whether the tendency of spacers to increase/
decrease in size depends on the taxonomic or functional
category we performed the Pearson chi-squared test. First
we checked the null hypothesis that the assignment to tax-
onomy groups ("E", "B" and "R", see Methods) is not cor-
related with the sign of the regression coefficients. We
showed that the null hypothesis is rejected with p-value <
0.0003, which indicates that different taxonomic groups
overall have different tendencies in spacer size evolution.

Figure 3
Histogram of regression coefficients calculated by 
approximating the dependence of domain sizes (sum 
of spacer lengths) on the evolutionary distance 
according to model #2. “Stable” domains with no statisti-
cally significant tendency to change size in evolution are 
shown in grey, domains increasing and decreasing in size 
(with P-values < 0.01) are shown in black and white corre-
spondingly. 
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For example, the spacers from ancient domain families
show some bias toward the spacers which grow in size
(contributing 19% of the overall value of χ2 statistics, Fig-
ure 5). On the other hand, eukaryotes are depleted in
spacers which increase in size compared to the overall test
set (the number of spacers with statistically significant
positive correlation is almost equal to the number of spac-
ers with negative correlation, Figure 6). In particular, the
contribution to the χ2 value attributed to the eukaryotic

spacers accounts for 46% of the overall χ2 value of the test.
For bacterial families (which are underrepresented in our
test set), the situation is reversed and the majority of spac-
ers decrease in size (although the bacterial spacers con-
tribute only 11% of the overall χ2 value, Figure 7).

Different protein domains can have different tolerances to
insertion or deletion events depending on domain func-
tion and localization in a cell. We investigated this by

Figure 7
Histogram of regression coefficients of individual 
spacers calculated for bacterial domains. “Stable” spac-
ers with no statistically significant tendency to change size in 
evolution are shown in grey. Spacers which increase or 
decrease in size (with P-value < 0.01) are shown in black and 
white correspondingly.
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Figure 5
Histogram of regression coefficients of individual 
spacers calculated for ancient domains. “Stable” spac-
ers with no statistically significant tendency to change size in 
evolution are shown in grey. Spacers which increase or 
decrease in size (with P-value < 0.01) are shown in black and 
white correspondingly.
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Figure 4
Histogram of regression coefficients calculated by 
approximating the dependence of individual spacer 
lengths on the evolutionary distance according to 
model #2. “Stable” domains with no statistically significant 
tendency to change size in evolution are shown in grey, 
domains increasing and decreasing in size (with P-values 
< 0.01) are shown in black and white correspondingly. 
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Figure 6
Histogram of regression coefficients of individual 
spacers calculated for eukaryotic domains. “Stable” 
spacers with no statistically significant tendency to change 
size in evolution are shown in grey. Spacers which increase 
or decrease in size (with P-value < 0.01) are shown in black 
and white correspondingly.
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annotating protein domains with respect to the Gene
Ontology (GO) classification [28] and tested the null
hypothesis that the sample of a given GO term represents
an unbiased sample from the overall test set of individual
spacers. We calculated the χ2-value for those GO catego-
ries with more than 8 expected values and estimated p-val-
ues under the null hypothesis; Table 1 lists those GO
categories with a p-value of less than 0.01 and those cate-
gories which contribute more than 2/3 of the χ2 value due
to excess (red) or shortage (blue) of observed families are
highlighted. As can be seen from this table, proteins with
functions related to transferase activity, replicative cell
aging, positive regulation of cell proliferation and tran-
scription all have a statistically significant excess of spac-
ers increasing in size. On the other hand, domains from
proteins located in the endoplasmic reticulum membrane
have an excess of spacers decreasing in size. Proteins par-
ticipating in chemotaxis, protein folding and G-protein
coupled signaling pathways have mostly "stable"
domains while proteins from the ubiquitin cycle and
ubiquitin dependent catabolism, membrane fraction,
mitosis and G-protein coupled signaling pathways are
deprived of spacers decreasing in size. We also investi-
gated whether spacer size increase/decrease can be attrib-
uted to the number of interactions with other proteins/
domains. The analysis performed using conserved bind-
ing modes [29] did not find any statistically significant
correlation between the trend of the size change and the
number of interacting partners for a given domain or
spacer region.

Discussion
The collection of accurate, curated multiple sequence
alignments from CDD gives us an opportunity to study
the evolution of domain and spacer sizes on a wide scale
of evolutionary distances. Thus far the indel events have
been studied on sets of relatively closely related species
such as human, mouse and rat, where indels can be

defined explicitly. It has been found that there exists a 2–
3 fold excess of deletions over insertions in non-coding
regions (and pseudogenes in particular) from human and
murids [15,30-32] and much higher deletion bias in Dro-
sophila melanogaster pseudogenes [33]. Moreover, dele-
tions are approximately three times more common than
insertions in loci causing Mendelian diseases [12]. Protein
coding regions, however, are generally under higher selec-
tive pressure than pseudogenes and non-coding regions
and as was shown in a recent studies the ratio of deletions
to insertions in protein coding regions is much closer to
unity compared to non-coding regions. For example, a
deletion to insertion ratio of microindels (upto 10–15 bp)
in non-coding regions of mouse is 2.5 : 1 and this ratio is
reduced to a 1.1(1.05) : 1 in protein coding regions
[34,35]. Along these lines, we showed that for eukaryotic
domains there exists a bias towards deletions (spacers
decreasing in size) compared to the overall test set, which
is significantly enriched with insertions (spacers increas-
ing in size). As a result, for eukaryotes from our test set the
total number of spacers which grow in size in evolution is
approximately equal to the number of spacers which
decrease in size.

For the entire test set we observed a certain pattern for
domains and spacers to increase in size on average, with a
two-fold difference between the number of domains/
spacers growing in size over those diminishing in size. The
overall evolutionary scenario which we can portray based
on our study is the following. It has been argued that it is
unlikely that early proteins represented long peptide
chains. On the contrary, various data suggest that the first
protein domains emerged through the recombination of
short peptides or a limited vocabulary of structural units
[17,36,37]. Apparently, the spacers between the domain
core structural elements were minimal in size, just enough
to span the spatial gaps, connecting the structure. Then, in
the course of evolution the majority of ancient domains

Table 1: GO categories listed for domain families with statistically significant bias (p-value < 0.01) with respect to increasing, 
decreasing and stable individual spacers.

Decreasing Stable Increasing GO annotation P-value

6 (9.8) 47 (64.9) 38 (16.3) transferase activity, transferring glycosyl groups 0.0000
12 (11.2) 52 (74.2) 40 (18.7) replicative cell aging 0.0000
25 (11.7) 58 (77.7) 26 (19.6) endoplasmic reticulum membrane 0.0000
24 (20.6) 112 (136.9) 56 (34.5) positive regulation of cell proliferation 0.0001
0 (11.7) 93 (77.7) 16 (19.6) ubiquitin cycle 0.0005
14 (32.1) 231 (213.2) 54 (53.7) membrane fraction 0.0029
5 (8.6) 70 (57.1) 5 (14.4) chemotaxis 0.0052
0 (8.9) 66 (59.2) 17 (14.9) ubiquitin-dependent protein catabolism 0.0068
4 (13.5) 91 (89.9) 31 (22.6) mitosis 0.0074
30 (33.5) 205 (222.5) 77 (56) transcription 0.0082
2 (8.2) 66 (54.2) 8 (13.6) protein folding 0.0084
4 (14.9) 111 (99.1) 24 (25) G-protein coupled receptor protein signaling pathway 0.0089

First three columns show the observed and expected number (in parentheses) of decreasing, stable and increasing spacers for different GO 
categories. Categories, contributing more than 2/3 of the χ2 value due to excess (in bold) or shortage (in italic) of observed families are highlighted. 
The last column lists p-value of Pearson χ2-test.
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acquired additional residues through the subsequent set
of insertion events, although in a fraction of domains the
equilibrium of indels tended towards deletions. A plausi-
ble explanation for the prevalence of increasing spacers
and domains is the selection for acquisition of novel func-
tions and fine-tuning of existing ones. Surprisingly, as we
show, the rates of net insertion and deletion size change
were not significantly different between each other with
the average rate of 1.8–1.9 residues per spacer per unit of
evolutionary distance. Similar observations have been
made about the similarity of size distributions of inser-
tions and deletions in three mammalian genomes [15].

For relatively "modern" proteins, however, the trend of
domain size evolution was rather different. Eukaryotic
proteins started losing residues in spacers, indicating that
in eukaryotic evolution deletions played as important a
role as insertions. Eukaryotic novel proteins seem to
evolve mainly through acquiring new domains and
through domain shuffling which could result in longer
proteins with slightly shorter individual domains. At the
same time, in bacteria the deletion trend was even more
pronounced (although supported by rather limited
amount of data from our test set) and, indeed, it was
shown earlier that deletions in E. coli are 8 times more fre-
quent than insertions [38]. Such bias in bacteria towards
deletions can be explained by strong selection pressure on
genome size which is primarily composed of protein cod-
ing regions [8,39].

Conclusion
There are different factors which would favor shorter or
longer proteins or spacers in evolution [40-43]. Efficiency
of protein translation, transcription and the folding proc-
ess would probably benefit from shorter proteins [41,42].
On the other hand, certain insertions may also be advan-
tageous and subject to positive selection. For example, lin-
eage-specific insertions/deletions in the elastin gene have
functional importance in each lineage [44] and house-
keeping proteins from pathogenic organisms may contain
insertions/deletions responsible for virulence properties
[45]. Our study showed that one third of all protein
domains have a statistically significant linear correlation
between the evolutionary distance and the domain/spacer
sizes and moreover, there is a certain tendency for
domain/spacer sizes to increase with evolutionary dis-
tance. We do not yet have an explanation for these obser-
vations, however, future in-depth studies may provide
further insights into these phenomena.

Methods
Benchmark construction
The analysis was performed on a set of protein families
with curated alignments from the NCBI Conserved
Domain Database (CDD). CDD comprises diverse non-

redundant sequences and alignments are refined using
three-dimensional structures and structure-structure
alignments [46]. CD alignments are block-wise multiple
alignments where block regions are defined as those
aligned among all family members. CD alignments are
constructed to ensure enough sequence diversity and tax-
onomy span while avoiding bias towards highly repre-
sented sequences in the database, which is important for
our analysis. The redundancy is removed by using single-
linkage clustering to group the domain sequences with
greater than 67% sequence identity and then choosing
one representative from each preferred taxonomy node
within each sequence cluster (the list of preferred taxon-
omy nodes can be downloaded from the CDTree [47]. We
start our analysis with a set of 362 manually curated par-
ent node alignments from CDD version 2.00 [48,49]. Par-
ent alignments correspond to the top node alignments in
the hierarchy of CD families. We excluded CD families
consisting of short sequence repeats (ex. SUSHI repeats)
and those containing less than 10 sequences. The redun-
dancy between protein domain families was checked
using the procedure implemented in the CDART algo-
rithm [50]; and not more than one domain family from
the same domain cluster was retained in the final test set,
which yielded 278 domain families. A table is available
listing the 278 test domains with taxonomy assignments
and computed regression coefficients [51].

The domain families from the test set encompass a large
spectrum of functional and taxonomic groups. Protein
function was categorized by the Gene Ontology (GO)
terms [28]. Gene ontology (GO) annotations were
obtained from GenBank for individual family members
and pooled for the whole family. The taxonomic informa-
tion for each CD family was assigned according to the
range of organisms in which the family members were
represented [52]. We used a simplified classification of the
families into the following three categories: "R" ("Root",
family members are present in at least two kingdoms
among eukaryotes, prokaryotes and archaea and thus
thought to be of ancient origin, dating back at least to the
Last Universal Common Ancestor; 182 families); "E"
(eukaryote-specific protein families; 85 families) and "B"
(bacteria-specific protein families; 11 families). There
were no archaea-specific families in our dataset.

Phylogenetic trees were constructed from the aligned
block regions (in case of sequence repeats only one
instance was kept) by the neighbor-joining method [53]
with the PHYLIP package [54]. Blocks represent regions
where all CDD sequences are aligned so that the resulting
trees are not in any case dependent on the difference
between spacer's lengths. The neighbor joining trees were
rooted manually using the taxonomy of represented
organisms. If multiple subfamilies within a protein
Page 8 of 10
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domain family were present, the root was placed on the
deepest inter-subfamily branch so as to balance the aver-
age length between the root and every external node of
each subtree. For about 30% of the trees an alternative
root placement was checked and it was observed that the
overall results do not change if alternatively rooted trees
were used. The phylogenetic trees are available at the ftp
site [55].

Spacer length calculation
Taking advantage of CDD block structure where multiple
alignments are anchored at certain conserved positions,
we define a spacer as a non-aligned segment between two
consecutively aligned block elements. To analyze how
spacer lengths change in the course of evolution, the
spacer lengths for all CDD sequences between two consec-
utive blocks were individually mapped to the external
nodes of the phylogenetic tree for the corresponding
domain family. To study the evolution of domain sizes,
the sum of all spacer lengths in a CDD alignment (not
counting N-terminal and C-terminal spacers) was
mapped to the external nodes of the phylogenetic tree.

The values of spacer lengths were inferred for the internal
nodes of the phylogenetic trees using the following mod-
els. According to model #1, the spacer length for an inter-
nal node was inferred to be the same as the
phylogenetically closest external node. Model #2 (analo-
gous to the squared-change parsimony,[56], Ch. 23)
inferred the spacer lengths for internal nodes as a
weighted average of the spacer lengths of external nodes
using a recursive procedure. For a strictly binary tree we
can define:

Where si is the spacer length at internal node i; s1 and s2 the
spacer lengths assigned to the direct descendants of node
i; and h1 and h2 the heights of the descendant subtrees. The
height of a subtree is, in turn, recursively defined as the
branch length plus the average height of two descendant
subtrees (the latter being zero for terminal nodes).

Using these models we calculated the Pearson correlation
coefficients between the distance from the root to a given
internal/external node and the value of the spacer length
at a given node for all nodes in a tree. It should be noted
that using just internal nodes in the correlation analysis
does not change the results significantly. For the domain
length analysis, the correlation was calculated between
the evolutionary distance from the root and the sum of
spacer length. The p-values for the correlation coefficients
were estimated under the null hypothesis of being equal
to zero; correlations for those families with p-values less

than 0.01 were considered significant. The regression
coefficients were calculated by linear regression analysis.
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