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Abstract

Background: Biological systems are often modular: they can be decomposed into nearly-
independent structural units that perform specific functions. The evolutionary origin of modularity
is a subject of much current interest. Recent theory suggests that modularity can be enhanced when
the environment changes over time. However, this theory has not yet been tested using biological
data.

Results: To address this, we studied the relation between environmental variability and modularity
in a natural and well-studied system, the metabolic networks of bacteria. We classified | |7 bacterial
species according to the degree of variability in their natural habitat. We find that metabolic
networks of organisms in variable environments are significantly more modular than networks of
organisms that evolved under more constant conditions.

Conclusion: This study supports the view that variability in the natural habitat of an organism
promotes modularity in its metabolic network and perhaps in other biological systems.

Background

Biological systems often show modularity, in the sense
that they can be separated into nearly-independent struc-
tural subsystems, each of which performs a specific func-
tion [1-12]. The origin and preservation of modularity in
biology is a subject of current interest [13-18].

One approach to study the origin of modularity employs
computer simulations of biological evolution [19]. Such
simulations make random changes to a set of networks,
and select those that best satisfy a given goal. Simulations
towards a constant goal usually lead to non-modular net-
works. Even an initially modular network rapidly evolves

connections that reduce modularity but increase fitness
[18]. This raises the question of which evolutionary forces
can generate and maintain modular structure.

One possible force that can lead to modularity was sug-
gested by evolutionary simulations where the goal
changes over time [16,18]. Modular networks spontane-
ously evolved when the goal changed with time in a way
that preserves the same sub-goals but in different combi-
nations [18]. Under such 'modularly varying goals', the
networks evolved and maintained modular structure,
with a module for each sub-goal. When the goal changed,
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the connections between these modules were rapidly
rewired to adapt to the new goal.

Here, we attempt to test these findings in a natural biolog-
ical system, by asking whether there is a correlation
between metabolic network's modularity and the variabil-
ity of the environment in which it evolved. We concen-
trated on the metabolic networks of bacteria due to the
availability and quality of the data. These networks can be
systematically compared between species that live in envi-
ronments that differ in their degree of variability.

Metabolic networks represent the set of biochemical met-
abolic reactions within a living cell [20]. Metabolic net-
works of diverse bacterial species have been reconstructed
based on their genomic sequence and additional bio-
chemical data [21-23]. Previous structural comparisons of
metabolic networks focused on differences between king-
doms or phyla (for example, between archea and bacteria,
prokaryotes and eukaryotes) [23-28]. Here, we ask
whether there exists a correlation between the degree of
modularity of the metabolic network of an organism and
the variability in its environment.

We analyzed the metabolic networks of 117 bacteria spe-
cies living in broad range of habitats including oceans, salt
lakes, thermal vents, soil and within hosts. The species
were classified according to the degree of variability in
their environment. We measured the modularity levels
and additional related structural parameters of bacteria
metabolic networks, finding that the level of variability in
organism's environment correlates with the modularity of
the networks: The more variable the environment, the
more modular the metabolic network. Our study there-
fore supports the view that environmental variability pro-
motes modularity in biological networks.

Results

Classification of variability of bacterial environments

The natural environment of 117 bacterial species was clas-
sified based on the NCBI classification for bacterial life-
style [29] (see methods). The classification includes six
classes: Obligate bacteria [30,31] that are obligately asso-
ciated with a host, either intracellulary or extracellulary.
An example is Buchnera that lives in symbiosis inside
aphids and has little contact with the outside world. Spe-
cialized bacteria that live in specialized environments
such as marine thermal vents. Aquatic bacteria [32], that
live in fresh or seawater environment, and are not associ-
ated with hosts. Facultative bacteria, free living bacteria
such as E. coli that often associate with a host. Multiple
bacteria, that live in multiple different kinds of environ-
ments such as bacteria with a wide host range, and Terres-
trial Bacteria, that live in the soil.
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We ranked the variability of the different environments
considering physical conditions (such as temperature,
osmolarity, acidity, oxygen availability, etc) and heteroge-
neity of species [33]. Obligate bacteria are thought to have
the most constant environment as these bacteria live
within a biochemically controlled and isolated environ-
ment [34], usually with only few other species or even no
other species. Specialized and aquatic bacteria are adapted
to a strict realm of ecological conditions, yet their habitat
is less protected and exhibits higher species heterogeneity
than the obligate class. Facultative bacteria that live both in
hosts and in the outside world are exposed to a more var-
iable environment than the former classes, but less varia-
ble than the multiple class that spans widely different
habitats. Finally, the terrestrial class is often considered the
most variable class [35], since the soil is highly heteroge-
neous and has a diverse ecology.

In addition to this qualitative ordering, we sought a quan-
titative measure that may reflect environmental variabil-
ity. One such measure is the fraction of transcription
factors out of the total number of genes in the organism.
The reason for using this measure is that theoretical anal-
ysis based on cost-benefit analysis suggests that transcrip-
tion factors are more strongly selected in variable
environments than in constant ones (chapter 10 of Ref
[3])- Hence, more regulators per gene are expected the
more variable the environment. It was shown [3] that the
benefit of a transcription factor is highest when it can
appropriately regulate gene expression in response to
environmental changes, offsetting the cost of production
and maintenance of the transcription factor protein and
associated sensory systems [3,36]. Studies by Moran and
colleagues indicate that under constant conditions, genes
for transcription factors tend to be lost from the genome
[37,38]. Genes of organisms in nearly constant conditions
are deleted, or are constitutively expressed and do not
require transcription control, as was experimentally dem-
onstrated for Buchnera [39] and Rickettsia [40].

In agreement with the above, we find that the fraction of
transcription factors, as well as their total number,
increases with the expected variability of the bacterial life-
style classification (Fig 1a). Note also that the size of the
metabolic networks (=number of metabolites) tends to
increase with the expected variability of the environment
(Fig 1b).

Modularity of metabolic networks correlates with
variability in the environment

The metabolic networks of the different species were
obtained from KEGG database. In the networks, each
metabolite is a node and edges represent metabolic reac-
tions (see Methods).
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Relation between environmental variability and a. Mean fractional number of transcription factors out of the total number of
genes in the genome. b. Mean metabolic network size (giant component). Error bars represent standard errors. Abbrevia-
tion: O-Obligate, S-Specialized, AQ-Aquatic, F-Facultative, M-Multiple, T-Terrestrial. Groups ordered along x-axis according

to their predicted level of variability.

We used a standard measure of modularity [18,41], to
evaluate the modularity of each metabolic network. We
find that modularity increases with the variability in the
environment (Fig. 2). The lowest modularity is found for
the obligate class, higher modularity is found for the spe-
cialized and aquatic classes, and the highest modularity is
found for facultative, multiple and terrestrial classes (Corre-
lation coefficient c = 0.63, p-value p < 104).

We further considered a control for the effects of network
size on modularity, by comparing metabolic networks of
the same size. This was achieved by constructing subnet-
works of each network containing n = 60 nodes (metabo-
lites), comparable to the smallest networks in the dataset.
These sub-networks were constructed by contracting lin-
ear pathways and cycles, and removing dangling nodes,
until a network of the required size was obtained. We find
that the modularity of these equal-sized metabolic net-
works also significantly increased with environmental var-
iability (c = 0.59, p < 104, additional file 2, section 1.3).

As a final control for the effect of network size, we com-
puted the Pearson partial correlation [42] between modu-
larity, environmental variability, and network size. We
find that the correlation between modularity and variabil-
ity is significant also when removing the effect of network
size (c = 0.24, p = 0.02, see additional file 2 - section 1.4).

Each lifestyle class includes bacteria from different
branches of the phylogenetic tree. We find low correlation
between the similarity in the modularity of pairs of spe-
cies and their distance on the phylogenetic tree (c= 0.1, p
< 104, see additional file 2, section 3). Thus, modularity
seems to be more correlated with environment than with
evolutionary relatedness.

We find that networks from species in constant environ-
ments tend to be more tree-like than those in variable
environments (Fig 3). This can be quantitatively seen by
considering two topological measures, betweenness-cen-
trality [24] and cyclic coefficients [43], both properly nor-
malized to account for different network sizes. We find
that the former increases and the latter decreases the more
constant the environment, suggesting tree like structures
(see additional file 2, sections 2.2-2.3). The tree-like
structure seems to result from a lack of alternate metabolic
paths in networks from constant environments.

Modules in organisms from variable environments are
more functionally pure

We used the Newman-Girvan algorithm [41] to define
structural modules in each network, and tested whether
the identified modules correspond to well-defined meta-
bolic functions [44]. A structural module in a network was
considered to be also a functional module if it was
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Relation between environmental variability and
modularity. Normalized modularity measure (Q,,) of bacte-
rial metabolic networks versus the environmental class of the
organism. Environments are ordered according to their vari-
ability ranging from O (obligate), the least variable to T (ter-
restrial), the most variable. Mean and standard error of Q,,
are presented for each environmental class.

enriched for substrates that had a shared metabolic func-
tion such as: central metabolism, biosynthesis of amino
acids, carbohydrates, lipids etc. (according to the KEGG
pathway classification [44,45]). For each network we eval-
uated two measures: functionality, defined as the fraction
of structural modules that were significantly enriched for
a metabolic function, and coverage - the fraction of bio-
logical functions that could be mapped to structural mod-
ules.

We find that the modules in networks of organisms from
constant environments usually do not correspond to a
defined metabolic function, but rather to mixtures of sev-
eral biological categories. In contrast, the modules of net-
works from variable environment classes usually
corresponded to a unique function and the majority of the
metabolic functions could be assigned to at least one
structural module (Fig. 4 and section 4 in additional file
2).

These results further indicate that the present approach for
identifying modules yields modules that have biologically
significant function [44].

http://www.biomedcentral.com/1471-2148/7/169

Discussion

This study indicates that variability in the environment
correlates with enhanced modular organization of meta-
bolic networks, while constant environment correlate
with a less modular structure.

One interpretation of these findings can be made in the
context of previous simulation studies of evolution in
modularly varying environments [18]. The metabolic goal
that a bacterium faces can be considered as a combination
of sub-goals. An example of a sub-goal is the biosynthesis
of an amino acid such as histidine. If histidine is missing
in the environment, the bacterium must synthesize it. If
histidine is present, the bacterium can down-regulate the
biosynthesis pathway and instead import this metabolite.
When the environment changes over time, it introduces a
different combination of such metabolic sub-goals.

Simulations suggested that varying the sub-goals leads to
the evolution of networks with a modular structure, where
each module corresponds to one of the sub-goals [18].
Modular structure evolves despite the fact that it is less
optimal than non-modular solutions [46]. In contrast,
evolution under a goal that is constant over time leads to
non-modular networks, in which many nodes participate
in several functions [18]. The present findings may be
interpreted within this context: Bacteria that live under
varying environments typically evolve a functional mod-
ule for each of the varying sub-goals. Bacteria under con-
stant conditions tend to evolve towards a less modular
design.

It is interesting to note that some metabolic goals are held
relatively constant even when the environment changes.
An example is energy metabolism, which is needed for
growth by all of the bacterial species studied, in all envi-
ronments. Analysis of the metabolic networks shows that
the part of the network responsible for energy metabolism
(central metabolism) is less modular than other parts of
the network (such as biosynthesis of amino acids, nucle-
otides, vitamins etc) [44,47-49]. More generally, the frac-
tion of the metabolic network devoted to constant goals
(such as central metabolism) seems to increases as the
environment becomes more constant (Fig S8c in addi-
tional file 2).

An additional observation in the computer simulations
[18] is that initially modular networks rapidly degrade
into non-modular but more optimal structures when the
goal becomes constant over time. Examples of such a
degeneration of modularity can be seen by comparing the
closely related species E. coli and Buchnera. E. coli lives in
a variable environment, moving between its mammalian
host and the external world. Buchnera lives in a more con-
stant environment, as an endosymbiont of aphids. Buchn-
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Visualization of metabolic networks for a) E. coli and b) Buchnera aphidicola. The two networks consist of the same
number of nodes (n = 89 metabolites), achieved by reducing E. coli network (see additional file 2, section 5).

era is found to fuse together pathways that are separate in
E. coli, and thus to achieve its metabolic goals with a
smaller set of enzymes [50]. One example occurs in the
histidine and purine modules (Fig 5). Both modules con-
vert the metabolic substrates PRPP to AICAR in two dis-
tinct parhways. E. coli seems to maintain these alternative
pathways because under different environments (histi-
dine/purine rich environments) only one of the pathways
is utilized. For Buchnera, on the other hand, as an endo-
symbiont that supplies amino-acids to its host, histidine
biosynthesis is a fixed goal and under no regulation. Here,
the purine module can count on the histidine module for
AICAR production. The two pathways were thus com-
bined into a single module, in which many of the genes
are used for both functions [38,51]. It would be interest-
ing to uncover other mechanisms that degenerate or
enhance modularity by comparing networks of closely
related species with different environments.

One limitation of the present study is the limited knowl-
edge of metabolic networks for diverse species. The recon-
structed networks, based on genomic data, were used to
generate information about putative non-directed meta-
bolic interactions. The present network representation
ignore: i) directionality of reactions ii) reaction stochiom-
etry iii) that only a fraction of the reactions are active

under given environmental conditions (hence at best it
offers only a static view on modularity). The above men-
tioned problems can be handled by more sophisticated
network analyses [52]. Such studies employ correlated
reaction sets as mathematically defined modules in bio-
chemical reaction networks. They constitute groups of
reactions in a network that always appear together in func-
tional states of that network and therefore represent a
functional module of the reaction network. Previous work
has shown that these sets can include non-obvious groups
of reaction

s and differ from groupings of reactions based on struc-
tural analyses of network topology [53,54]. One drawback
of these latter approaches is that they require carefully
annotated, genome-scale metabolic network, of which is
only available for a handful number of species.

Conclusion

This study indicates that the modularity of metabolic net-
works correlates with the variability of the environment.
Such a correlation supports the view that variability in the
natural habitat promotes modularity. It would be impor-
tant to test this more fully as data on metabolic and regu-
latory networks of diverse species becomes more
complete.
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Figure 4

Cartographic representation for the metabolic net-
works of a. E. coli and b. Buchnera aphidicola. Each cir-
cle corresponds to a structural module. Colors represent
KEGG pathway classification, where the fraction of each class
is proportional to the significance level of that category in the
module nodes obtained from a hypergeometric test. Circle
size is proportional to module's size and the thickness of
edges proportional to the number of interactions between
two modules. In E. coli most of the modules are functionally
pure, and each metabolic class can be assigned to a specific
structural module. In Buchnera network, modules are less
pure and show more mixture of different functions. In three
models, however, pureness of amino acid metabolism can be
detected (e.g. the basis for the symbiosis with aphids)

We currently know more about the structure of metabolic
networks than about the ecology of the organisms. It is a
challenge to see how far one can go in what might be
termed 'reverse ecology' [36]: inferring from the structure
of biological system information about the environment
in which it evolved.

Methods

Lifestyles of bacterial species

The present classification of species can be found at addi-
tional file 1 and also at the corresponding author website.
The bacterial environmental data is based on [29]. The
original classification was adjusted in the present study, to
better reflect environmental variability. The main adjust-
ment was the split of the "Host Associated" class into obli-
gate bacteria and facultative bacteria. Further corrections of
specific bacteria species were performed based on litera-
ture search. For example, vibrio species were changed from
aquatic to facultative because they are pathogens of fish.
The numbers of species in the classification were as fol-
lowing: 35 obligate bacteria, 5 specialized bacteria, 4 aquatic

http://www.biomedcentral.com/1471-2148/7/169

bacteria, 42 facultative bacteria, 28 multiple bacteria and 3
terrestrial bacteria.

Metabolic networks construction

Reconstructed metabolic networks of 117 bacteria were
taken from the KEGG Database [45]. Each network was
represented as a substrate graph, where each node corre-
sponds to a metabolite and an edge corresponds to a reac-
tion. Highly connected metabolites (such as ATP, NADH,
H,0 etc) were removed - a crucial step for topological
analysis [23]. Similar results were found also for a bipar-
tite graph representation including both reactions and
metabolites as nodes (additional file 2, section 1.2). Anal-
ysis was preformed on the giant connected component of
the networks, to avoid bias from small isolated compo-
nents. Similar results were found also when the entire net-
work was analyzed (additional file 2, section 1.1).

Quantitative measure of network modularity

To quantify the modularity of a network we used the nor-
malized Q,, measure of Kashtan et al. [18]. This measure
is based on the commonly used Newmann and Girvan
modularity measure Q [55], defined as the fraction of
edges that lie within modules rather than between mod-
ules relative to that expected by chance.

A module, therefore, is as a group of nodes with many
interactions between them, and few interactions to the
other nodes. The algorithm attempts to find the division
of nodes into modules that maximizes Q. This measure
sums over all modules in the network and hence scales
with network size. To allow comparison of the modularity
of networks with different size and connectivity, this
parameter needs to be further normalized [18]:

Qm = (Qreal - and)/(Qmax - and) (1)

Where Q,,; is the Q value of the network, Q,,,,;is the mean
Q value of randomized networks, and Q,,,,, is the upper
bound of Q for a given network ensemble. We obtained
Q,,na by averaging Q over hundred random networks that
preserve the degree distribution of the real network [56].
Q,..xWas estimated as 1 - 1/M [57] where M is the number
of modules in the real network (usually the lower bound
for the number of modules in the random network). For
the present substrate networks, M ranged from 4 (for
small networks ~100 nodes) to 22 (for large networks
~400 nodes).
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Buchnera sp. APS

lllustration of a mechanism that reduces modularity. The connection between purine and histidine pathways is pre-
sented for a. E. coli and b. Buchnera sp. APS. Whereas in E. coli the pathways are separated, in Buchnera the pathways are par-

tially combined [51].
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