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Abstract
Background: The NANOG gene is expressed in mammalian embryonic stem cells where it
maintains cellular pluripotency. An unusually large family of pseudogenes arose from it with one
unprocessed and ten processed pseudogenes in the human genome. This article compares the
NANOG gene and its pseudogenes in the human and chimpanzee genomes and derives an
evolutionary history of this pseudogene family.

Results: The NANOG gene and all pseudogenes except NANOGP8 are present at their expected
orthologous chromosomal positions in the chimpanzee genome when compared to the human
genome, indicating that their origins predate the human-chimpanzee divergence. Analysis of flanking
DNA sequences demonstrates that NANOGP8 is absent from the chimpanzee genome.

Conclusion: Based on the most parsimonious ordering of inferred source-gene mutations, the
deduced evolutionary origins for the NANOG pseudogene family in the human and chimpanzee
genomes, in order of most ancient to most recent, are NANOGP6, NANOGP5, NANOGP3,
NANOGP10, NANOGP2, NANOGP9, NANOGP7, NANOGP1, and NANOGP4. All of these pseudogenes
were fixed in the genome of the human-chimpanzee common ancestor. NANOGP8 is the most
recent pseudogene and it originated exclusively in the human lineage after the human-chimpanzee
divergence. NANOGP1 is apparently an unprocessed pseudogene. Comparison of its sequence to
the functional NANOG gene's reading frame suggests that this apparent pseudogene remained
functional after duplication and, therefore, was subject to selection-driven conservation of its
reading frame, and that it may retain some functionality or that its loss of function may be
evolutionarily recent.

Background
Processed pseudogenes are derived from reverse transcrip-
tion of RNA molecules followed by insertion of DNA cop-
ies into the genome. Therefore, for a processed
pseudogene to be inherited from one organismal genera-
tion to the next, it must be derived from RNAs encoded by
genes expressed in cells of the germline or the embryonic
precursors of these cells. The homeobox gene NANOG is

expressed in mammalian embryonic stem cells where its
product, a homeobox transcription factor, maintains
pluripotency of these cells [1-3]. Therefore, NANOG is an
excellent candidate as a possible source of inherited proc-
essed pseudogenes. In fact, ten processed pseudogenes
derived from NANOG are present in the human genome,
an unusually large family of inherited processed pseudo-
genes derived from a single gene [4-6].
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The human chromosomal region containing the NANOG
gene has also undergone a tandem duplication resulting
in two copies of the NANOG gene on chromosome 12.
The two copies are approximately 97% identical and their
transcripts are spliced differently [4,5]. Although there is
EST-based evidence that both copies are transcribed,
Booth and Holland [4] have argued that one of the two
copies is an unprocessed pseudogene, which they named
NANOGP1. They named the ten processed pseudogenes
NANOGP2 through NANOGP11. Two are located on the
X chromosome, two on chromosome 6, and one each on
chromosomes 2, 7, 9, 10, 14, and 15. NANOGP2 and
NANOGP4 through NANOGP10 are full-length or nearly
full-length processed pseudogenes lacking introns.
NANOGP3 and NANOGP11 are truncated fragments of
processed pseudogenes [4,6].

Studies of unprocessed pseudogene evolution in primates
are abundant, dating back to the early 1980s [7-9].
Although several studies are directed at pseudogene fami-
lies [4,6,10], most focus on the evolution of a single proc-
essed pseudogene [11-14]. The relatively large number of
processed NANOG pseudogenes and the recent release of
the Build 1.1 assembly of the chimpanzee (Pan troglodytes)
genome [15] provide an excellent opportunity to eluci-
date the evolutionary history of the NANOG gene and its
large pseudogene family. This article compares the human
NANOG gene and its pseudogenes with their chimpanzee
orthologues and from this comparison derives an evolu-
tionary history of this pseudogene family.

Results and discussion
We identified the chimpanzee orthologues of the human
NANOG gene and all of its pseudogenes except
NANOGP8 using MEGABLAST and BLASTN searches of
the Build 1.1 version of the chimpanzee genome assem-
bly. Table 1 summarizes the chromosomal and genomic
locations of the human NANOG gene and pseudogenes

and their chimpanzee orthologues. MEGABLAST and
BLASTN searches of the chimpanzee genome did not
reveal any other NANOG sequences, suggesting that no
new NANOG pseudogenes have arisen in the chimpanzee
lineage since it diverged from the human lineage. How-
ever, we cannot rule out the possibility that additional
NANOG pseudogenes may be present in the chimpanzee
genome because unsequenced gaps remain in the Build
1.1 assembly. Our data indicate that the NANOG gene
and all pseudogenes except NANOGP8 are in their
expected orthologous positions in the chimpanzee
genome, and that NANOGP8 is not present in the chim-
panzee genome.

Chimpanzee orthologues of NANOG and NANOGP1
NANOG [GenBank:NM_024865] is the functional gene in
the human genome, whereas NANOGP1 [Gen-
Bank:AK097770] is apparently an unprocessed pseudog-
ene derived from tandem duplication of the
chromosomal region containing NANOG. However,
cDNA and EST data show that NANOGP1 may be tran-
scriptionally active, albeit at a lower level than NANOG,
and that its transcripts are spliced differently than those
derived from NANOG. Hart et al. [5] designated
NANOGP1 as NANOG2 and referred to it as a functional
gene, whereas Booth and Holland [4] argued that because
of its relatively high degree of divergence from NANOG,
and the comparative paucity and ambiguity of transcripts
derived from it, NANOGP1 is an unprocessed duplication
pseudogene.

MEGABLAST searches of the chimpanzee genome readily
identified the orthologues of NANOG and NANOGP1.
However, the organization of the chimpanzee orthologue
of the human NANOG gene in the chimpanzee Build 1.1
genome assembly suggests that the gene is either rear-
ranged in the chimpanzee genome, or that the assembly is
incorrect within this gene. All four exons of the ortho-

Table 1: Chromosomal locations and GenBank accessions of the NANOG gene and pseudogenes in the human and chimpanzee 
genomes.

Gene/
Pseudogene

Human Chromosome and Genomic Location Chimpanzee Chromosome and Genomic Location

NANOG 12 [GenBank:NT_009714] 12673–19336 12 [GenBank:DQ179631]
NANOGP1 12 [GenBank:NT_009714] 115849–122176 12 [GenBank:NW_114668.1] 785041–791563
NANOGP2 2 [GenBank:NG_004099] 2B [GenBank:NW_104777.1] 91227–92720, [GenBank:DQ301864]
NANOGP3 6 [GenBank:NG_004095] 6 [GenBank:NW_107947.1] 7895540–7895957, [GenBank:DQ301865]
NANOGP4 7 [GenBank:NG_004100] 7 [GenBank:NW_108883.1] 20417714–20419437, [GenBank:DQ301866]
NANOGP5 9 [GenBank:NG_004101] 9 [GenBank:NW_111809.1] 3226494–3228690
NANOGP6 10 [GenBank:NG_004102] 10 [GenBank:NW_113009.1] 12359797–12360738, [GenBank:DQ301867]
NANOGP7 14 [GenBank:NG_004098] 14 [GenBank:NW_115886.1] 751742–753321, [GenBank:DQ301868]
NANOGP8 15 [GenBank:NG_004093] Absent
NANOGP9 X [GenBank:NG_004097] X [GenBank:NW_121850] 2623421–2625487, [GenBank:DQ301869]
NANOGP10 X [GenBank:NG_004096] X [GenBank:NW_121732.1] 2217356–2218968, [GenBank:DQ301870]
NANOGP11 6 [GenBank:NG_004103] 6 [GenBank:NW_107982.1] 2653050–2653450, [GenBank:DQ301871]
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logue are present in the assembly but in two different
GenBank accessions. The entire sequences of the 5' UTR,
exon 1, and exon 2 are found in the region spanning
nucleotides 683046 through 686855 of the chromosome
12 contig [GenBank:NW_114668], in a region on the
short arm of chromosome 12 near the telomere at a loca-
tion orthologous to that of the human NANOG gene at
12p13.31. Introns 1 and 2 of the chimpanzee orthologue
are also within this region but large segments of them are
unsequenced. The complete sequences of exon 3, intron
3, exon 4, and the 3' UTR of the chimpanzee orthologue
are found in nucleotides 3808 though 5350 of another
accession [GenBank:NW_115304], which is known to
reside on chromosome 12 but has not been placed in the
Build 1.1 assembly of this chromosome. Furthermore,
exon 4 in this accession contains an apparent single nucle-
otide-pair insertion mutation, resulting in a frameshift
and premature termination codon in the reading frame.

To determine if the apparent gene rearrangement and
frameshift mutation are present in the chimpanzee
NANOG gene, or whether these are assembly and
sequencing errors, we compared the available sequences
of NANOG and NANOGP1 in the chimpanzee assembly
and selected PCR primer sequences in regions that dif-
fered sufficiently to ensure specific amplification of the
NANOG gene. To verify that the amplicons were not
derived from processed NANOG pseudogenes, all target
sequences included at least a portion of a NANOG-specific
intron.

Two primer combinations amplified fragments that
include the region of apparent misassembly within intron
2. Both of these primer combinations amplified PCR frag-
ments of the sizes expected if the gene is intact. We
sequenced these fragments (and all other amplified frag-
ments) of the gene and found that their sequences most
closely matched those of the intact human NANOG gene
and less closely the corresponding sequences in the
human pseudogenes, including NANOGP1, confirming

that our sequences are derived from the intact chimpan-
zee NANOG gene. Furthermore, our sequences show that
the apparent frameshift mutation in exon 4 in the Build
1.1 assembly is a sequencing error. Our sequencing ena-
bled us to assemble and annotate the genomic sequence
of the intact chimpanzee NANOG gene [Gen-
Bank:DQ179631].

Human NANOGP8 and its absence in the chimpanzee 
genome
Human NANOGP8 [GenBank:NG_004093] is located on
human chromosome 15 at 15q13.3. It is the most recent
of the NANOG processed pseudogenes and is the only one
that carries an Alu element found in the 3' UTR of the
human NANOG gene. MEGABLAST and BLASTN searches
of the chimpanzee genome failed to reveal the presence of
a NANOGP8 orthologue; all significant hits were to the
NANOG gene and other NANOG pseudogenes. To deter-
mine whether or not NANOGP8 is indeed absent from the
chimpanzee genome, we used 762 nucleotides flanking
the 5' end and 458 nucleotides flanking the 3' end of the
human NANOGP8 pseudogene as queries in a BLASTN
search of the chimpanzee genome. The search identified
highly homologous and contiguous sequences on chim-
panzee chromosome 15, spanning nucleotides 2765812
through 2767049 of the chromosome 15 contig [Gen-
Bank:NW_116401.1]. As shown in Figure 1, the
NANOGP8 gene is indeed absent from its predicted site in
the chimpanzee genome.

Other NANOG pseudogenes in the chimpanzee genome
We identified the chimpanzee orthologues of the human
NANOG processed pseudogenes NANOGP2, NANOGP3,
NANOGP4, NANOGP5, NANOGP6, NANOGP7,
NANOGP9, NANOGP10, and NANOGP11 in the Build
1.1 assembly. All of these pseudogenes are in their pre-
dicted chromosomal locations when compared to the
human genome. The complete sequences of all of these
pseudogenes except NANOGP5 and NANOGP9 are
present in the chimpanzee genome assembly. A 100-

Evidence that the NANOGP8 pseudogene is absent from the chimpanzee genomeFigure 1
Evidence that the NANOGP8 pseudogene is absent from the chimpanzee genome. Sequences flanking the human 
NANOGP8 pseudogene on chromosome 15 are present in chromosome 15 of the chimpanzee genome but the pseudogene is 
absent. Comparison of the human and chimpanzee sequences shows that the NANOGP8 pseudogene inserted itself into human 
chromosome 15 without duplication of the surrounding sequences.

6168100 GCCTTCAAGCATCTGTTTAA

NANOGP8

CAAAGCATATCTTGCCACCG 6165938

CAAAGC......AAAAAA
2123 bp

        |||||||| |||||||||||
2766607 GCCTTCAATCATCTGTTTAA

||||||||||||||||||||
CAAAGCATATCTTGCCACCG 2766568

Human NT_010194.16 
Chromosome 15

Chimpanzee NW_116401.1
Chromosome 15
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nucleotide segment in the 3' UTR of NANOGP5 and a
1760 nucleotide segment containing the 5' UTR and the
entire reading frame of NANOGP9 are unsequenced in the
Build 1.1 assembly. However, the presence of 454 nucle-
otides of the 3' UTR, as well as orthologous flanking
sequences, confirm the presence of NANOGP9 at its
expected position.

We attempted to amplify the chimpanzee orthologue of
NANOGP9 with primers designed to include small
regions of flanking sequence on both ends to fully place it
within the genome assembly. This pseudogene is embed-
ded in repetitive sequences and, although our primers
were designed to match what appeared to be small regions
of nonrepetitive sequences in the flanking regions, they
failed to amplify the target sequence. We designed primers
to match unique sequences near the ends of the
NANOGP9 reading frame (based on the human
sequence) and successfully amplified and sequenced a
region in NANOGP9 corresponding to positions 43–841
of the 918 nucleotide-pair reading frame in the functional
NANOG gene [GenBank:DQ301869]. We verified that the
sequence is indeed from NANOGP9 by its high similarity
to the human orthologue. This sequence further confirms
the presence of NANOGP9 in the chimpanzee genome
and it allowed us to compare the sequences of the human
and chimpanzee orthologues.

This sequence also resolved a question about the origins
of NANOGP9 and NANOGP10. Both are located on the X
chromosome and both contain a 15 nucleotide-pair dele-
tion that does not appear in the alignment when these two
pseudogenes are aligned with each other, suggesting that
they share this deletion. These observations imply that
NANOGP9 and NANOGP10 may be the products of a sin-
gle insertion event followed by duplication of the chro-
mosomal segment containing the pseudogene. However,
these deletions reside in a region consisting of ten copies
of an imperfect 15 nucleotide-pair tandem repeat within
the reading frame. The chimpanzee NANOGP9 ortho-
logue does not contain the deletion present in the human
orthologue, whereas the chimpanzee and human ortho-
logues of NANOGP10 have the same deletion. This obser-
vation indicates that the deletion in human NANOGP9
occurred after the H/C divergence and its origin is thus
independent of the deletion in NANOGP10. Furthermore,
we examined 5000 nucleotides on both sides of these
pseudogenes and found no evidence of a duplication. We
conclude that NANOGP9 and NANOGP10 originated
independently.

Evolution of the NANOG gene and pseudogene family
The entire functional NANOG gene (according to our
sequencing data) and NANOGP1 are present in both the
human and chimpanzee genome assemblies at ortholo-

gous chromosomal positions. In the 3' UTR of the
NANOG gene, there is an Alu element, which is missing
from NANOGP1 in both genomes. Therefore, the
NANOGP1 unprocessed pseudogene arose through dupli-
cation of the chromosomal region containing NANOG
before the human-chimpanzee (H/C) divergence and
before insertion of the Alu element into the NANOG gene.
Because the same Alu element is present in both the
human and chimpanzee NANOG genes, its insertion must
also have preceded the H/C divergence. The processed
pseudogenes NANOGP2, NANOGP3, NANOGP4,
NANOGP5, NANOGP6, NANOGP7, NANOGP9, and
NANOGP10 lack this Alu element. They thus likely arose
before its insertion and, therefore, also predate the H/C
divergence. The presence of the NANOGP11 pseudogene
fragment in both the human and chimpanzee genomes
likewise shows that its origin preceded H/C divergence.

The human NANOGP8 pseudogene is highly similar to
the NANOG gene, is absent from the chimpanzee
genome, and contains the same Alu element as the
NANOG gene, indicating that this processed pseudogene
is the most recent of the NANOG pseudogenes and was
inserted into human chromosome 15 after the H/C diver-
gence.

Based on the assumption of a pseudogene mutation rate
of 1.25 × 10-9 mutations per site per year in humans
[16,17], Booth and Holland [4] estimated the origin of
the NANOGP8 pseudogene as the most recent at 5.2 mil-
lion years ago, about the time of the H/C divergence. Our
results demonstrate that NANOGP8 arose after the H/C
divergence, and thus are consistent with this date. Booth
and Holland [4] estimated the origins of the other pseu-
dogenes as ranging from over 150 million years ago for
NANOGP6 to 22 million years ago for NANOGP1, with
the caveat that these dates may be inaccurate, and are
likely overestimates, because nucleotide substitution rates
for pseudogenes are not well calibrated within this range.

Booth and Holland [4] determined the relative ages of the
human NANOG pseudogenes by counting the number of
mutations in the reading-frame regions of the human
NANOG pseudogenes when compared to the reading
frame of the functional NANOG gene, scaling their analy-
sis by counting adjacent deletions as a unit-site size of one
to compensate for the reduced opportunity of substitu-
tion mutation in deleted regions. They concluded that
NANOGP6 is the most ancient of the pseudogenes, fol-
lowed in order of most ancient to most recent by
NANOGP5 or NANOGP3, then NANOGP10, then
NANOGP9 or NANOGP2, then NANOGP7, then
NANOGP4, then NANOGP1, and NANOGP8 as the most
recent. Booth and Holland's analysis did not distinguish
the order of NANOGP5 and NANOGP3 relative to each
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other, nor of NANOGP2 and NANOGP9 relative to each
other, because of similar degrees of divergence for each of
these pairs of pseudogenes from NANOG.

We conducted a similar analysis of relative age, with the
same scaling for multiple-nucleotide deletions as a single
unit site when those deletions were shared by the human
and chimpanzee sequences. We identified mutations that
occurred after the H/C divergence as differences between
the human and chimpanzee sequences and corrected
them to reflect the ancestral sequence at the time of the H/
C divergence before completing our analysis. This correc-
tion was especially important for NANOGP10, which has
accumulated 20 mutations since the H/C divergence,
compared to 1–10 mutations for the other pseudogenes.
We excluded NANOGP8 from this correction because of
its absence in the chimpanzee genome. Also, since
NANOGP3 is a truncated pseudogene with only 254
nucleotides within the NANOG coding region, we com-
pared only the portions of NANOG and the other pseudo-
genes that aligned with these 254 nucleotides when
determining the relative age of NANOGP3. The pseudog-
ene fragment NANOGP11 was not included in Booth and
Holland's analysis nor ours because it lacks the entire
reading frame and has no significant homology with sev-
eral of the other processed pseudogenes.

Comparison of the sequences after these adjustments
results in a relative order that is the same as that deter-
mined by Booth and Holland [4]. Also similar to Booth
and Holland's conclusions, our analysis showed that
NANOGP3 and NANOGP5 were almost identical in the
degree of similarity to NANOG (88.6% and 88.2%,
respectively), and that NANOGP2 and NANOGP9 were
likewise nearly identical in the degree of divergence from
NANOG (94.6% and 94.4%, respectively). Thus, like
Booth and Holland [4], we could not conclusively deter-
mine the relative orders within each of these two pairs of
pseudogenes using this type of analysis.

Such an analysis assumes that natural selection has con-
served the functional gene's sequence so that the modern
sequence of the reading frame represents the source
sequence of each of the pseudogenes. Under most circum-
stances, such an assumption cannot readily be tested.
However, the periodic insertion and fixation of ten
NANOG pseudogenes with a complete or partial reading
frame should have left a record, albeit an imperfect one,
of the functional NANOG gene-sequence evolution. If we
assume that the reading frame of the functional NANOG
gene has changed during the time when the pseudogenes
were inserted into the genome, the mutational differences
in the pseudogenes should consist of three different types:
1) source-gene mutations, defined as those that occurred
in the functional NANOG gene after the insertion of one

pseudogene but before the insertion of another, resulting
in a polymorphism between these pseudogenes, 2) post-
insertion mutations, defined as those that occurred in a
pseudogene after its insertion but before the H/C diver-
gence, and 3) post-H/C divergence mutations, defined as
mutations that occurred in the NANOG gene and its pseu-
dogenes after the H/C divergence. We readily identified 88
post-H/C divergence mutations in the reading-frame
regions of the NANOG gene and its pseudogenes, and in
all but four cases we were able to determine the mutant
and ancestral nucleotides at each site by comparison of
the human and chimpanzee orthologues with the
NANOG gene and the other pseudogenes.

Some of the source-gene mutations should be distinguish-
able from post-insertion pseudogene mutations in our
data as a nucleotide that is identical in a set of older pseu-
dogenes, which then changes to a different nucleotide in
a set of younger pseudogenes. Moreover, if possible
source-gene mutations can be identified, they can be used
to reconstruct the evolutionary history of the pseudogene
family, and to some extent the evolutionary history of the
gene itself.

To reconstruct the evolutionary history of the NANOG
gene and its pseudogene family with source-gene muta-
tion analysis, we aligned the reading frame of the human
and chimpanzee NANOG gene with the corresponding
sequences in all pseudogenes (except NANOGP11, which
lacks the reading frame), and corrected (in all but four
cases) post-H/C divergence mutations to reflect the ances-
tral sequence. We identified sites with possible source-
gene mutations as a nucleotide shared by two or more
pseudogenes and a different nucleotide shared by two or
more additional pseudogenes. Any nucleotide present in
a particular position in only one pseudogene was consid-
ered as a post-insertion pseudogene mutation. A total of
68 sites (out of 918) within the reading frame met these
criteria for identification of possible source-gene muta-
tions. We then identified the most parsimonious order of
pseudogenes as the one which required the fewest
number of source-gene mutations across these 68 sites.

The most parsimonious ordering of the NANOG pseudo-
genes (154 possible source-gene mutations across 68
sites) from most ancient to most recent is NANOGP6,
NANOGP5, NANOGP3, NANOGP10, NANOGP2,
NANOGP9, NANOGP7, NANOGP1, NANOGP4, and
NANOGP8 as the most recent. The next most parsimoni-
ous ordering (156 mutations) is the same as the above
order but with the positions of NANOGP5 and NANOGP3
reversed. As a truncated pseudogene, NANOGP3 contains
only 19 possible source-gene mutation sites. Of these,
only five are informative in distinguishing NANOGP3 and
NANOGP5, three supporting NANOGP5 as the older
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pseudogene and two supporting NANOGP3. Sites with
only one mutation in a particular order are more likely to
represent a true source-gene mutation than sites with mul-
tiple mutations, which probably consist of a combination
of source-gene and post-insertion mutations. The three
sites, 399, 531, and 568, that support NANOGP5 as the
older pseudogene require 1, 2, and 1 mutations to explain
the order, respectively. The two sites that support
NANOGP3 as the older pseudogene (sites 390 and 566)
require 5 and 4 mutations, respectively, to explain that
order, suggesting that the most parsimonious order
(NANOGP5 older than NANOGP3) is also the most plau-
sible with respect to these two pseudogenes. Additionally,
our analysis clarifies the relative order of NANOGP2 and
NANOGP9 by clearly placing NANOGP2 as the older of
the two (reversing their positions in the order requires
168 mutations).

The only notable discrepancy between the results of
source-gene mutation analysis and ordering by overall
similarity to the modern NANOG gene is the relative
placement of NANOGP1 and NANOGP4. In the latter
analysis, the functional NANOG gene is more similar to
NANOGP1 (98.6%) than it is to NANOGP4 (96.4%),
implying that NANOGP4 is the older pseudogene. How-
ever, source-gene mutation analysis places NANOGP4 as
the more recent of the two. Examination of the mutations
that distinguish NANOGP1 from NANOG provides com-
pelling evidence that NANOGP1 is indeed the older pseu-
dogene. NANOGP1 is an unprocessed pseudogene that
arose from duplication of a segment of chromosome 12,
and thus may have remained functional for an undeter-
mined period of time after its formation. As Booth and
Holland [4] pointed out, NANOGP1 cannot use the same
initiation codon as NANOG because a mutation at posi-
tion 25 in the reading frame produced a premature termi-
nation codon after only eight amino acids. This mutation
is present in both the human and chimpanzee ortho-
logues indicating that it preceded the H/C divergence.
Booth and Holland noted, however, that of the three char-
acterized human transcripts from NANOGP1, two are
alternatively spliced to remove all of exon 1, so that the
NANOGP1 reading frame begins at a position correspond-
ing to the 58th amino acid in the protein encoded by
NANOG, which is an internal methionine in the NANOG
protein. If NANOGP1 did indeed remain functional after
its formation, we would expect natural selection to con-
serve the sequence within its reading frame when com-
pared to NANOG.

After correction to the ancestral sequence for post-H/C
divergence mutations, 15 mutations distinguish
NANOGP1 from the NANOG reading frame, and they are
nonrandomly distributed. Twelve are clustered in a 121-
nucleotide region entirely within exon 1 of the NANOG

gene, a region removed during splicing in two character-
ized NANOGP1 transcripts. Of the three mutations in
NANOGP1's apparent reading frame, two are nonsynony-
mous and one is synonymous. A nonsynonymous muta-
tion at position 246 is a guanine-to-thymine substitution
that results in a lysine-to-asparagine substitution in the
protein. Comparison with the human and chimpanzee
sequences of the other pseudogenes reveals that this is a
source-gene mutation that supports NANOGP1 as being
older than NANOGP4. Comparison of this polymor-
phism to the sequences of the other pseudogenes reveals
that the guanine in NANOGP1, and therefore the lysine in
the protein, are ancestral, and that the source-gene muta-
tion occurred after duplication of NANOGP1 but before
insertion of NANOGP4. Interestingly, Booth and Holland
[4] found through experimental sequencing that this par-
ticular mutation (and amino acid substitution) is poly-
morphic in modern humans, suggesting that neither
lysine nor asparagine is detrimental to protein function at
this position.

The other nonsynonymous mutation is a cytosine-to-
thymine substitution at position 477, resulting in a pro-
line-to-leucine substitution in the protein. Because pro-
line and leucine have similar biochemical properties, this
mutation is also not likely to adversely affect protein func-
tion. The NANOG gene and all other pseudogenes in both
the human and chimpanzee genomes have a cytosine res-
idue at this position, indicating that this is a post-duplica-
tion mutation in NANOGP1.

The single synonymous mutation in the apparent reading
frame is at position 384, which lies within the homeobox
region. This is clearly a source-gene mutation that also
supports the ordering of NANOGP1 as being older than
NANOGP4. Only NANOG, NANOGP4, and NANOGP8
have a cytosine at this position; all other pseudogenes,
including NANOGP1, have a thymine at this position.

Taken in the aggregate, these observations strongly sup-
port the hypothesis that NANOGP1 remained functional
after duplication and, therefore, was subject to selection-
driven conservation of its reading frame. They also raise
the possibility that NANOGP1 may retain some function-
ality or that its loss of function may be evolutionarily
recent.

Nucleotide polymorphisms at possible source-gene muta-
tion sites may represent true source-gene mutations or
post-insertion pseudogene mutations. Sites in which a
single mutation separates a set of older pseudogenes from
a set of younger pseudogenes are the most plausible sites
for identification of true source-gene mutations. In the
most parsimonious ordering, 29 of the 68 sites contained
a single possible source-gene mutation (Figure 2). Twenty
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of these mutations are nonsynonymous and nine are syn-
onymous. If a mutation is indeed a true source-gene muta-
tion, the amino acid it encodes may be reflected in the
NANOG proteins of other vertebrates. To determine if this
is the case, we used the amino acid sequence of the
polypeptide encoded by the human NANOG gene [Gen-
Bank:NP_079141] as a query for a BLASTP search of the
protein database of all organisms. Proteins from six spe-
cies displayed full-length or nearly full length homology
to the NANOG protein: crab-eating macaque (Macaca fas-
cicularis [GenBank:BAD72891]), house mouse (Mus mus-

culus [GenBank:XP_132755]), Norway rat (Rattus
norvegicus [GenBank:XP_575662]), domestic cattle (Bos
taurus [GenBank:AAY84556]), domestic goat (Capra hircus
[GenBank:AAW50709]), and domestic dog (Canis famil-
iaris [GenBank:XP_543828]). We excluded a match to a
computationally generated hypothetical protein in chim-
panzee [GenBank:XP_510125] because it is derived from
the DNA sequence of chimpanzee NANOGP7.

As shown in Figure 2, several of the putative source-gene
mutations and their inferred effect on amino acid

Potential single source-gene mutations in the most parsimonious ordering of the NANOG pseudogenes by source-gene muta-tion analysisFigure 2
Potential single source-gene mutations in the most parsimonious ordering of the NANOG pseudogenes by 
source-gene mutation analysis. The left side depicts nucleotide sequences of the NANOG gene and pseudogenes after cor-
rection of post-H/C divergence mutations to the ancestral sequence. In two instances (sites 565 and 903), the ancestral 
sequence could not be determined, so both human and chimpanzee sequences are indicated with the human sequence on the 
left. At site 253, the human and chimpanzee sequences differ for NANOG, and the chimpanzee sequence is ancestral. However, 
we included the polymorphism because it explains the guanine in NANOGP8 (reverse arrow). Asterisks (*) denote post-inser-
tion mutations and hyphens (-) denote deletions in the DNA sequences of the pseudogenes. The right side depicts inferred 
amino acid substitutions and the corresponding amino acids in the NANOG proteins of eight species: Cf = Canis familiaris, Ch = 
Capra hircus, Bt = Bos taurus, Rn = Rattus norvegicus, Mm = Mus musculus, Mf = Macaca fascicularis, Hs = Homo sapiens, Pt = Pan 
troglodytes. The "h" designation following a site number indicates that the site lies within the homeobox region.

 10  A  *  -  A  A  G  G  G  G  G  G       N   D      M  -  G  D  -  D   D    4
 31  C  C  -  C  C  C  C  C  T  T  T       L (syn)    -  -  L  L  -  L   L   11    
 52  A  A  -  A  G  G  G  G  G  G  G       N   D      N  -  N  N  -  D   D   18
 68  T  T  -  C  C  C  C  C  C  C  C       L   S      S  -  S  S  -  S   S   23
 72  A  A  -  T  T  T  T  T  T  T  T       P (syn)    P  -  P  P  -  P   P   24
196  T  T  -  C  C  C  C  C  C  C  C       S   P      P  P  P  P  P  P   P   66
199  A  A  -  G  G  G  G  G  G  G  G       N   D      D  D  D  S  D  D   D   67
249  C  C  -  C  C  T  T  T  T  T  T       S (syn)    R  S  E  L  G  S   S   83    
250  A  A  -  A  G  G  G  G  G  G  G
251  C  C  -  C  C  C  C  C  C  T  T
253  G  G  -  A  A  A  A  A  *  G G/A     A  T (A)    A  R  T  R  E  T  A/T  85
275  *  T  -  T  C  C  C  C  C  C  C       L   P      Q  P  P  L  L  P   P   92     
384h T  T  T  T  T  T  T  T  C  C  C       L (syn)    L  L  L  L  L  L   L  128h     
399h T  T  C  C  C  C  C  C  C  C  C       N (syn)    N  N  N  N  N  N   N  133h
402h T  T  T  T  T  C  C  C  C  C  C       L (syn)    L  L  L  L  L  L   L  134h
477  T  T  T  T  T  T  T  G  G  G  G       P (syn)    P  P  P  L  L  P   P  159
565  A  A  A  A  A  A A/C C  C  C  C       T   P      P  M  S  A  A  P   P  189
568  T  T  A  A  A  A  A  A  A  A  A       S   T      S  T  P  S  S  T   T  190
603  -  T  T  G  G  G  G  G  G  G  G       C   W      W  W  W  W  W  W   W  201
605  -  G  G  G  G  G  A  A  A  A  A       S   N      N  N  N  T  T  N   N  202
632  -  G  -  G  *  G  A  A  A  A  A       R   Q      W  Q  W  W  W  Q   Q  211
657  T  T  -  -  C  C  C  C  C  C  C       H(syn)     H  H  H  P  P  H   H  219 
661  C  C  -  -  T  T  T  T  T  T  T       L   W      W  W  W  W  W  W   W  221
713  A  A  -  G  G  *  G  G  G  G  G       N   S      N  S  N  A  A  S   S  238
805  A  A  -  A  A  A  G  G  G  G  G       T   A      T  A  T  -  -  A   A  269
817  A  A  -  A  A  A  G  G  G  G  G       S   G      S  G  N  N  N  G   G  273
820  T  T  -  C  C  C  C  C  C  C  C       
821  A  A  -  A  A  A  A  T  T  T  T       
903  G  G  - G/A A  A  A  A  A  A  A       Q (syn)    -  -  Q  P  -  Q   Q  301           

Site in
Reading

Frame P6 P9P10P3P5 CfP2 P7 P1 P4 P8 NA
Inferred AA
Substitution MmCh RnBt Mf Hs/Pt

T  A  V     T  A  S  R  P  A   V   84

S  H  L     H  H  Y  L  L  L   L  274

Site in
Polypeptide

Nucleotides          Amino Acids
NANOG gene (NA)
and Pseudogenes Eight Species
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sequence in the human/chimpanzee NANOG pseudogene
family are consistent with the corresponding amino acids
in the NANOG proteins of other eutherian mammals. For
example, at site 52 in the reading frame, an adenine-to-
guanine substitution in the NANOG gene apparently
occurred after the insertion of NANOGP10 but before the
insertion of NANOGP2, resulting in an asparagine-to-
aspartic acid substitution in amino-acid residue 18 of the
polypeptide. The dog, cattle, and rat proteins have aspar-
agine at this position, whereas the macaque, chimpanzee,
and human have aspartic acid at this position. Similar pat-
terns of congruence between amino acid substitution and
amino acid sequences in other mammals is evident at
positions 250–251, 275, 568, 713, 817, and 820–821 of
the reading frame (Figure 2).

Another feature of the putative source-gene mutations is
the paucity of amino acid substitutions at source-gene
mutation sites within the homeobox region (positions
283–462 in the reading frame) indicative of high source-
gene sequence conservation in this region. Six possible
source-gene mutation sites are present within the home-
obox region (three of which are single-mutation sites
depicted in Figure 2). Five of these six sites have only syn-
onymous mutations. The single nonsynonymous muta-
tion is at position 358, with thymine present in
NANOGP7 and NANOGP9 and cytosine present in all
other pseudogenes and the NANOG gene, resulting in a
leucine-to-phenylalanine substitution in the NANOGP7
and NANOGP9 sequences. These thymines may be inde-
pendent post-insertion mutations or they could be a
source-gene mutation that reverted to its original
sequence after the insertion of NANOGP7.

Pseudogene mutations can be used to estimate the dates
of origin for individual pseudogenes. However, only post-
insertion mutations not subject to purifying selection are
reliable indicators of the age of a pseudogene. Our analy-
sis shows that, in the case of the NANOG pseudogene
family, source-gene mutations are present and may con-
tribute to a significant number of polymorphisms in the
pseudogenes. Although some source-gene and post-inser-
tion mutations may be readily distinguished based on
their patterns when the pseudogenes are ordered, others
may not be so easily discerned. Even when post-insertion
mutations can be reliably identified, pseudogene evolu-
tion rates have not been well calibrated prior to the H/C
divergence, as pointed out by Booth and Holland [4]. For
these reasons, we have avoided age estimations in this
study, focusing instead on the relative order of NANOG
pseudogene origins.

Conclusion
A synthesis of the results from this article with those of
Booth and Holland [4] produces a straightforward evolu-

tionary history of the NANOG pseudogene family in the
human and chimpanzee genomes. NANOGP6 is the most
ancient of the pseudogenes followed in order of most
ancient to most recent by the processed pseudogenes
NANOGP5, NANOGP3, NANOGP10, NANOGP2,
NANOGP9, NANOGP7, and NANOGP4. Before insertion
of NANOGP4, the region on chromosome 12 containing
NANOG underwent a duplication producing NANOGP1,
which remained functional and subject to selection-
driven conservation of its reading frame. All of these
events, and the resulting fixation of their products in the
genome, preceded the H/C divergence. Following the H/C
divergence, NANOGP8 inserted itself into chromosome
15 in the human lineage.

Methods
DNA amplification, cloning, and sequencing
We obtained chimpanzee DNA (individual PR00226)
from the Integrated Primate Biomaterials and Informa-
tion Resource (IPBIR) of the Coriell Institute for Medical
Research (Camden, NJ, USA). We selected sequences for
PCR primers specific to the chimpanzee NANOG gene by
comparing the NANOG and NANOGP1 sequences from
the Build 1.1 assembly and selecting sites with at least two
variant nucleotides, with a variant nucleotide on the 3'
end of each primer. We selected primer sequences for the
NANOGP9 reading frame by identifying sites that con-
tained two variants unique to human NANOGP9 with a
variant nucleotide on the 3' end of each primer. All oligo-
nucleotide primers were manufactured by Integrated DNA
Technologies, (Coralville, IA, USA). We amplified DNA
using AccuprimeT Hi-Fidelity Taq polymerase (Invitrogen,
Carlsbad, CA, USA) according to the manufacturer's rec-
ommendation at 2.5 mM MgCl2. The PCR amplification
protocol consisted of an initial denaturation step of 1.5
min at 94°C, followed by 35 cycles of amplification con-
sisting of 30 s denaturation at 94°C, 30 s for primer
annealing at 57°C and between 1 and 5 min of extension
at 68°C, depending on the anticipated product size (1
min/1 kb). We cloned the resulting amplicon using the
pGEM-T Easy Vector System II (Promega, Madison, WI,
USA), and identified recombinant clones by standard
blue/white screening methods with IPTG and X-Gal. We
purified plasmid DNA from each selected recombinant
clone using a GenEluteTM plasmid miniprep Kit (Sigma,
St. Louis, MO, USA) and quantified the DNA using a spec-
trophotometer. Isolated plasmid DNA was sequenced
bidirectionally from M13 (F/R) primers. A 3,889 nucle-
otide-pair clone containing exon 1, intron 1 and part of
exon 2 of the NANOG gene was sequenced by primer
walking. DNA sequencing was performed at the Brigham
Young University DNA Sequencing Center (Provo, UT,
USA) using standard ABI Prism Taq dye-terminator cycle-
sequencing methodology. DNA sequence chromatograms
were analyzed with the Contig Express program in the
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Vector NTI software suite (InforMax, Frederick, MD,
USA).

DNA sequence analysis
To initially identify the locations and DNA sequences of
the NANOG gene and its pseudogenes in the chimpanzee
genome, we used the GenBank entries for the human
NANOG gene and its 11 pseudogenes as queries for
MEGABLAST searches of the chimpanzee genome Build
1.1 assembly with default settings including filtering for
repetitive sequences. After identifying the genes and pseu-
dogenes in the chimpanzee genome, we copied the
sequences and alignments then confirmed and refined
them with the "align two sequences" (bl2seq) BLAST tool
with a word size of seven and filtering disabled. We fur-
ther refined the alignments manually, especially on the
ends of the sequences where word-size limitations failed
at times to identify true alignments.

We copied flanking DNA sequences on both sides of the
human NANOGP8 and NANOGP9 pseudogenes and used
them as MEGABLAST queries with default settings and fil-
tering to search the chimpanzee genome to confirm
whether or not these pseudogenes were present. After
MEGABLAST identified the sequences, we refined align-
ments with the bl2seq tool with a word size of seven and
filtering disabled and with manual refinements.

To facilitate determination of the evolutionary order of
pseudogene origin, we copied the reading frame of the
functional human NANOG gene and used it as a query in
the bl2seq tool with a word size of seven and filtering dis-
abled to determine the best alignment with the corre-
sponding regions of each of the pseudogenes except
NANOGP11, which does not include the reading-frame
region. We used these alignments to generate a multiple
alignment of the reading-frame region of human and
chimpanzee orthologues of the NANOG gene and all
pseudogenes except NANOGP11. This multiple alignment
allowed us to identify post-H/C divergence mutations and
correct them to reflect the ancestral sequences, and to
identify and distinguish between potential source-gene
mutations and post-insertion mutations in the pseudo-
genes, as described in the results and discussion section.

List of abbreviations
UTR = untranslated region

H/C divergence = human-chimpanzee divergence

EST = expressed sequence tag
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