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Abstract

Background: Completed genomes and environmental genomic sequences are bringing a
significant contribution to understanding the evolution of gene families, microbial metabolism and
community eco-physiology. Here, we used comparative genomics and phylogenetic analyses in
conjunction with enzymatic data to probe the evolution and functions of a microbial nitrilase gene
family. Nitrilases are relatively rare in bacterial genomes, their biological function being unclear.

Results: We examined the genetic neighborhood of the different subfamily genes and discovered
conserved gene clusters or operons associated with specific nitrilase clades. The inferred
evolutionary transitions that separate nitrilases which belong to different gene clusters correlated
with changes in their enzymatic properties. We present evidence that Darwinian adaptation acted
during one of those transitions and identified sites in the enzyme that may have been under positive
selection.

Conclusion: Changes in the observed biochemical properties of the nitrilases associated with the
different gene clusters are consistent with a hypothesis that those enzymes have been recruited to
a novel metabolic pathway following gene duplication and neofunctionalization. These results
demonstrate the benefits of combining environmental genomic sampling and completed genomes
data with evolutionary and biochemical analyses in the study of gene families. They also open new
directions for studying the functions of nitrilases and the genes they are associated with.

Background

Having colonized virtually every environment, bacteria
and archaea have evolved enzymatic solutions for a wide
range of metabolic biochemical transformations [1,2].
Studying enzymes derived from organisms inhabiting
these environments is important for understanding how
microbes adapt, react to and transform the environment.
The overwhelming majority of microbial species remain
however uncultivated [3]. A variety of functional and
sequence-based approaches have been developed for dis-
covering and characterizing genes, operons and even

entire genomes directly from the environment, collec-
tively referred to as metagenomics or environmental
genomics [4]. The use of environmental genomics has
already led to important discoveries such as genes respon-
sible for novel biological functions [5], microbial com-
munity metabolic traits [6-8] and dramatic increases in
the diversity of various enzyme families [9,10]. Subse-
quent biochemical and evolutionary analyses can
strengthen the biological end ecological inferences even
before organisms that carry that genetic information are
isolated in culture [11-13]. From a practical perspective,
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microbial environmental genomics has been a successful
approach for the discovery of enzymes for a broad spec-
trum of biotechnological applications [14-17].

To gain insight into the evolution of function in a gene
family that has been extensively sampled by environmen-
tal genomic screening and characterized biochemically,
we focused on bacterial nitrilases. These enzymes are
members of the carbon-nitrogen hydrolase superfamily
which catalyze the hydrolysis of a wide range of non-pep-
tide carbon-nitrogen bonds [18-20]. The nitrilase family
hydrolyzes nitriles to their corresponding carboxylic
acids, releasing ammonia. This reaction is likely involved
in detoxification of xenobiotics and nitriles produced as
defense chemicals by other microorganisms and plants, as
well as in secondary metabolite biosynthetic pathways.
Nitrilases appear to be rare in bacteria (out of over 150
sequenced bacterial genomes only 10 contain nitrilase
genes). Recently, over 130 nitrilases were identified by
functional screening of hundreds of environmental DNA
libraries, for use in industrial biocatalysis applications [9].
Those enzymes were characterized biochemically and
classified into six subfamilies, four of them with no repre-
sentatives in known bacterial species. It was found that a
number of enzymatic properties (substrate specificity and
enantioselectivity) were specific to subfamilies and, in
some cases, correlated with the biogeography and ecology
of the environmental samples.

The role of gene duplication, natural selection and func-
tional diversification in the evolution of the nitrilase gene
family is unknown. The correlation of distinct enzymatic
properties with the different genes subfamilies suggest
that nitrilases have diverged functionally to accommodate
distinct biological roles in microbial communities that
occupy various ecological niches. Functional divergence is
the result of changes in selection pressure and is often
accompanied by associations with novel gene clusters or
operons which encode for enzymes with coupled meta-
bolic activities. To begin addressing some of these aspects,
we analyzed the genetic neighborhoods of all available
nitrilase genes, identified conserved patterns of conserved
gene clustering relative to biochemical data and phylog-
eny and propose a hypothesis on nitrilase evolution
involving gene duplications and Darwinian selection.

Results and discussion

The nitrilases from cultivated bacteria belong to clade-
specific gene clusters

Bacterial nitrilases (137 environmental sequences and 10
sequences from cultivated species) have been recently
classified into six major clades [9] that we refer to as sub-
families. We analyzed more recently released genome
sequences and found an additional nine novel nitrilases.
Phylogenetic analysis of a sequence dataset consisting of
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all nitrilase genes from cultivated bacteria shows that 18
sequences belong to subfamilies one and two (Fig. 1). The
level of sequence similarity among these 18 enzymes is
quite high, ranging from 50-70% pairwise identity in sub-
family one to 30-40% in subfamily two. The relation-
ships between the different nitrilases do not reflect the
taxonomy of their host organisms. Additionally, for sev-
eral genera or species that harbor two nitrilases (Pseu-
domonas,  Klebsiella  pneumoniae and  Burkholderia
fungorum), the genes belong to different subfamilies/
clades, suggesting ancient gene duplications or acquisi-
tion by horizontal gene transfer (HGT). Rhodococcus rhodo-
chrous on the other hand contains two closely related
nitrilases, suggesting a more recent gene duplication
event. Supporting the possibility of HGT, one of the nitri-
lase genes we identified by database mining is in the plas-
mid pLVPK of Kiebsiella pneumoniae, which may be
transferable to other bacteria. Also, several fungal cyanide
hydratase genes form a clade deeply nested within sub-
family two of bacterial nitrilases, suggesting HGT acquisi-
tion from bacteria, followed by neofunctionalization. The
paucity of nitrilase genes in bacterial genomes makes it
difficult to evaluate the contribution of the different evo-
lutionary events (duplications, gene loss and HGT) to the
observed distribution and the functional significance of
the presence of different types of enzymes in related
organisms.

In bacteria, genes are often organized in clusters (e.g.
operons, regulons) that reflect involvement in a common
metabolic process or association in a supramolecular
complex [21-23]. To determine if nitrilase function could
be inferred from the nature of the surrounding genes, we
analyzed those genes in the available genomic data. We
found that all of the known seven subfamily 1 nitrilase
genes (six genomic and one on a plasmid) belong to a
conserved and previously undescribed cluster of seven
genes, Nit1C (Figure 1 and Figure 2). Six of the coding
sequences are on the same DNA strand, separated by few
or no intergenic nucleotides and are likely part of an
operon/regulon. This hypothesis is supported by analysis
using a recent method for operon prediction [24]
although we could not identify conserved transcription
factor binding sites in the upstream region. The genes in
this predicted operon occur in the order (1) hypothetical
protein, (2) nitrilase, (3) radical S-adenosyl methionine
superfamily member, (4) acetyltransferase, (5) AIR syn-
thase, and (6) hypothetical protein. The seventh gene
encodes a predicted flavoprotein, putatively involved in
K+ transport and is located either at the beginning of the
cluster but on the opposite strand (cyanobacteria Syne-
chocystis sp. PCC6803 and Synechococcus sp. WH8102) or as
the last gene of the cluster, in the same orientation as the
others (proteobacteria Burkholderia fungorum, Rubrivivax,
Photorhabdus luminescens and Klebsiella pneumoniae). In
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Maximum likelihood tree of nitrilases from known bacterial species (accession numbers are in parentheses). Bootstrap support
values are indicated for the major groups only. The schematic organization of the gene clusters that contain a nitrilase ORF is

shown for species where that sequence information is available.

Verrucomicrobium spinosum, the cluster has been rear-
ranged, as ORFs 6 and 7 occur in between ORFs 3 and 4.
Yet another variation exists in the betaproteobacteria Bur-
kholderia and Rubrivivax where a glycosyltransferase gene
is inserted between ORFs 5 and 6. These slight variations
in the cluster architecture correlate to the major taxo-
nomic bacterial groups (Cyanobacteria, Beta- and Gamma
proteobacteria). Outside of Nit1C there is no conserva-
tion between the different species in terms of genes or
metabolic functions encoded by gene clusters. The pres-
ence of genes associated with mobile DNA elements
(transposases, IS elements) immediately downstream of
the Nit1C clusters in Synechocystis and Photorhabdus and
the apparent interruption of a large polyketide synthase
pathway by the nitrilase cluster in Photorhabdus may indi-
cate HGT or internal chromosomal rearrangements.

In the case of subfamily 2, gene neighborhood informa-
tion was available for only four of the twelve genes from
cultivated bacteria. In Bacillus sp. and Pseudomonas syrin-

gae, the nitrilase gene is apparently co-transcribed with a
downstream phenylacetaldoxime dehydratase gene and
preceded by an araC transcription factor transcribed from
the other strand. The other nitrilase genes (from Burkhol-
deria, Bradyrhizobium and Ralstonia) are part of unrelated
clusters (Figure 1).

In addition to the nitrilases from completed genomes of
cultivated bacteria, we searched for such enzymes in two
large environmental sequence datasets: the acid-mine
drainage microbial mats [7] and the Sargasso Sea [10]
using BLASTP. No nitrilases were found in the acid-mine
dataset. In the Sargasso Sea dataset we identified 17 nitri-
lases that were full-length or long enough to be phyloge-
netically informative. Three of the genes appear to be
eukaryotic while eight bacterial genes are close relatives to
nitrilases from Synechoocccus or Burkholderia. The remain-
ing six genes do not appear to have close relatives among
known nitrilases and belong to subfamilies 2, 4 and 5 [see
Additional file 1]. Finding so few nitrilase genes in such a
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Organization of gene clusters around the subfamily | nitrilases in sequenced bacterial genomes. The highly conserved gene
cluster Nit| C is flanked by unrelated genomic neighbourhoods in the different species. Gene names are based on the available
genomic annotation.
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large dataset suggests that for uncovering the sequence
space of a gene family, functional screening of a large
number of samples from very different environments is
more efficient than deep sequence coverage of one or a
few environments.

Nitrilases associated with different types of gene clusters
have distinct enzymatic properties

For the nitrilase genes identified from environmental
DNA, the identity of the host organism is unknown. How-
ever, because those libraries were constructed using frag-
ments of genomic DNA several times larger than the
average nitrilase gene length (~1 kb), we also analyzed the
the gene neighborhood of the environmental nitrilase.
Because of the highly conserved nature of the Nit1C clus-
ter and its occurrence in distant taxa of bacteria, we first
focused on mapping its distribution among the environ-
mental nitrilase clones. We found that the Nit1C cluster is
strictly confined to a group of subfamily 1 nitrilases that
includes the seven genes identified in completed genomes
and 14 of the environmental ones. Four of the subfamily
1 nitrilases from the Sargasso Sea dataset had small flank-
ing sequences and we identified the presence of the Nit1C
type genes (ORFs 1 or 3), similar to those of their close rel-
atives from Synechococcus and Burkholderia. However,
because of their incomplete length, those sequences were
not included in further analyses.

The nitrilase genes that belong to the Nit1C cluster are
indicated on a maximum likelihood phylogenetic tree cal-
culated using the subfamily 1 genes as well as several out-
group sequences from subfamilies 2 and 3 (Figure 3A).
Since the size of the genomic insert in the environmental
clones was limited, not all the Nit1C genes were identi-
fied; however, we did not find evidence to suggest that the
cluster was different in any of the host genomes (Figure
3B). We also identified a more recent evolutionary event
that marks the loss of nitrilase association with the Nit1C
cluster. After that transition event (TE), nitrilase genes are
no longer associated with a highly conserved gene cluster.
Instead, they are flanked by genes encoding MarR tran-
scriptional regulators, epimerases, epoxide hydrolases
and other ORFs. These latter genes were not so highly con-
served in their order as those found in the Nit1C cluster.
No cultivated bacteria that contain nitrilases from this
group have been found so far.

The sister group of subfamily 1 nitrilases, subfamily 3,
consists of only three environmental type genes. We had
sufficient flanking sequence to determine the nature of
the neighboring genes for only one of the genes (3A1),
flanked by two hypothetical ORFs with no identifiable
homologs. Therefore, the Nit1C cluster appears to have
originated with and is restricted to a subset of subfamily 1
nitrilases. The more distantly related nitrilases from sub-
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families 4, 5 and 6 have no apparent associations with a
conserved gene cluster (data not shown).

In our previous study [9] we uncovered a number of cor-
relations between the biochemical properties of the envi-
ronmental microbial nitrilases and their phylogenetic
classification. Distinct gains or losses of activity or
switches in enantioselectivity coincided with the evolu-
tionary events that led to the formation of the main sub-
families. One of the most interesting findings was a
reversal in enantioselectivity (R to S) that occurred in sub-
family 1, against the model substrate hydroxyglutaroni-
trile. To correlate the differences in types of gene clusters
with the nitrilase biochemical properties, we graphed the
available hydroxyglutaronitrile activity data on the side of
the phylogenetic tree (Figure 3C). With one exception
(1B15), the enzymes that belong to the Nit1C group are
R-enantioselective on hydroxyglutaronitrile. The transi-
tion event (TE) marks changes in biochemical properties
leading to enantioselectivity reversal. The first enzyme not
associated with Nit1C (1A21) was inactive on that sub-
strate, while the next diverging ones (1A20, 1A22, 1A16,
1A17) were R-selective or not enantioselective (low boot-
strap values do not support a robust branching order).
However, the next statistically supported clade (1A14 and
above in the Figure 3A tree) show a reversal of enantiose-
lectivity followed by a steep increase in selectivity to val-
ues over 95%.

Analysis of the subfamily | nitrilase gene clusters

Having determined that subfamily 1 nitrilases belong to
two distinct subgroups based on their associated gene
clusters and enzymatic properties, we analyzed the nitri-
lase neighboring genes for clues to their individual meta-
bolic roles. First in the Nit1C cluster, ORF1 proteins are
highly conserved in length (160-163 amino acids) and
sequence (>60% identity between any two genes). How-
ever, no other homologs were found using standard
searching techniques of current databases. Using HMM
structural homology modeling (Superfamily 1.63 server)
[25], we tentatively assigned the hypothetical protein 1 to
the YchN1-like superfamily and fold, whose biochemical
activity is unknown. Next in the cluster is the nitrilase
gene. The third gene encodes a member of the radical SAM
superfamily (Pfam 04055), enzymes that catalyze a wide
variety of radical-based reactions through reductive cleav-
age of S-adenosylmethionine at an iron-sulfur center [26].
The Nit1C SAM genes form a strongly supported clade
(~50% average sequence identity), most closely related to
bacterial and archaeal genes annotated as biotin synthase-
related enzymes (COG2516) [see Additional file 2]. ORF4
in the Nit1C cluster also forms a clade of closely related
sequences and belong to the GCN5-related N-acetyltrans-
ferase (GNAT) superfamily (Pfam 00583) [27]. These
enzymes are involved in antibiotic detoxification as well
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as in histone acetylation in eukaryotes. The closest
homologs to the Nit1C GNAT genes are a number of other
acetylases from bacteria like Rhodobacter and Enterococcus
[see Additional file 2]. The fifth gene in the cluster
encodes members of the large 5'-phosphorybosyl-5-ami-
noimidazole synthase-related proteins superfamily (AIRS,
Pfam 00586). Enzymes in this superfamily are involved in
de novo purine biosynthesis, selenophosphate synthesis,

or maturation of NifE hydrogenase. These genes form a
unique clade, most closely related to a group of archaeal
genes encoding phosphoribosylformylglycinamide syn-
thases [see Additional file 2]. The last invariant position in
the cluster, ORF6, encodes a protein of approximately 100
amino acids. While the sequence identity between the
individual genes surpasses 70%, we could not find any
other relatives to these genes by any sequence analysis
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approach. The seventh ORF of Nit1C is located at either
end of the cluster, on either coding strand. This gene is a
member of the pyridine nucleotide-disulphide oxidore-
ductases (Pfam 00070, COG2072), that include flavin-
containing monooxygenases and flavoproteins involved
in K+ transport. The closest relatives to the Nit1C genes are
putative monooxygenases found in several species of Pseu-
domonas [see 1]. All Nit1C genes form clusters of closely
related sequences within their respective superfamilies,
suggesting a common function, possibly in a pathway for
detoxification of plant or microbial defense compounds.

Members of the nitrilase clade that split after the transi-
tion event are exclusively of environmental origin, with
no sequence representatives in characterized bacterial spe-
cies. Approximately two thirds of the nitrilases in this
group are associated with genes encoding a MarR
transcriptional regulator, epimerases and epoxide hydro-
lases. MarR genes (PFam 01047) are transcriptional
repressors controlling the expression of the Mar operon,
involved in multiple antibiotic resistances [28]. The nitri-
lase-associated MarR genes form a specific clade, most
closely related to genes from Xanthomonas and Desulfito-
bacterium (30-40% identity) [see Additional file 3] and
are always upstream of the nitrilase gene. The location of
the epimerase and epoxide hydrolase varies somewhat,
the epimerase ORF being usually between the nitrilase
and the epoxide hydrolase ORFs. Epimerases are a large
class of enzymes that reversibly determine stereochemical
inversions of hydroxyl substituents in carbohydrates, par-
ticipating in numerous metabolic pathways [29,30]. The
nitrilase-associated epimerases form a unique clade in
which the relationship between the genes parallels that of
their associated nitrilases. Their closest relatives are epi-
merases from species of Streptomyces (~35% identity) [see
Additional file 3]. Epoxide hydrolases belong to the large
superfamily of alpha-beta fold hydrolases and hydrate
chemically reactive epoxides to more stable dihydrodiols.
This reaction is of major importance in detoxification of a
large number of endogenous epoxide metabolites and
xenobiotic compounds in all organisms [31]. The associa-
tion of all these genes with nitrilases could indicate the
requirement for coupled reactions under the transcrip-
tional control of MarR, perhaps involved in detoxifying
sugar-based cyanogenic compounds in soils rich in decay-
ing plant material.

Positive selection as a possible driving force for nitrilase
functional diversification

The observed changes in associated gene clusters and in
enzymatic properties suggest that the hypothetical gene
duplication in subfamily 1 was followed by nitrilase
recruitment to novel metabolic functions, possibly under
selective constraints. A powerful approach to studying
changes in the selective pressure in protein encoding

http://www.biomedcentral.com/1471-2148/5/42

genes involves calculation of the nonsynonymous/synon-
ymous substitution rate ratio (® = dN/dS) (reviewed in
[32,33]). A ratio below one indicates negative (purifying)
selection, restricting amino acid changes that could inter-
fere with a well-established protein function, while ® = 1
suggests that the gene evolves neutrally. On the other
hand, a ratio significantly higher than one may indicate a
selective advantage for fixation of amino acid changes.
This can be considered evidence of positive selection asso-
ciated with functional divergence after events such as gene
duplications or changes in the environment (e.g. [34,35]).

Using a relative rate test [36], we first investigated the rate
variation between the branches flanking the transition
event (1A23/1A25 and 1A21). A likelihood ratio test
based on a three-taxon tree (consisting of 1A25 and 1A21
as test sequences and 1A29 as outgroup) compared the
null hypothesis (equal rates for both branches following
the transition event) with an alternative model with
unconstrained rates. The null model was rejected (P = 2 x
106, df = 1), supporting a 5.6 times faster overall rate for
the 1A21 lineage than for 1A25, which has maintained the
Nit1C association. A rate increase is predicted when gene
duplication is followed by functional divergence and
could occur because of positive Darwinian selection or an
increase in fixation of neutral mutations as result of relax-
ation of functional constraints [37-40].

To test if positive selection acted along the nitrilase line-
ages flanking the cluster transition event, we used a maxi-
mum likelihood (ML) approach based on codon
substitution models [34]. These models take into account
sequence features such as transition-transversion rate
biases, codon usage variation and allow testing hypothe-
ses at specific branches in a phylogeny by employing het-
erogeneous ® values among sites and lineages. Positive
selection can also be investigated using a parsimony-
based method, there being some controversy on to which
of the two methods is more reliable [41-43].

The tree used for o estimation was obtained based on the
nitrilase DNA sequences, focusing on the genes around
the transition event (Figure 6A). The first set of likelihood
models that we used, site-specific [44], assume variations
in the selective pressure across sites but no variations
among individual genes. Using these models we deter-
mined that purifying selection has a dominant role across
subfamily 1 nitrilases (o = 0.04) (Table 1). This is
reflected in the large number of conserved amino acids:
86 invariant (~25% of sites) and 149 conserved at 90%
level in this data set. No significant positive selection sig-
nal was identified using this category of models. However,
since these models average the substitution ratios of indi-
vidual sites over all lineages, they are known to lack
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Table I: Parameter estimates, likelihood scores and identified selected sites under various models. Branch numbers refer to Figure
4A. Parameters indicating positive selection are in bold. A likelihood ratio test (LRT) is used to compare a pair of nested models: one
which accounts for sites with ® > | and one which does not (the null model). To accept or reject the ® > | hypothesis, twice the log-
likelihood difference in the scores is compared with a y2 distribution with the degrees of freedom equal to the difference in the
numbers of parameters between the two models. When ML detects lineages with ® > I, an empirical Bayes analysis identifies sites
under positive selection and calculate posterior probabilities that provide a measure of confidence for that prediction.

Model P | Parameter estimates Positively selected sites Likelihood Ratio Test
MO0:one ratio I -11903.5 ®=0.0418 none
Site-specific models
Mlineutral (K=2) | -13195.5 py=0.298, p, =0.702 not allowed
M3:discrete (K=2) 3 -11627.6 p,=0.6,p, =04, m,=0.012,®;, none
=0.098
Branch-site models
Branch |
Model A 3 -13160.0 py=0.3,p,=0.70, p,#p;=0,m, none
Model B 5 -11627.6 py=04,p, =06, p,+p;=0 none
®,=0.098, », =0.012, w,=0
Branch 2
Model A 3 -13188.7 py=0296,p =0.688, pytp;= QI57 (P=0.77), Q203 (P =0.999), LRT vs. Ml 2AI = 6.8, P =0.03, df
0.016, w,=129.6 T41, QI157, Y184, N200, Q203, =2
R284 (P > 0.9)
Model B 5 -11621.4 p,=0.356, p, = 0.59, p,+p; = LRT vs. M3 (K =2) 2A1=6.2,P =

0.05
@y =0.1, ®, = 0.0125, = 9.7

sensitivity in detecting positive selection that acts only
along a few lineages (e.g. [44,45].

To investigate if adaptive evolution acted alongside
branches around the transition event, we also used a more
recently developed set of maximum likelihood models,
which allow the o ratio to vary among both sites and lin-
eages [46]. These models are more sensitive in detecting
positively selected sites along a pre-specified lineage of
interest ("foreground" branch) as compared to the rest of
the genes ("background" branches). These models were
applied to the two lineages that followed the transition
event (branches 1 and 2 in Figure 4A). For branch 1,
which belongs to the Nit1C nitrilases and served as a neg-
ative control, we did not detect any positive selection sig-
nal. Branch 2 represents the basal lineage for the group of
nitrilase genes that have lost the Nit1C cluster association,
potentially having led to nitrilase neofunctionalization. A
significant positive selection pressure (® = 9.7 under
model B) was detected for that lineage, the empirical
Bayes analysis pointing to residues T41, Q157, Y184,
N200, Q203 and R284 as being the selection target. These
amino acid positions may represent hot spots for changes
in substrate specificity or other nitrilase enzymatic proper-
ties. The variation of those aminoacids across the sub-
family is shown in Figure 4. Shown also is a site (residue

0.04, df =2

39) that is invariant before the transition event then
changes with that event and becomes again invariant.

High resolution structures are not yet available for nitri-
lases. However, the structures of two homologs, the C. ele-
gans NitFhit protein and the Agrobacterium radiobacter N-
carbamoyl-D-amino acid amidohydrolase (D-NCAase)
have been solved [47,48]. Both proteins form tetramers
with two dimer subunits and revealed a novel four layer
o-B-B-o fold. It is believed that all members of the nitrilase
superfamily share this fold and the catalytic triad Glu-Lys-
Cys in the active site. A three dimensional model of 1A21
(the first nitrilase outside the Nit1C group) was derived
based on the D-NCAase structure coordinates, and used to
map the location of the residues under positive selection
at the CTE. Three of those, T41, Q157 and Y184, were
found to be buried within the protein, close to the cata-
lytic triad (E44, K126, C160) (Figure 4B). Those residues
could be involved in the overall conformation of the
active site or may have a direct role in the reaction by
interacting with the substrate. The other three positively
selected sites, N200, Q203 and R284 cluster on the surface
interface between the molecules of the dimer. That inter-
face has been shown in D-NCAase to form a hydrophobic
pocket that is responsible for the tight dimer structure. It
is known that the quaternary structures of nitrilases and
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(A) Maximum likelihood tree for subfamily | nitrilases used to test for positive selection. Branch lengths are scaled to the mean
number of substitutions per codon site under model M3. Branches | and 2 indicate lineages tested for positive selection signal,
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under positive selection (red). Residue 39, invariant before and after the transition event, is shown in green.
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cyanide hydratases can be quite different, ranging in size
from monomers and dimers to oligomers containing 10,
14 or more subunits. Substrate binding has also been
shown to play a role in the formation of active enzyme oli-
gomers. The three interface residues may play a role in
aspects of quaternary structure and substrate specificity
associated with the proposed neofunctionalization after
the cluster transition event.

Conclusion

In this study, we combined genomic and biochemical
analysis of a microbial enzyme family to understand evo-
lutionary events that have shaped the genome organiza-
tion and metabolism of organisms inhabiting various
environments. It has long been known that bacterial
genes often cluster based on linked functions. The gene
location sometimes correlates with the order of the indi-
vidual reactions in an enzymatic cascade or facilitate
regulatory mechanisms of gene expression. Various mod-
els have been proposed to explain the formation, the evo-
lutionary and physiological significance of operons and
other gene clusters [23]. Comparative genomic studies
have shown that recognition of clusters can assist in func-
tional annotation of novel genes but clusters often they
break apart with increasing taxonomic distance [49-53].
The Nit1C cluster that we described is remarkable in that
it is highly conserved across several bacterial phyla and is
present in organisms that inhabit extremely diverse envi-
ronments. While limited rearrangements have occurred in
Nit1C, the preservation of all seven genes suggests there is
selective pressure for maintenance of the entire gene clus-
ter regardless of the genomic dynamics in that neighbor-
hood. The internal rearrangements of Nit1C correlate
with high level taxa (cyanobacteria, beta and gamma
proteobacteria).

There is no experimental evidence for an involvement of
any of the Nit1C genes in a known metabolic transforma-
tion. Two of the cluster genes have no close homologs or
predictable biochemical activities while the remaining
genes, even though have a predictable type of biochemical
activity, belong to classes of enzymes that are involved in
a wide range of transformations. Predicting function for
remote homologs in the absence of experimental data is
still a major difficulty in genomics [54,55]. Having a
defined cluster of genes such as Nit1C, likely to be func-
tionally connected, sets the ground for future experimen-
tal genetic and biochemical investigation in search of its
biological function.

Phylogenetically, the nitrilases from the Nit1C cluster
appear strictly confined to a basal subset of subfamily 1
genes. More recent diversification of the genes in this sub-
family has been accompanied by a change in the type of
associated gene clusters and is paralleled by changes in

http://www.biomedcentral.com/1471-2148/5/42

biochemical properties of the nitrilases. While overall,
subfamily 1 nitrilases are under strong purifying selection
pressure, we detected a significant positive selection signal
for the lineage following the transition event and identi-
fied several residues under such selection. This supports a
hypothesis that a group of nitrilases diverged functionally
from the Nit1C-type enzymes, became associated with
other metabolic enzymes possibly as part of a novel path-
way and advantageous mutations were fixed at specific
sites under positive selection. Future studies of bacterial
nitrilases and biochemical and genetic characterization of
mutations at these residues are needed to better under-
stand the determinants of substrate specificity and the
functional differences between the nitrilase subfamilies.

Environmental microbial genomics has demonstrated its
utility in studying large scale ecological processes [5,6,11],
discovering valuable biocatalysts [15] and reassembling
the genomic and metabolic blueprint of natural microbial
communities thorough shotgun sequencing [7,8,10]. Vast
amounts of sequence data could potentially be used to
answer a wide range of questions, although there are open
questions regarding experimental design, data analysis
and breadth of biological significance [4,56,57]. A broad
environmental sampling from worldwide geographical
locations coupled with experimental biochemical
validation and comparative genomic analysis allowed us
to test metabolic and evolutionary hypotheses difficult to
approach by using sequence data from only a few
environments.

Methods

DNA sequences

The nitrilase sequences discovered from environmental
DNA libraries are available from Genbank (AY487426-
AY487562). Nitrilase sequences from sequenced bacterial
genomes and their corresponding flanking genes were
also obtained from GenBank, their names and accession
numbers being indicated in the corresponding figures. For
Verrucomicrobium spinosum DSM 4136, preliminary
sequence data was obtained from the The Institute for
Genome Research website [58] and for Burkholderia fungo-
rum and Rubrivivax gelatinosus from the DOE Joint
Genome Institute website [59].

Enzymatic activity

The biochemical characterization data used in this study
for the environmental nitrilases tested on the non physio-
logical substrate hydroxyglutaronitrile has been pub-
lished [9].

Sequence analysis and annotation

For the analysis of the ORFs flanking the nitrilase genes in
known bacterial genomes we used the sequence coordi-
nates available in the corresponding GenBank files. For
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the environmental DNA clones containing nitrilase genes
we identified and annotated the other open reading
frames (ORFs) contiguous with the nitrilase in the
genomic insert using standard approaches. The inserts
varied in size from 1 to 7 kb and in most cases contained
information to identify at least one or more ORFs in addi-
tion to the nitrilase gene. Annotation was derived based
on available experimental or predicted function or bio-
chemical activity using information associated with those
genes in GenBank, PFAM, COG and KEGG databases.

Phylogenetic reconstructions

Amino acid sequences were aligned in BioEdit [60] fol-
lowed by manual refinement. Sequence alignments are
provided [see Additional files 4, 5]. Phylogenetic trees
were constructed in PROML (PHYLIP 3.6) [61] using max-
imum likelihood, JTT amino acid substitution matrix, five
global rearrangements with randomized sequence input
order and among-site rate variation modeled with an
eight rate category discrete approximation to a gamma
distribution. The model parameters were estimated using
TREE-PUZZLE 5.1. [62]. Branch support was obtained by
bootstrapping (100 replicates).

Analysis for positive selection

A DNA sequence alignment for the nitrilase genes was
obtained based on the protein alignment and used for
phylogenetic reconstructions in PAUP* 4.0 [63] using
maximum likelihood and is provided [see Additional file
6]. The model of sequence evolution (GTR+I+G) was
selected using Modeltest v.3.06 [64]. To test specific
branches for possible rate changes we used Hy-Phy [36].
The topologies for the DNA tree and the protein tree were
identical.

The tree topology was used in the program codeml (PAML
[65], to estimate dN/dS ratios based on maximum likeli-
hood codon substitution models. Two categories of mod-
els were used, site specific [44] as well as branch-site
models [46]. Statistical comparisons between the results
from different nested models were done using likelihood
ratio tests [66].

Molecular modeling

A three-dimensional model for a clade 1 nitrilase (1A21)
was obtained based on the structure of the homologous
protein N-carbamoyl-D-amino acid amidohydrolase [48],
using the Jackal software [67]. Analysis of the model and
mapping of amino acid residues involved in catalysis or
subject to positive selection was done in PyMol [68].
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Additional file 1

Protein neighbor-joining tree for nitrilase genes from cultivated bacteria
and from environmental samples. The environmental sequences are repre-
sented by GenBank accession numbers and gene names for those derived
from Robertson et al, 2004. The Sargasso Sea sequences are shaded.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-5-42-S1.pdf]

Additional file 2

Maximum likelihood phylogenetic trees for genes that belong to the Nit1C
clusters identified in known bacterial species, in the context of their respec-
tive protein families. Numbers represent bootstrap support (for major
clades only). The Nit1C ORF sequences are shaded.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-5-42-82.pdf]

Additional file 3

Maximum likelihood phylogenetic trees for two genes associated with
nitrilases after the subfamily 1 cluster transition event, in the context of
their respective larger protein families. The nitrilase associated genes are
shaded. Numbers represent bootstrap support (for major clades only).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-5-42-83.pdf]

Additional files 4

Alignment of nitrilase amino acid sequences from cultivated bacteria
(used to generate the tree in Figure 1)

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-5-42-S4.txt]

Additional files 5

Alignment of nitrilase amino acid sequences used to generate the tree in
Figure 3.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-5-42-85.txt]

Additional file 6

Alignment of DNA sequences of nitrilase genes used to test for positive
selection and to generate the tree in Figure 4.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-5-42-86.txt]
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