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Abstract

Background: Anguillicolidae Yamaguti, 1935 is a family of parasitic nematode infecting fresh-water eels of the
genus Anguilla, comprising five species in the genera Anguillicola and Anguillicoloides. Anguillicoloides crassus is of
particular importance, as it has recently spread from its endemic range in the Eastern Pacific to Europe and North
America, where it poses a significant threat to new, naïve hosts such as the economic important eel species
Anguilla anguilla and Anguilla rostrata. The Anguillicolidae are therefore all potentially invasive taxa, but the
relationships of the described species remain unclear. Anguillicolidae is part of Spirurina, a diverse clade made up of
only animal parasites, but placement of the family within Spirurina is based on limited data.

Results: We generated an extensive DNA sequence dataset from three loci (the 5' one-third of the nuclear small
subunit ribosomal RNA, the D2-D3 region of the nuclear large subunit ribosomal RNA and the 5' half of the
mitochondrial cytochrome c oxidase I gene) for the five species of Anguillicolidae and used this to investigate
specific and generic boundaries within the family, and the relationship of Anguillicolidae to other spirurine
nematodes. Neither nuclear nor mitochondrial sequences supported monophyly of Anguillicoloides. Genetic diversity
within the African species Anguillicoloides papernai was suggestive of cryptic taxa, as was the finding of distinct
lineages of Anguillicoloides novaezelandiae in New Zealand and Tasmania. Phylogenetic analysis of the Spirurina
grouped the Anguillicolidae together with members of the Gnathostomatidae and Seuratidae.

Conclusions: The Anguillicolidae is part of a complex radiation of parasitic nematodes of vertebrates with wide
host diversity (chondrichthyes, teleosts, squamates and mammals), most closely related to other marine vertebrate
parasites that also have complex life cycles. Molecular analyses do not support the recent division of Anguillicolidae
into two genera. The described species may hide cryptic taxa, identified here by DNA taxonomy, and this DNA
barcoding approach may assist in tracking species invasions. The propensity for host switching, and thus the
potential for invasive behaviour, is found in A. crassus, A. novaezelandiae and A. papernai, and thus may be common
to the group.
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Background
Anguillicolidae is a family of ichthyoparasitic nematodes
endemic to fresh-water eels of the genus Anguilla
around the Pacific and Indian Oceans. There are
five morphospecies, recently divided into the genera
Anguillicola (a single species, Anguillicola globiceps) and
Anguillicoloides (four species: Anguillicoloides crassus,
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Anguillicoloides papernai, Anguillicoloides australiensis,
and Anguillicoloides novaezelandiae; all were previously
classified as Anguillicola) (see Table 1) [1-3]. Pre-adult
and adult worms feed on blood from vessels within the
wall of the swim bladder, and their basic life cycles, as
far as known, are very similar, involving zooplanktonic
and zoobenthic intermediate hosts (e.g. cyclopoids and
ostracods) [4-8]. European populations of A. crassus have
been described as being able to utilise several aquatic
species (including freshwater teleosts, amphibians,
gastropods and arthropods) as paratenic hosts [6,9-11].
In the last three decades, interest in this family of
nematodes has been driven by A. crassus Kuwahara,
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Table 1 Anguillicolidae sequences

Species nSSU nLSU D2-D3 COX1

# h L GC (%) # h L GC (%) # h L GC (%)

Anguillicoloides crassus 56 1 867 46.94 54 2 653 - 663 51.43 - 52.22 49 29 550 30.55 - 31.64

Anguillicoloides papernai 33 1 867 47.06 35 4 651 - 663 51.89 - 52.53 22 13 550 30.55 - 34.91

Anguillicoloides australiensis 15 1 867 47.06 18 1 663 51.9 15 10 550 30.55 - 31.27

Anguillicoloides novaezelandiae 10 1 867 47.17 10 1 663 52.04 9 1 550 34.73

Anguillicola globiceps 6 1 867 47.47 6 1 651 51.31 1 1 550 32.73

Total 120 5 - - 133 9 - - 96 54 - -

Data collected for three genes (nSSU 5': the 5' one third of the nuclear small subunit ribosomal RNA gene; nLSU D2-D3: the D2-D3 region of the nuclear large
subunit ribosomal RNA gene; COX1: the 5' half of the mitochondrial cytochrome oxidase 1 gene) for each of the five species of Anguillicolidae. #: successfully
sequenced fragments, h: the number of unique sequences found, L: the length (in bp) of the fragments, GC (%): the GC-content (in case of multiple sequences a
range is given).
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Niimi and Itagaki 1974, which has spread from its native
host, the Japanese eel Anguilla japonica, to parasitise
European eels Anguilla anguilla, where it induces signifi-
cant morbidity and mortality [12-15].
In East Asia, A. crassus parasitises the native Japanese

An. japonica as well as introduced and cultured An. an-
guilla and Anguilla rostrata (the American eel) [16,17].
In its native host this parasite is minimally pathogenic,
with a small adult body mass and low infection intensity
[13]. In the 1980s the parasite was introduced from
Taiwan into Europe as a result of the live eel trade
[18,19], and the parasite colonised wild European eels,
An. anguilla. In this new host the parasite attains much
higher intensities. Anguillicoloides crassus infections have
since spread through wild and farmed populations of An.
anguilla in Europe and North Africa and are associated
with cases of mass mortality when paired with environ-
mental stressors such as high temperatures and low
dissolved oxygen levels [20]. A two-stage colonisation
pattern has been described, consisting of rapid spread
upon introduction into a water system followed by equili-
bration at ceiling levels [21]. A. crassus was subsequently,
and likely independently, introduced into populations of
An. rostrata in North America. The introduction into
North America is considered to have been from Japan
[19,22-24]. A. crassus has also recently been reported from
the island of Réunion near Madagascar, where it was found
in three indigenous Anguilla species [25]. Being a “global
invader” (sensu [26] and [13]), it is considered an import-
ant pathogen of the economically relevant Atlantic eel spe-
cies An. anguilla and An. rostrata [15,27].
A. novaezelandiae Moravec and Taraschewski 1988

was first described from the short-fin eel Anguilla aus-
tralis from New Zealand [2]. However, an explant popu-
lation of this species was recorded in Lake Bracciano in
Italy following stocking with An. australis in 1975 [28].
After the introduction of A. crassus into Lake Bracciano
in 1993, the A. novaezelandiae population appears
to have disappeared [29]. A. australiensis Johnston and
Mawston 1940 is recorded only from North-East
Australia where it parasitises the native long-fin eel An-
guilla reinhardtii [2], and no evidence for pathological
effects on the host have been found [30]. A. papernai
Moravec and Taraschewski 1988 is endemic to South
Africa and Madagascar where it parasitises the African
long-fin eel Anguilla mossambica. A. papernai has been
shown to be able to complete its life cycle in European
intermediate and final hosts in laboratory infections [7].
A. globiceps Yamaguti 1935 is known from certain prefec-
tures of Japan and provinces of China [31,32] where it
infects wild populations of the Japanese eel An. japonica.
A phylogenetically correct and robust taxonomy of

Nematoda is critical to understanding of biodiversity, bio-
geography and host-parasite coevolution [33]. In the case
of the Anguillicolidae, it is important to understand the
phylogenetic distribution of traits associated with colonisa-
tion of and pathogenicity in new hosts, such as the plasti-
city of life-cycle traits and the increased per-host intensity
for invasive A. crassus. DNA sequence data are good char-
acters for taxonomic inference (i.e. DNA taxonomy) and
for analysis of the deeper phylogenetic history of organisms.
However, loci with different rates of evolution are typically
required to resolve these different types of questions.
The nuclear small subunit ribosomal RNA gene (nSSU

or 18S) has been used extensively for analysis of nematode
phylogenetics [34,35], but has limited resolution at the
congeneric level, including within Anguillicolidae [36]. In
analyses of Nematoda using nSSU, A. crassus is placed
within the entirely animal parasitic Clade III (suborder
Spirurina in order Rhabditida sensu De Ley and Blaxter
[34,35,37,38]), consisting of the Gnathostomatomorpha,
Ascaridomorpha, Oxyuridomorpha, Rhigonematomorpha
and Spiruromorpha. De Ley and Blaxter [37,38] placed
Anguillicolidae, along with other taxa in Dracunculoidea,
as incertae sedis within Spirurina. Focussed analyses of
Spirurina using nSSU have identified significant conflicts
with both classical systematics and the revisions of De Ley
and Blaxter [39,40], in particular the non-monophyly of
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'Ascaridomorpha' and the placement of A. crassus together
with the vertebrate-parasitic genus Gnathostoma, and not
allied to other dracunculoids. The ichthyoparasitic cuculla-
nid Truttaedactinis truttae was identified as sister to other
analysed Spirurina [41]. Moravec in his synoptic revision
[3] removed the Anguillicolidae from the superfamily
Dracunculoidea and erected the superfamily Anguillicoloi-
dea with the family Anguillicolidae as its only member. In
addition, based on morphological characters, the sub-
genera Anguillicoloides and Anguillicola were proposed to
be promoted to the taxonomic rank of genera [3].
The nuclear large subunit ribosomal RNA gene (nLSU

or 28S), in particular the section spanning diversity loops
D1 and D3, is an attractive alternative to nSSU, as there
are both highly conserved parts and regions of more
rapid evolution. nLSU D1-D3 sequences have also been
used for analyses of Spirurina [42], but the available data
are much more sparse than for nSSU. A third candidate
locus is the mitochondrial gene cytochrome oxidase I
(COX1, specifically the 5' half or 'Folmer region'), which
has been proposed as a universal DNA taxonomy and
DNA barcoding target for Metazoa [43-47]. This mito-
chondrial locus evolves very rapidly compared to nSSU,
such that there is appreciable variation within species.
COX1 is beginning to be used widely in analyses of
nematode population structure and phylogeography
[48], including Anguillicola/Anguillicoloides [19], gener-
ating extensive datasets with, however, low taxonomic
coverage.
The assumption underpinning DNA taxonomy is the

existence of a “barcoding gap”, resulting from the non-
overlapping, discrete distribution of intra- and inter-
specific variation of the DNA fragment analysed [49].
Given this, unidentified specimens that differ by less
than a threshold sequence divergence from reference
voucher sequences (from specimens reliably identified to
species, for example) can be assigned to that species.
Symmetrically, specimens yielding sequences that are
more divergent than the specified threshold can be allo-
cated to a different taxon. For Metazoa, a general COX1
DNA taxonomy threshold of 2% has been proposed [50],
but molecular operational taxonomic units (MOTU) [44]
can be defined at any cutoff, and exploration of the pat-
tern of MOTU count and cutoff is warranted for previ-
ously understudied groups [51]. This approach can
simplify the identification of potentially morphologically
cryptic taxa and encourage revisionary taxonomy [52].
To investigate boundaries of species and genera in

Anguillicolidae, and assess placement of this family in
the diversity of Spirurina, we have generated data from
nSSU, nLSU and COX1 for a large sample of Anguillico-
lidae encompassing all five nominal species. We assessed
the empirical support for barcoding gaps in the three
genes by analysing the impact of increasing sequence
divergence thresholds, and the congruence between
MOTU derived from different loci and species assign-
ments. We analyse and compare the ability of the three
genes to resolve the evolutionary relationships between
the Anguillicolidae and test whether the morphological
taxonomy of this family is supported by molecular evi-
dence. Additionally, we infer a phylogenetic tree for Spir-
urina based on published and new nSSU sequences, to
further refine our understanding of the relationships of
the Anguillicolidae, and thus better inform hypotheses as
to their origins.

Results
Multi-locus marker development from Anguillicolidae
One hundred and fifty anguillicolid specimens were
obtained representing all five morphologically defined
species [2]. Primer sets were verified, and three genes
(nSSU, nLSU and COX1) were amplified and sequenced
(Table 1 summarises these data; locality data for speci-
mens are listed in Table 2). We also amplified and
sequenced these genes from an unidentified nematode
larva (SNR118) recovered from the serosa of the swim
bladder of An. mossambica from South Africa. Not all
specimens yielded amplicons for all genes. For 79 speci-
mens we obtained good sequences for all three genes
and these form the nSSU*, nLSU* and COX1* datasets
analysed below. For MOTU analyses we also considered
an augmented COX1 dataset comprising all the
sequences generated in this project and also additional
published sequences from A. crassus and A. novaezelan-
diae [19] for a total of 452 sequences.

Species boundaries and MOTU in Anguillicolidae
We used jMOTU [51] to infer the numbers of MOTU
for each gene across a wide range of cutoffs (Figure 1).
There were five unique sequences in the nSSU* dataset,
and five MOTUs between 0 – 0.12% sequence diver-
gence (equivalent to a 0 – 1 bp cutoff value) and these
MOTUs were consistent with the morphological iden-
tifications of the specimens. At 0.25% sequence diver-
gence cutoff three MOTUs were defined (all A.
globiceps; all A. crassus; combined A. papernai, A. aus-
traliensis, A. novaezelandiae). At 0.37% divergence, all
the specimens were grouped into a single MOTU.
There were nine unique sequences in the nLSU* data-
set, and for up to 0.15% sequence divergence, inde-
pendent MOTUs were defined for A. australiensis, A.
novaezelandiae and A. globiceps. However, at this cutoff
there were four MOTUs for A. papernai and two for
A. crassus. An apparent barcoding gap (plateau in
MOTU number) is evident at cutoffs between 0.5 –
2.0% sequence divergence, yielding 5 MOTUs. These
MOTUs do not correspond to the morphological species,
as one groups all sequences from A. australiensis and A.



Table 2 Location of sampling sites

Prefix Site (Country) Geodetic coordinates Host species Collector* and date**

Latitude Longitude

AQT Townsville, Queensland (Australia) 19°18'S 146°44'E An. reinhardtii BS 2007

AQB Brisbane, Queensland (Australia) 27°38'S 153°12'E An. reinhardtii BS 2007

ATD Deloraine, Tasmania (Australia) 41°31'S 146°39'E An. australis LP 2008

CGG Guangzhou, Guangdong (China) 23°07'N 113°15'E An. anguilla HT 03/07

CGZ Zhuhai, Guangdong (China) 22°16'N 113°34'E An. anguilla HT 03/07

EAV Albufera de Valencia (Spain) 39°21'N 0°20'W An. anguilla PMR 01/09

GST Steinfeld (Germany) 49°02'N 8°02'E An. anguilla AK 2009

GRA Rußheimer Altrhein (Germany) 49°12'N 8°25'E An. anguilla EH, UW 2009

JPN Natural water system, Wakayama (Japan) 34°13'N 135°10'E An. japonica HS 2006 2007

MAD Ambatondrazaka (Madagascar) *** 17°83'S 48°41'E An. mossambica OW 05/2008

POL Sniardwy Lake, Mikolajki (Poland) 53°45'N 21°43'E An. anguilla UW 2009

POR Ribeira das Lampreias (Portugal) 38°47'N 9°01'W An. anguilla JLC 03/09

SFH Farm Dam, Fort Hare (South Africa) 32°47'S 26°50'E An. mossambica HT 03/08

SKR Koonap River (South Africa) 32°1'S 26°08'E An. mossambica HT 03/08

SSD Sunday’s River, Slagboom Dam (South Africa) 33°22'S 25°40'E An. mossambica HT 03/08

SDD Sunday’s River, Darlington Dam (South Africa) 33°12'S 25°8'E An. mossambica HT 03/08

SGF Great Fish River (South Africa) 33°05'S 26°46'E An. mossambica HT 03/08

SNR Nahoon River (South Africa) 32°54'S 27°48'E An. mossambica HT 03/08

TUR Asi River, Hatay (Turkey) 36°24'N 36°21'E An. anguilla EG 12/08

TKR Sinyuan, Kaoping River (Taiwan) 22°30'N 120°25'E An. japonica HT 9/06

TCU Eel culturing pond, Budai, (Taiwan) 22°38'N 120°26'E An. japonica HT 9/06

Sampling locations for the nematodes including label prefix, information on geographic position (latitude and longitude), host species and information about
sampling.
* Collectors are identified by their initials: AK: Albert Keim, BS: Björn Schäffner, EH: Emanuel Heitlinger, EG: Ercüment Genç, HT: Horst Taraschewski, JLC: José Lino
Costa, LP: Lea Perseke, OW: Olaf Weyl, PMR: Pilar Muñoz Ruíz, KG: Kerstin Geiss and HS: Hiroshi Sato.
** Month (where known) and year(s).
*** A. papernai were obtained from An. mossambica that were purchased from a commercial eel supplier. According to the supplier, all eels originate from
tributaries of the Mangory River. The exact localities of capture, holding conditions and periods prior to collection are however unknown.
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novaezelandiae, while A. crassus sequences are divided
into two MOTUs. Within the COX1* dataset, 52 discrete
sequences were found. There is a clear barcoding gap
yielding seven MOTUs from 1.5 – 7.1% sequence diver-
gence. In this span MOTU composition resembles mor-
phological species boundaries, except that A. papernai
sequences are divided into 3 MOTUs. Five MOTUs are
observed only for the narrow range of 8.3 – 8.5% sequence
divergence, corresponding to A. crassus, A. globiceps, two
MOTUs identified as A. papernai and one MOTU com-
bining A. australiensis and A. novaezelandiae. The
complete COX1 dataset had a total of 99 different
sequences, but these had little impact on MOTU compos-
ition above a cut-off of 1.5% sequence divergence. How-
ever, MOTU richness was increased by one across the
potential barcoding gap, due to sequences from specimens
identified as A. novaezelandiae from New Zealand forming
a distinct MOTU from other A. novaezelandiae from
Tasmania.
Phylogenetic analyses of Spirurina
We used these new sequences in conjunction with existing
data to investigate the placement of Anguillicolidae within
the Spirurina, and the interrelationships of Anguillicolidae
species. The overall branching order of the phylogenetic
tree of the Spirurina, inferred using nSSU sequences
(Figure 2) was consistent with results of previous analyses
[39-41]. Spirurina can be divided into three subclades.
Spirurina "A", encompassing the cucullanid nematodes
Dichelyne mexicanus, Cucullanus robustus and Truttae-
dacnitis truttae (Seuratoidea), is the sister group to the
other Spirurina. Spirurina "B" comprises members of the
Gnathostomatidae, Seuratidae and Anguillicolidae, as well
as the unidentified eel-parasitic larva SNR118, whereas the
sister group, Spirurina "C", consists of the remaining taxa,
including Oxyuridomorpha, Spiruromorpha, Ascarido-
morpha, Rhigonematomorpha and the remaining Dracun-
culomorpha. Neither Gnathostomatinae Railliet 1985
(represented by the genera Echinocephalus, Tanqua and



b
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Figure 1 MOTU analysis of three marker loci from Anguillicolidae a. Variation in the number of MOTUs inferred at cut-offs ranging from
0 - 14% sequence divergence for specimens for which all three genes were sequenced (nSSU*, nLSU*, COX1*). Results of the MOTU analysis of the
expanded COX1 dataset are included for comparison. Critical cutoff intervals for the different datasets are indicated in letters (A – E). b. Comparison of
morphological species identified sensu Moravec and Taraschewski [2] with MOTU composition at the critical cutoff intervals (A – E).
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Gnathostoma) nor Seuratoidea Chabaud Campan-Rouget
et Brigoo, 1959 are monophyletic, as most recent common
ancestors are shared between Linstowinema sp. (Seuratoi-
dea) and T. tiara (Gnathostomatinae), and between Angu-
illicolidae and E. overstreeti (Gnathostomatinae).
Phylogenetic relationships within the Anguillicolidae
Both nuclear (Figures 2, 3, and 4) and mitochondrial
(Figure 5) loci supported the monophyly of the Anguilli-
colidae (the Bayesian posterior probability [BPP] of
monophyly is 1.0 in all analyses). Phylogenetic analyses
of both nuclear loci, nSSU (Figures 2 and 3) and nLSU
(Figure 4), placed A. crassus as sister to the other four
anguillicolids. We note that the resolution of these ana-
lyses is likely limited by the low numbers of parsimony
informative sites (PIS) present in either region (nSSU-

PIS = 5, nLSUPIS = 42).
Analysis of COX1 (Figure 5) divided the Anguilli-

colidae into two lineages with respect to morphospecies:
a weakly supported clade formed by A. globiceps and A.
papernai (with BPP of only 0.83 for COX1, but 1.00 for
nLSU), and a robustly supported clade consisting of A.
crassus, A. novaezelandiae and A. australiensis. A close
relationship of the Oceania species A. novaezelandiae
and A. australiensis was strongly supported (BPP for
nLSU= 1.00 and for COX1= 0.97). In the COX1
analyses, the A. novaezelandiae population sampled in
Tasmania is more closely related to A. australiensis than
to the A. novaezelandiae population from New Zealand.
Mirroring the MOTU analyses, there is significant diver-
gence within A. papernai, with three strongly supported
clades (COX1 BPP= 1.0) as distinct from each other as
are Tasmanian A. novaezelandiae from A. australensis.
Population diversity in Anguillicola crassus
Previous analyses of COX1 and microsatellite diversity in
A. crassus [19] have defined the likely origin of the Euro-
pean populations (by transfer from Taiwan) and the
effects of isolation-by-distance on the structure of these
European populations. Analysis of our COX1 data in
conjunction with these previous data reinforces patterns
observed previously [19] (Figure 6), with East Asian
populations harbouring the greatest diversity, European
and North American populations being closely related to
distinct East Asian populations, and European popula-
tions showing some stratification by geographical loca-
tion. However, in our study additional unique haplotypes
were found from Turkish sampling locations that were
grouped with haplotypes from Taiwan and China.
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Figure 2 Phylogenetic analysis of nSSU sequences of Spirurina. Consensus phylogram of the analysis of the nSSU sequences from Spirurina
using Bayesian Inference, rooted with Teratocephalus lirellus, a non-spirurine rhabditid. Branches are collapsed where possible based on taxonomic
affiliations and major groups are highlighted. Bayesian posterior probabilities for internal branches are indicated. The scale bar indicates the
average expected number of substitutions per site.
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Figure 3 Phylogenetic analysis of nSSU sequences of Spirurina B. Consensus phylogram of the analysis of the nSSU sequences from
Spirurina B using Bayesian Inference, rooted with Cucullanus robustus (Spirurina A). Bayesian posterior probabilities for internal branches are
indicated. The scale bar indicates the average expected number of substitutions per site.
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Discussion
Anguillicolidae species diversity analysed using DNA
taxonomy
Primers that selectively amplify DNA from certain taxa
are crucial to surveys in which parasite DNA has to be
amplified over the background of host DNA. Studies on
Anguillicolidae clearly fall into this category due to the
haematophagous life-style of the pre-adult (larval) stages,
and thus host blood cells in their digestive system. The
primers used here [34,53,54] were broadly successful in
amplification of the desired nematode fragments for sub-
sequent sequencing. Thus DNA barcoding approaches
are readily applicable to these nematodes.
Although there were five distinct nSSU sequences, cor-

responding to the five morphological species, these
sequences differed by no more than 3 bases over the 867
bases sequenced. This close similarity raises the issue of
potential misidentification due to sequencing errors, and
thus nSSU may not be useful for species-level identifica-
tion surveys of Anguillicolids. As expected the nLSU D2-
D3 region displayed higher intra- and inter-specific
variation among morphospecies than nSSU, with 9
unique sequences. This variation, along with the pres-
ence of indels, should also enable the design of species-
specific amplification primers. This nLSU fragment has
been successfully amplified from partially degraded spe-
cimens of A. crassus encapsulated within host tissue [55],
and from morphologically indistinguishable life stages
such as larvae. nLSU could be used for PCR-based diag-
nostics of anguillicoloidosis in eels and can serve as a re-
liable tool in life-cycle studies.
The methodology of MOTU definition, as implemen-

ted in jMOTU [51], explores a defined range of sequence
divergence thresholds upon which a plateau of MOTU
richness, i.e. potential barcoding gaps, can be identified.
For both the nuclear loci studied, no clear evidence of a
barcoding gap was found. The lack of interspecific diver-
sity for the nSSU locus limits the utility of this marker at
congeneric levels. Multiple within-(morpho)species
nLSU sequence types were only observed in A. crassus
(two sequence types) and A. papernai (four sequence
types). One A. crassus sequence type is found globally,
while the second is confined to one Japanese population,
supporting the hypothesis of an Asian origin of this
species [19].
The highest number of sequence types (54) was

observed for the COX1 fragment, which has previously
been used to investigate global population structure in A.
crassus [19]. We were able to obtain only a single COX1
fragment from A. globiceps that contained a correct open
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reading frame, despite multiple trials. This phenomenon
has been observed in other surveys of this species
(S. Wielgoss, pers. comm.), and may be due to preferential
amplification of nuclear copies of mitochondrial DNA [48]
or the existence of RNA editing of this mitochondrial tran-
script, as has been observed in other nematodes [56].
Sequencing of COX1 transcripts and the mitochondrial
genome may be informative.
Our A. crassus COX1 data, when added to those previ-

ously determined, reinforces the view that the invasion of
West European and North American hosts has only hap-
pened a few times (likely once for each location) and that
the origins of the invading parasite differ. North American
A. crassus are robustly linked to Japanese specimens, and
European to Taiwanese. By sampling additional locations
across China and Japan, we identified many additional,
unique COX1 haplotypes limited to East Asia, affirming
this as the area of highest diversity, and thus the likely ori-
gin of diversity of this species. Interestingly, Turkish A.
crassus may have distinct origins, as some haplotypes
group with Chinese and Taiwanese sequences not previ-
ously observed in Western Europe.
The COX1 locus of the Anguillicolidae exhibits a likely

barcoding gap with over 5.6% sequence divergence,
exceeding by more than twofold the proposed threshold
(2%) for Metazoa [57]. Although the species A. crassus,
A. globiceps and A. australiensis were stably grouped into
individual MOTUs within this plateau, sequences of
both A. novaezelandiae and A. papernai were found in
multiple, distinct COX1 MOTUs. These distinct MOTUs
within a single nominal species are possible evidence of
cryptic speciation. The Madagascar populations of A.
papernai may be the source of introduction into South
Africa, since all sequence types from the five sampling
sites in South Africa occur in, or are closely related to,
those from Madagascar. This inference is supported by
the pattern observed for the four nLSU sequence types
of A. papernai, which are all present in Madagascar. We
note that the mitochondrial locus COX1 has uniparental
inheritance and thus may not be an unbiased reporter of
phylogeographic history, but propose these hypotheses
as testable inferences from our data.
Specimen SNR118 was a single, unidentified larva from

the swim bladder serosa of a South African A. mossam-
bica, and the whole specimen was used for DNA extrac-
tion. Its nSSU sequence showed that it is a member of
Spirurina B. Sampling site, host species and phylogenetic
position in the Spirurina suggest this specimen belongs
to or is closely affiliated to Paraquimperia africana
(Seuratoidea) [58].
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DNA taxonomy and molecular phylogenetic systematics
of the Anguillicolidae
We found no support for the division of the Anguillicoli-
dae into the two genera Anguillicola and Anguillicoloides
as proposed by Moravec [3], as Anguillicola globiceps
was recovered within the radiation of Anguillicoloides
species, suggesting that that the morphological criteria
used to erect these putative genera (spinosity of cuticular



Figure 6 Network analysis of COX1 sequences from Anguillicola crassus. Statistical parsimony network of 70 distinct A. crassus COX1
sequences. The three COX1 haplotypes containing four specimens that have the minority A. crassus 28 S rDNA D2-D3 haplotype are highlighted.
A list of all specimens associated with each COX1 haplotype can be found in the Additional file 1.
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ornamentation and the structure of the oesophagus) may
not be phylogenetically informative. As noted previously
[59], modifications of the structure of the oesophagus, a
trait related to the mode of nutrition, may occur in-
dependently in the course of trophic adaptations. Our
data support a single generic division for the species in
Anguillicolidae, which by priority should be called Angu-
illicola, restoring Anguillicoloides crassus to Anguillicola
crassus and ensuring continuity with historical literature
on this important species.
Based on the analysis of the DNA sequences of

three genes, a reevaluation of the taxonomy of the
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Anguillicolidea may be necessary. We identified eight
discrete COX1 MOTUs over a wide range of divergence,
up to 5%, suggesting that there may be eight species-
level taxa represented if a barcoding cutoff of 2% is
accepted. Three MOTUs are congruent with mor-
phological species identifications: A. crassus, A. globiceps
and A. australiensis. However specimens unambiguously
assigned to the morphological species A. novaezelandiae
and A. papernai are found in multiple MOTUs (two
MOTUs for A. novaezelandiae and three for A. paper-
nai). These additional MOTUs could represent morpho-
logically cryptic, or previously unrecognised species.
In the case of A. novaezelandiae phylogenetic analyses

of the COX1 locus suggest the paraphyly of this species,
as the specimens from New Zealand (that form one
MOTU) are robustly placed as the sister group to the
clade consisting of A. novaezelandiae specimens from
Tasmania (the second MOTU) plus A. australiensis.
Since nLSU D2-D3 sequences are not available for A.
novaezelandiae from New Zealand, additional represen-
tatives should be sampled to more thoroughly test the
monophyly of this species.
A. papernai displays the greatest number of nLSU D2-

D3 sequence types among the Anguillicolidae and its
COX1 locus displays a clear division into three clades
and is represented by three MOTUs. Whether these are
distinct species level taxa, or merely distinct diverse
populations of a widespread species will require analysis
of additional loci. A. papernai is found in well separated
watersheds, with no linking waterways, and an absence
of human-induced admixture through stocking. The di-
versity within this species, together with the observation
that it is able to complete its life cycle in European eel
hosts [7], supports the need for further research.
A similar branching pattern is observed for both nLSU

and COX1 for all species analysed except A. crassus.
Analyses of the two nuclear loci revealed A. crassus to be
sister to the other sampled species within Anguillicoli-
dae. However the mitochondrial COX1 gene placed it as
the sister taxon to the clade comprising A. australiensis
and A. novaezelandiae. Despite the low number of in-
formative sites in the nLSU and nSSU loci, we favour the
hypothesis based on the nuclear loci, as no close out-
group sequences were available for COX1 and the
sequences used (Toxocara cati and Strongylida sp.) may
have impacted on proper rooting of the COX1 tree. Re-
analyses with COX1 data from Seuratoidea or Gnathos-
tomatinae would address this issue.
These data suggest a scenario of Asian origin for the

Anguillicolidae, since A. papernai is the only endemic
species west of the 80 degree line of longitude. Speci-
ation of A. crassus could have taken place in East Asian
waters, followed by the cladogeneses of the Oceanian
species and the clade comprising A. papernai and A.
globiceps. The biogeographic distribution of A. papernai
observed today could thus be explained by a host-related
dispersal of its ancestor.
Comparing the Anguillicolidae phylogenies with those

of their hosts [60] we can infer several host switches
within the nematodes, even excluding recent host-range
expansion by A. crassus and A. novaezelandiae (Figure 7).
The host phylogeny includes a deep split between an
Indo-Pacific group, including An. japonica, and an Ocea-
nia/Atlantic group, including An. anguilla and An. aus-
tralis. A. australiensis, parasitising An. reinhardtii in the
Indo-Pacific host group is sister to A. novaezelandiae
parasitising An. australis in the Oceania host group. If
the relationship between Anguillicola and its eel hosts
was established in an ancestral Indo-pacific host, a mini-
mum of three host-capture events, two of them across
the major split in the eel phylogeny, are required to ex-
plain the endemic distribution of these eel parasites. The
recent proven ability of A. crassus to exploit new, phylo-
genetically well-separated hosts may be a reflection of
this evolutionary propensity for switching.

Phylogenetic relationships within Spirurina
Spirurina includes parasites with a direct lifecyle as well
as those that include biological vector and transport
(paratenic) hosts in complex, multi-species systems [61].
Although some applications of parsimony principles
might suggest that the simpler, direct life cycle should be
ancestral for the group, molecular phylogenetic analyses
robustly place two clades of parasites (Spirurina A and
B) that have complex life histories as successive sister
groups, at the base of the Spirurina, to clades that in-
clude direct life cycle parasites. This phylogenetic hy-
pothesis favors intepretation of complex life histories as
the ancestral state for the group. We found that
members of the ichthyoparasitic family Cucullanidae
(Seuratoidea: C. robustus, D. mexicanus and T. truttae)
form a well-supported clade (Spirurina A; Figure 3) that
is sister to the remaining Spirurina [40,41]. Anguillicoli-
dae are placed in Spirurina B along with certain mem-
bers of the superfamily Seuratoidea and all sampled
Gnathostomatoidea. Spirurina C includes the remaining
taxa including the abundantly sampled Ascaridomorpha
and Spiruromorpha. Previous analyses of taxa in Spirur-
ina C have suggested that many classical groups are
non-monophyletic, in particular "Ascaridomorpha" and
"Spiruromorpha" [39,40,42], a result echoed here. The
position of the three Gnathostoma species (G. binuclea-
tum, G. neoprocyonis and G. turgidum) outside of Spirur-
ina C has been observed previously [40] and was
recovered consistently in all analyses. Members of the
other two genera of the Gnathostomatinae, i.e. T. tiara
and E. overstreeti, are also displaced, and share direct
ancestors with Linstowinema sp. (Seuratoidae) and
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members of Anguillicolidae, respectively. This result
indicates the paraphyly of both Gnathostomatinae and
Seuratoidea. The Dracunculoidea is also rendered para-
phyletic, as members are found in Spirurina B and Spir-
urina C. This phylogenetic hypothesis reveals an
enormous definitive host diversity within the Spirurina
B, comprising fresh-water teleosts (Anguillicolidae),
chondrichthyes (Echinocephalus), mammals (Gnathos-
toma and Linstowinema) and squamates (Tanqua), and
an even wider diversity of vector and paratenic hosts.
Denser taxon sampling in the Spirurina, with special em-
phasis on the morphologically diverse Spirurina B and C,
is required to fully explore this fascinating group.
Conclusions
We have investigated the genetic diversity within, and
genetic distinctiveness of the five described species of
the family Anguillicolidae. We found no support for the
erection of two genera within the family, and identified
two species (A. novaezelandiae and A. papernai) where
within-species divergences and phylogenetic tree top-
ology suggests the presence of distinct cryptic taxa. The
role of host vicariance in the speciation of A. globiceps
and A. papernai is an intriguing topic for future study,
as is the evolutionary history of the Oceanian species (A.
australiensis and the two MOTUs within A. novaezelan-
diae). We revisited the phylogeny of the Spirurina and
identified a clade of vertebrate-parasitic taxa that
includes Anguillicoloidae and members of other
families, which must therefore be suspected of being
paraphyletic. Our analyses highlight the possibility that
A. papernai might transfer to and be pathogenic in new,
economically important, eel hosts, and the data
generated here will, we hope, act as reference for future
DNA barcoding surveys of eel swim bladder parasites
worldwide.
Methods
DNA extraction and sequencing
Sampling and identification of nematode specimens was
performed by José Lino Costa, Kerstin Geiss, Ercüment
Genç, Emanuel Heitlinger, Albert Keim, Lea Perseke, Pilar
Muñoz Ruíz, Hiroshi Sato, Björn Schäffner, Horst
Taraschewski, Urszula Weclawski and Olaf Weyl. A total
of 150 anguillicolid nematodes were extracted from the
swim bladders of their respective hosts from 21 different
locations (see Table 2). In addition, an unidentified nema-
tode larva (SNR118) was extracted from the serosa of the
swim bladder of a specimen of A. mossambica from South
Africa. DNA was prepared from single nematodes as
described in [48]. Lysates were used directly as templates
in PCR reactions. For all loci, 25 μl polymerase chain reac-
tions (PCRs) were carried out using 0.1 μl Taq DNA Poly-
merase (5 units/μl) (Quiagen, Hilden, Germany), 2.7 μl
10x PCR Buffer (containing 15 mM MgCl2) (Quiagen),
2.7 μl 2 mM dNTP (2 mM dATP, dTTP, dGTP, dCTP),
0.4 μl of each PCR primer (10 μM), 2 μl template DNA
and 17.1 μl ddH2O (Milli-Q). For partial nSSU
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amplification the forward primer SSU_F04 5’-GCTTG
TCTCAAAGATTAAGCC-3’ and the reverse primer
SSU_R26 5’-CATTCTTGGCAAATGCTTTCG-3’ [34]
were used. Amplification of the nLSU D2-D3 region was
carried out using forward primer D2A 5’-ACAAG
TACCGTGAGGGAAAGT-3’ and the reverse primer D3B
5’-TGCGAAGGAACCAGCTACTA-3’ [53]. The cyto-
chrome c oxidase subunit I (COX1) was amplified using
the forward primer LCO1490 5’-GGTCAACAAATCAT
AAAGATATTGG-3’ and the reverse primer HCO2198 5’-
TAAACTTCAGGGTGACCAAAAAAT-3’ [54]. PCR pro-
ducts were purified using shrimp alkaline phosphatase and
Escherichia coli exonuclease I (USB Corporation, USA) as
described in [62] and sequenced on an automated ABI
Prism 3730 Genetic Analyzer using ABI BigDye v3.1 Ter-
minator sequencing chemistry (Applied Biosystems, Foster
Table 3 Population designations for Anguillicola crassus popu

Group Prefix Popu

North-Eastern Europe ALA Åland Islands (Finlan

North-Eastern Europe OER Kullen, �resund/Kat

North-Eastern Europe COR Slapton Ley, Cornwa

North-Eastern Europe NEA Lake Neagh (Great B

North-Eastern Europe SHA Lough Dergh, Shan

North-Eastern Europe GRA Rußheimer Altrhein

North-Eastern Europe GST Steinfeld (Germany)

North-Eastern Europe POL Sniardwy Lake, Miko

North-Eastern Europe C Essen (Germany)

Brittany FRE Bois Joli, Frémur (Fr

Brittany VIL Brain-sur-Vilaine (Fra

South-West Europe LOI Angers, Loire (Franc

South-West Europe RHO Camargue, Rhône (F

South-West Europe ORI Oria (Spain)

South-West Europe EAV Albufera de Valencia

South-West Europe POR Ribeira das Lamprei

South-West Europe TIB Roma, Tiber (Italy)

South-West Europe LB Lake Bracchiano (Ita

Turkey TUR Asi River, Hatay (Tur

USA STJ St. Jones River (New

Taiwan KAO Tung-Chiang, Kao-P

Taiwan TKR Sinyuan, Kaoping Ri

Taiwan TCU Eel culturing pond,

China (Zhuhai) CGZ Zhuhai, Guangdong

China (Guangzhou) CGG Guangzhou, Guangd

Japan (Mikawa) MIK Mikawa Bay (Japan)

Japan (Yamaguchi) YAM Yamaguchi, Fushino

Japan (Wakayama) JPN Natural water system

* This work.
** Geiß, K. and B. Sures (2010). The swim bladder nematode A. novaezelandiae. Proc
Protozoology, Düsseldorf, Germany.
City, CA) in the GenePool Genomics Facility, Edinburgh
(http://genepool.bio.ed.ac.uk). Sequencing of each PCR
product was carried out in both directions to minimise
PCR artefacts, ambiguities and base-calling errors. Directly
sequenced COX1 PCR products of A. globiceps displaying
indels disrupting the open reading frame were cloned
(PCRII Topo TA cloning kit, Invitrogen) and only speci-
mens for which a single, correct open reading frame (ORF)
bearing sequence was identified have been included in the
analyses. Raw ABI chromatograph files of the sequences
were processed using trace2seq.pl (a perl program that
uses phred [63,64] to identify high-quality base calls; A.
Anthony and M. Blaxter, unpublished). After screening for
contaminants using NCBI BLAST [65], the high quality
forward and reverse sequences of each gene from each
sample were aligned and a consensus sequence was
lation structure analyses with COX1

lation No. sequences Source

d) 16 [19]

tegat (Sweden) 30 [19]

ll (Great Britain) 15 [19]

ritain) 31 [19]

non (Ireland) 30 [19]

(Germany) 4 *

1 *
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3 **
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nce) 30 [19]

e) 32 [19]

rance) 30 [19]

30 [19]

(Spain) 3 *

as (Portugal) 1 *

30 [19]

ly) 10 **

key) 4 *

Jersey, USA) 32 [19]

ing River (Taiwan) 46 [19]

ver (Taiwan) 4 *

Budai, (Taiwan) 5 *

(China) 14 *

ong (China) 2 *

29 [19]

(Japan) 7 [19]

, Wakayama (Japan) 5 *

eedings of the Joint Meeting of the German Societies of Parasitology and

http://genepool.bio.ed.ac.uk
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inferred using a phred score of 30, i.e. a 99.9% accuracy of
a base-call, as the detection threshold, resulting in an in-
crease in sequence lengths and an improvement in se-
quence reliability. The 352 sequences were deposited in
the EMBL database (accession numbers JF805371 –
JF805722). Aligned sequence datasets for all analyses are
available as Additional file 1 and also at datadryad.org
under doi:10.5061/dryad.8h5p7p00.

Construction of the datasets
For each of the three genes, an individual dataset was cre-
ated (nSSU, nLSU and COX1) containing the respective
consensus sequences from different individual nematode
specimens. Trimmed datasets containing only sequence
types derived from the subset of 79 specimens for which
all three genes were successfully sequenced (termed
nSSU*, nLSU* and COX1*). Additional COX1 sequences
[19], obtained using the same primers, were retrieved from
GenBank and included in the COX1 dataset. Sequences
contained in the nSSU and COX1 datasets were of uni-
form length (787 bp and 550 bp, respectively) and could
be aligned unambiguously using CLUSTALW 2.0.9 [66]
with the penalties for gap opening and extension set to 10
and 0.2, respectively. Sequences in the nLSU alignment
showed several insertion/deletion events (indels), which
were binary coded for phylogenetic analyses [67] imple-
mented in Seqstate 1.4 [68]. The data was included in the
phylogenetic analysis as a binary partition under the re-
striction site model with the ascertainment bias set to vari-
able, as suggested by [69].

MOTU definition
jMOTU 1.0.7 [51] is a Java application that defines mo-
lecular operational taxonomic units (MOTUs) based on
nucleotide sequences and a user defined range of cutoff
values, the maximum number of base pair differences
between two sequences, by using global alignment.
MOTUs were defined at cut-off values ranging from 0 to
14% sequence divergence in intervals of 1 base pair, on
sequences from specimens for which all three genes were
sequenced (nSSU*, nLSU* and COX1*). To investigate
the degree of influence sampling depth has on MOTU
richness and membership, the results were compared to
those of the MOTU analysis performed on the COX1
dataset.
Phylogenetic analysis
For phylogenetic analysis of the Spirurina, additional
sequences were retrieved from GenBank [39-41] and
aligned to the anguillicolid sequences. New sequences
from spirurine nematodes from a dataset provided by S.
Nadler were also included [accession numbers JF934725–
JF934737]. Regions within the resulting Spirurina
alignment in which determination of homology was am-
biguous (i.e. many apparently independent insertion-
deletion events over 10 contiguous bases of the alignment)
were excluded. For both the nLSU and COX1 data, out-
groups were chosen based on closest sequence matches in
the public databases, while for nSSU outgroups were
chosen based on previous analyses. Bayesian phylogenetic
inference was carried out using MrBayes 3.1.2 [69]. Phylo-
genies for individual datasets were inferred under the
GTR+ I+ Γ model of sequence evolution, partitioned by
codon position for COX1 and partitioned by datatype for
nLSU (i.e. nucleotide data and binary insertion-deletion
data). For each analysis, two independent Markov chain
Monte Carlo (MCMC) runs of four Metropolis-coupled
chains were performed with the gamma shape parameter,
the proportion of invariable sites, base frequencies and
substitution rates unlinked across partitions and assuming
default priors. Chains were sampled every 1,000 genera-
tions for 7.5x106 (nSSU), 7.5x106 (nLSU) and 5x106

(COX1) generations. Convergence of Markov chains was
assessed using Tracer 1.4 (Rambaut A, Drummond AJ
(2007); available from http://beast.bio.ed.ac.uk/Tracer) and
saved trees from the first 750,000 (nSSU, nLSU), 500,000
(Spirurina) and 300,000 (COX1) generations were dis-
carded as burn-in.

Statistical parsimony network analysis
Unique sequence types per population of A. crassus
(defined in Table 3; including gaps as a 'fifth state') were
collated as an aligned NEXUS format file (see Additional
file 1), and TCS 1.2.1 [70] was used to estimate gene ge-
nealogies within populations [71]. The network graphs
were output in graph markup language and visualised
and annotated with custom perl scripts and 4yEd (ver-
sion 3.4.2).

Additional file

Addtional file 1: Sequence data files and keys thereto as a single
compressed file, expandable to a folder containing: Cytochrome
oxidase 1 data, COX1.haplotypes.nex - NEXUS format file of aligned
COXI haplotype sequences, COX1.haplotypes.labels.txt - text file
describing the assignment of individual COXI sequences to haplotypes,
COX1.haplotypes.crassus.nex - NEXUS format file of aligned A. crassus
COXI haplotype sequences, COX1.haplotypes.crassus.labels.txt - text file
describing the assignment of individual A. crassus COXI sequences to
haplotypes, COX1.nex - NEXUS format file of all aligned COXI haplotype
sequences. Nuclear large subunit ribosomal RNA data, 28_S.
haplotypes.nex - NEXUS format file of aligned nLSU or 28S haplotype
sequences, 28_S.nex - NEXUS format file of all aligned nLSU or 28S
haplotype sequences. Nuclear small subunit ribosomal RNA data,
18_S.haplotypes.nex - NEXUS format file of aligned nSSU or 18S
haplotype sequences, 18_S.spirurina_B.nex - NEXUS format file of aligned
nSSU or 18S haplotype sequences, 18_S.nex - NEXUS format file of all
aligned nSSU or 18S haplotype sequences.
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