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Recent evolution of the NF-�B and inflammasome
regulating protein POP2 in primates
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Abstract

Background: Pyrin-only protein 2 (POP2) is a small human protein comprised solely of a pyrin domain that inhibits
NF-�B p65/RelA and blocks the formation of functional IL-1b processing inflammasomes. Pyrin proteins are
abundant in mammals and several, like POP2, have been linked to activation or regulation of inflammatory
processes. Because POP2 knockout mice would help probe the biological role of inflammatory regulation, we thus
considered whether POP2 is common in the mammalian lineage.

Results: BLAST searches revealed that POP2 is absent from the available genomes of not only mice and rats, but
those of other domestic mammals and New World monkeys as well. POP2 is however present in the genome of
the primate species most closely related to humans including Pan troglodytes (chimpanzees), Macaca mulatta
(rhesus macaques) and others. Interestingly, chimpanzee POP2 is identical to human POP2 (huPOP2) at both the
DNA and protein level. Macaque POP2 (mqPOP2), although highly conserved is not identical to the human
sequence; however, both functions of the human protein are retained. Further, POP2 appears to have arisen in the
mammalian genome relatively recently (~25 mya) and likely derived from retrogene insertion of NLRP2.

Conclusion: Our findings support the hypothesis that the NLR loci of mammals, encoding proteins involved in
innate and adaptive immunity as well as mammalian development, have been subject to recent and strong
selective pressures. Since POP2 is capable of regulating signaling events and processes linked to innate immunity
and inflammation, its presence in the genomes of hominids and Old World primates further suggests that
additional regulation of these signals is important in these species.

Background
Initiation of innate immune/inflammatory responses by
pathogens results in the secretion of cytokines that
recruit phagocytes, increase phagocyte microbicidal activ-
ity, promotes antigen presentation and the development
of adaptive immunity [1]. To initiate these responses,
pathogens must be sensed through one or more host pat-
tern recognition receptors (PRR). PRRs include the Toll-
like receptor (TLR), RIG-I helicase-like receptor, or
nucleotide-binding, leucine repeat (NLR) receptor
families. PRR engagement by pathogen-associated mole-
cular patterns activates receptor-mediated signaling via
MAPK, STAT, and/or NF-�B (reviewed in [1-3]). Activa-
tion of the MAPK and NF-�B pathways cooperate to
drive the gene expression of proinflammatory cytokines

such as IL-1b, IL-6, IL-8, and TNFa. Secretion of IL-1b
and the IL-1b-related cytokine IL-18, requires processing
of the respective pro-forms by caspase-1. Activation of
caspase-1 occurs in the context of the dynamic multi-
protein inflammasome complex through either direct or
ASC (apoptotic speck-like protein containing a CARD)-
mediated indirect recruitment via NLR proteins [4,5].
While the molecular basis and regulation of NF-�B

signal transduction downstream of PRR family members
is well-studied [2,6,7], inflammasome function and regu-
lation is poorly understood. Pyrin domain (PYD) and
caspase recruitment domain (CARD) homodomain
interactions are important for inflammasome formation,
suggesting the potential for CARD-only proteins (COPs)
and PYD-only proteins (POPs) to act as negative regula-
tors. COPs (e.g. INCA, ICEBERG, and COP) inhibit
Caspase-1 activation by preventing Caspase-1 recruit-
ment to the inflammasome complex [8-10]. Two mam-
malian POPs have also been discovered. POP1 (ASC2)
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is highly similar to the PYD of ASC (PyCARD), the
adaptor molecule that bridges the PYD of NLRPs to the
CARD of Caspase-1 to facilitate inflammasome assem-
bly. Although a potential function, POP1 has not yet
been shown to inhibit inflammasome formation/activa-
tion [11]. POP2 is more similar to NLR PYDs and effec-
tively inhibits inflammasome activation by limiting the
interaction of various NLRPs with ASC [12,13]. Impor-
tantly, the inflammasomes influenced by POP2 include
NLRP1, NLRP3, and NLRP12 which have been linked to
specific inflammatory diseases including atopic dermati-
tis [14]; the cryopyrin-associated periodic syndromes
[15,16], and other hereditary periodic fevers [13]. POP1
and POP2 are also capable of inhibiting NF-�B activa-
tion, although the mode of inhibition differs [11,12].
Thus POP2 has the potential to function as a dual regu-
lator of innate immune/inflammatory responses by
influencing both inflammasome function and PRR sig-
naling via NF-�B.
Here we report that the genomes of mouse, rat, and a

number of other domestic mammals with available com-
plete genome sequence data lack POP2. While the avail-
able genomes of catarrhine primates (comprising both
hominids and Old World monkeys) contain POP2, those
of New World primates (platyrrhine) do not, strongly
supporting the recent evolution of POP2. Our data also
reveals an increasing number of NLRP2-related
sequences during mammalian evolution. A functional
analysis of macaque POP2 reveals a protein capable of
both NF-�B and inflammasome inhibition, demonstrat-
ing that these functions likely coincide with the emer-
gence of POP2 some time after the divergence of Old
World and New World primates approximately 40 mya.
The pattern of POP2 evolution and the significance of
the recent emergence of both POP1 and POP2 as poten-
tial regulators of NF-�B signaling and inflammasome
function are discussed.

Results and discussion
POP2 is absent from the genomes of mice, rats, and other
domestic mammals
To attempt to identify and isolate the mouse equivalent
of human POP2, we performed translated BLAST
searches of the mouse genome. Curiously, although
other PYDs in NLR family members were detected, a
sequence with high similarity to POP2 was not. The
completed genomes of a variety of other domestic mam-
mals were also examined with similar results. Sequences
with the highest homologies in these species were
the PYDs of the putative orthologs of NLRP2 or NLRP7,
the genes most closely related to POP2 in humans
(Figure 1A). Searches were also performed for human
POP1, which was also absent in these genomes. As
expected, the ASC PYD had the greatest homology to

POP1. Since POP2 is encoded by a single exon of 297
base pairs in humans adjacent to the gene for CCDC50
(c3orf6) and approximately 700 kbp upstream of the
gene for Fgf12 [12], we examined the corresponding
locus in mouse. This locus is present in the mouse gen-
ome, has been completely sequenced, and is nearly iden-
tical to the human locus in size and gene arrangement
with the exception that POP2 is absent (Figure 1B).
These results suggest that both POP1 and POP2 may be
recent developments in mammalian evolution and raise
the possibility that both genes are unique to primates.

POP2 is an evolutionarily young gene present in hominid
and Old World primates
Based on our observation that POP2 is absent from the
genomes of all domestic mammal species examined, we
performed the same screening of the completed genomes
of simian non-human primates including Pan troglodytes
(chimpanzee), Macaca mulatta (Rhesus macaque), and
with the available whole genome shotgun (WGS)
sequences of Gorilla gorilla (gorilla), Pongo abelii (oran-
gutan; 6 × coverage), and Callithrix jacchus (marmoset;
6X coverage). POP2 related sequences were found in the
genomes of all species examined (except the gorilla gen-
ome which is still relatively incomplete). Sequence align-
ment shows that chimpanzee POP2 is identical to human
POP2 at the protein level (Figure 2A). Except for gorilla,
the remaining hominid (chimpanzee and orangutan) and
Old World (macaque) primate species have a clear POP2
ortholog (>90% identity) with open reading frames, but
marmosets (New World) do not. No POP2 orthologs
were detected in the available genomic data from prosi-
mian species. POP1 was also examined with similar
results. Maps of the POP2 and POP1 loci were con-
structed for those genomes having chromosomal map
data (Figure 2B and Figure 3). The genes surrounding
POP2 and POP1 in primate genomes are syntenic and
have conserved sequences that have persisted since the
emergence of the murine genomes (approximately
80-100 mya). Collectively, these data strongly support the
conclusion that POP2 is unique to primates and very
likely unique to Old World and hominid primates. As
Old World primates are thought to have diverged from
New World primates approximately 40 mya, and homi-
nids from Old World primates approximately 25 mya
[17], this observation suggests that POP2 emerged as a
functional gene somewhere between 25 and 40 mya.
POP2 and POP1 thus appear to be among the youngest
known human gene products.

POP2 likely resulted from a contraction of the NLRP2/7
paralog pseudogene CLRX/NOD24
Comparison of the identities of POP2-related proteins
from all species examined reveals that the number of
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POP2 PYD-related sequences increases in number dur-
ing mammalian evolution (one in mouse and four in
chimp and human). Phylogenetic analysis of the PYD
protein sequences indicates that in the most distant out-
group represented (mouse and rat), the only POP2-
related gene is Nlrp2 (Figure 4A). In humans, based
solely on the PYD protein sequence, the proteins most
closely related to POP2 include NLRP2, NLRP7, and the
predicted protein product of the CLRX.1/NOD24 locus,
suggesting an evolutionary relationship between these
proteins. Unlike NLRP2 and NLRP7, the pseudogene
CLRX.1 (NOD24) [18] contains the stop-codon-rich
remnants of its PYD, nucleotide binding domain, and
leucine rich repeat coding regions. Like POP2, CLRX.1
or CLRX.1-like pseudogene sequences are present in all
the primate species genomes examined including mar-
moset (Contig567.4). In our analysis based on PYD pro-
tein sequences alone, a number of sequences fail to
cluster with either human NLRP7 or NLRP2, suggesting
that they represent intermediate forms of the gene (e.g.

the NLRP2-like macaque XR 010180.1). To try to
resolve whether these sequences represent evolutionary
transitions we performed a phylogenetic analysis on the
predicted full-length nucleotide and cDNA sequences
(Figure 4B). Marmoset and orangutan sequences were
excluded as the contigs from these databases were too
small to ensure complete coding regions for individual
sequences. From this analysis, macaque XR 010180.1
appears to be macaque NLRP2. Macaque XR 011918.1 is
most similar to CLRX.1. Mouse and rat Nlrp2 and Dog
and Horse NLRP2/-7-like are more closely related to
human NLRP7 than NLRP2. This indicates that Nlrp2 in
mouse and rat is currently a misleading designation.
Accordingly, an Nlrp2/7 or Nlrp2/7-like designation
would more accurately reflect its orthologous, syntenic
relationship with human NLRP7. The presence of both
NLRP2 and NLRP7 in human and non-human primate
genomes and the observation that mouse and rat Nlrp2
are more closely related to human NLRP7 than human
NLRP2 suggests that an Nlrp7-like gene is the common
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Figure 1 POP2 is absent from the genomes of mice, rats, and other domestic mammals. A. Translated BLAST searches of the human,
horse, dog, pig, cat, rat, and mouse genome were performed with the POP2 protein sequence. The protein sequence of the PYD for the four
POP2 PYD related sequences in human are shown as are those sequences with the highest similarity to POP2 identified from each of the other
genomes examined. All the identified sequences represent NLRP genes. Chr, chromosomal location. Shading represents conservation (either
identity (black) or functionally similar (gray)) at given positions in >50% of aligned sequences. Percent identity/similarity and expect values are
shown at right to the aligned sequences.
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ancestor of the NLRP7, NLRP2, CLRX.1/NOD24, and
POP2 genes. Given the apparent synteny between
mouse Nlrp2 and human NLRP7, it is highly likely that
duplication of the ancestral NLRP7 gene (represented
here by the common ancestor of mouse Nlrp2 and
horse NLRP2/7-like) resulted in the POP2, NLRP2, and
CLRX.1/NOD24 (Figure 4C). NLRP7 (human and
chimp) and NLRP2/7-like (horse and dog) likely repre-
sent diversification of the ancestral locus. In the human
and chimp genomes, NLRP2 is adjacent to NLRP7 on
chromosome 19. Further, the CCDC50/Fgf12 locus
which contains POP2 on human chromosome 3q23 is
not in proximity to other NLRP-related genes suggesting
the insertion of the POP2 sequence.

POP2 likely originated from a processed pseudogene
(retrogene)
The marmoset (Callthrix jacchus) genome contains a
pseudogene sequence representing a sister clade of POP2
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Figure 2 POP2 is present in hominid and Old World primates. A. Protein sequences of the PYDs most closely related to that of POP2 from
the genome sequences of human, the non-human hominid primates Pan troglodytes (chimpanzee) and Pongo abelii (orangutan; 6 × coverage),
the Old World primate Macaca mulatta (Rhesus macaque), and the New World primate Callithrix jacchus (marmoset; 6 × coverage). Percent
identity/similarity and expect values are shown at right to the aligned sequences. B. Genomic maps of the POP2 loci for genomes with
chromosomal map data from the indicated species. Gray indicates presumed gene locations and approximate distances in the marmoset
genome. Note: Marmoset contig 6464-5 which corresponds by position with POP2 lacks a start codon and intact open reading frame. Vestiges
of the nucleotide binding and leucine-rich repeats analogous to NLRP2/7 are contiguous in the sequence immediate downstream of the PYD-
like sequence.
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(cjΨPOP2). The cjΨPOP2 pseudogene resides downstream
of marmoset CCDC50 and upstream of marmoset Fgf12 in
same location and orientation as higher primate forms of
POP2. Further inspection of cjΨPOP2 reveals the presence
not only of the PYD, but also a nucleotide binding
domain, and evidence of leucine-rich repeat coding
sequences. Introns between these domains are absent,
strongly implicating an insertion of a retrogene copy (pro-
cessed pseudogene) of one of the NLRs, likely the com-
mon ancestor of CLRX.1/NLRP2. The ATG start codon is
missing and numerous stop codons are present in-frame
with the residual PYD sequence. Genes expressed in
reproductive tissues are believed to be more likely to gen-
erate a heritable processed pseudogene [19] and POP2 as
well as a number of NLRs are expressed in testis and/or
oocytes [12,20-23]. All of these observations are consistent
with our interpretation that in marmoset, cjΨPOP2 is a
processed pseudogene and suggest that in primate evolu-
tion, an older, functional NLR retrogene was acquired
(likely after the divergence of haplorrhine and strepsirrhine
primates), modified, and rapidly selected in Old world and
hominid primates to produce POP2.

Macaque POP2 is a functional intermediate between
NLRP2 and POP2
Like human and chimp POP2, mqPOP2 is a single exon
gene, but unlike CLRX.1/NOD24, none have discernable
residual coding sequence downstream of their stop
codons, suggesting that the loss of NBD and LRR
encoding sequences was complete prior to the diver-
gence of these species. In agreement with this data and
primate phylogeny [17], mqPOP2 likely retains features
in common with the ancestral forms of NLRP2 and
POP2 that diverged between approximately 9 and 25
mya. Both the PYD of human NLRP2 and POP2 inhibit
NF-�B although their mode of action differs [12,24], but
while POP2 has been shown to inhibit inflammasome
assembly [12,25], the PYD of NLRP2 does not [24]. To
establish whether mqPOP2 is more similar to NLRP2 or
POP2 with respect to NF-�B and inflammasome inhibi-
tory properties, we cloned mqPOP2 and compared the
inhibitory properties of the protein to that of huPOP2.
Comparison of the predicted amino acid sequence from
two identical mqPOP2 clones reveals four amino acid
substitutions differing from the macaque genome
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reference sequence (Figure 5A). First, lysine 32 is substi-
tuted by threonine, a residue conserved in human and
chimp POP2 and in human NLRP2. Residue 61, a serine
in the genome database, is a glycine in both clones and
appears unique as POP2 (human and chimp), the maca-
que genome, and the NLRP2 PYD have either a serine
or threonine at this position. Position 91 is not con-
served between the various POP2 and related sequences,
but our clones contain cysteine instead of the expected
arginine. MqPOP2 differs from human/chimp POP2
most dramatically by the presence of a 41 amino acid
C-terminal extension indicating that this region was

likely lost at some point after the divergence of hominid
and Old World primates (~25 mya). A cysteine residue
at position 102 is a tyrosine in our clones; but this resi-
due occurs in the additional C-terminal 41 amino acids
absent in human and chimp POP2. The differences
between our clones and the reference sequence for
mqPOP2 may represent POP2 polymorphisms or diver-
sification in macaques. Since human and chimp POP2
are identical, purifying selection may have occurred in,
or prior to, these lineages. However, a larger number of
huPOP2 cDNAs will need to be examined to confirm
that huPOP2 is essentially invariant.
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Both POP1 and POP2 inhibit NF-�B signaling
induced by TNFa. While POP1 inhibits IKKa/IKKb
kinase activity upstream of I�Ba phosphorylation and
cannot inhibit transactivation by the active p65 subunit
[25], POP2 inhibits transactivation by p65 [12]. The
isolated PYD of NLRP2 acts similarly to POP1 [24].
Similar to huPOP2, mqPOP2 reduces TNFa-mediated
NF-�B activation (Figure 5B). MqPOP2 also inhibits
transactivation by NF-�B p65, demonstrating that like
huPOP2, mqPOP2 is acting downstream of I�Ba phos-
phorylation at the level of p65. However, the extent of
NF-�B inhibition by mqPOP2 is less than that
of huPOP2. This may result from the additional
C-terminal sequence as its removal (mqPOP2(1-97))
results in a version of the protein with p65 inhibitory
activity similar to that of huPOP2 (Figure 5C).
Neither POP1 nor NLRP2 have been demonstrated to

prevent inflammasome activation, whereas POP2 is
known to block NLR:ASC interaction and inhibits a
variety of inflammasomes [12,25]. MqPOP2 is less effec-
tive than human at inhibiting inflammasome activation
mediated by ASC-overexpression in HEK293 cells
(Figure 5D). Although it remains possible that mqPOP2
may more profoundly inhibit other specific inflamma-
somes or exhibit species specific inflammasome inhibi-
tion, these results demonstrate that mqPOP2 possesses
the identified functions of its human ortholog.
Given the high degree of similarity to the NLRP2

PYD, mqPOP2 retains more sequence identity with the
NLRP2 PYD than with human or chimp POP2 and
likely represents a form of POP2 preceding refinements
now fixed in the more broadly functional human POP2.
The high degree of conservation between human and
chimp POP2 suggests that POP2 refined these functions
at some point following the divergence of macaques
with purifying selection acting at that point to comple-
tely conserve POP2 (Figure 5E) prior to the divergence
of humans and chimps (~ 6 mya). The divergence of
orangutans from other hominid primates occurred
around 14 mya [17] and orangutan POP2 is not identi-
cal to human and chimp POP2 revealing that as recently
as 14 mya, this selection was still acting upon the POP2
locus. The selective pressures driving the appearance of
both NLRP2 and POP2 are unknown, however the
recent emergence of POP2 suggests a very strong selec-
tive pressure impacting reproductive success.

Conclusions
Of all extant species, chimpanzees and other primates
are most similar to humans at the protein and genomic
levels. Rodent species however, are widely used as mod-
els for biomedical research. Since arrival in the genomic
age has accelerated the pace of discovery and increased
our knowledge of comparative genomics, the differences

between humans and those species used as disease mod-
els as well as the need to understand important differ-
ences has become increasingly apparent [26]. It has
become clear that humans possess greater diversity in
protein families involved in inflammation than rodent
models used to model inflammatory disease. This is
most evident in members of the IL-1/IL-1R family
where both agonist and antagonist members are more
abundant in humans than mice [27]. Not surprisingly,
humans and mice also show differences in the number
of NLR proteins potentially involved in inflammasome
activity [28]. In this report we have examined the evolu-
tionary history of pyrin-only proteins (POPs) implicated
in the regulation of inflammation and find that the
emergence of POPs in the mammalian genome is a very
recent event occurring roughly at the divergence of Old
and New World primates. Further, our evidence sug-
gests that POP2, which can inhibit inflammasome activ-
ity, arose from gene duplication events that first gave
rise to multiple paralogs of an ancestral Nlrp2/7-like
gene, followed by diversification of these genes, retro-
gene insertion of an NLRP2-like paralog, and rapid loss
of the signature NBD and LRR encoding regions to yield
a functional POP2 gene. MqPOP2 approximates the
most distant intact ancestor of POP2, predating the
divergence of humans and chimps by approximately
5-10 million years, and possesses both the NF-�B p65
and inflammasome inhibitory properties reported for
the human protein. Collectively, these data suggest a
strong selective pressure driving the recent emergence
of a small Pyrin-only protein inhibiting both NF-�B
signaling and the activation of multiple inflammasomes
that corresponds with the emergence of hominid and
Old World primates.
The marmoset genome clearly reveals the prior inser-

tion of a retrogene copy of an NLRP2-like transcript at
the developing POP2 locus. By the emergence Old
World primates, traces of the non-PYD coding portions
of the retrogene are no longer apparent. In humans, a
functional polyadenylation sequence is present within
the 3’ UTR of POP2 [12]. Similar sequences are present
in the 3’ UTR of chimp and mqPOP2. Beyond reflecting
the selective pressures acting on the POP2 gene, these
features lend additional support to the emerging
hypothesis that retrogenes are frequently functional, add
to the complexity of the genome and may confer impor-
tant regulatory functions as recently demonstrated for
fibroblast growth factor 4 [29].
Do the recent emergence of POP2 and other inflam-

matory regulators (e.g. POP1, COP, and INCA) reflect
an increased need to control inflammation during the
most recent stages of primate evolution? This is a diffi-
cult question requiring further investigation. However,
considering that a strong selective pressure likely drove
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the evolutionary development of POP2, it is reasonable
that POP2 might act by offsetting inflammatory events
that decrease reproductive success. Inflammation of the
reproductive organs would be a direct example.
Recently, mutations in NLRP14 (although not yet
demonstrated to initiate an inflammasome) have been
implicated in failed spermatogenesis and may dysregu-
late inflammation or promote apoptosis [21,22]. Inter-
estingly, although inducible in monocytic cells, POP2 is
expressed constitutively in the testis [12] and could thus
potentially have a role in modulating NLRP14 function.
As a more extreme example, NOMID, one of the most
severe autoinflammatory diseases, is one outcome of
mutations in NLRP3, an inflammasome-initiating pro-
tein modulated by POP2 [12,25]. Approximately 20% of
individuals with NOMID die before adulthood. Identifi-
cation of mutations or deletions in POP2 correlating
with male reproductive system failure would lend sup-
port to this idea. The involvement of NLRP2 and
NLRP7 in inflammasome inhibition [30] and a connec-
tion between their presence among maternal RNAs in
oocytes and the formation of hydatiform moles [31-33],
a form of reproductive failure, further suggest that some
NLRs may have roles in both inflammation and repro-
ductive success. Nevertheless, as no specific disease
associations have been identified for the POP2 locus,
these ideas remain speculative and await the results of
further studies exploring the role of POP2.
In summary, the recent emergence of the highly

selected and functional POP2 gene in higher primates,
apes, and humans suggests a strong selective pressure
among these species for the functions of the POP2 pro-
tein. Although our understanding of the biological role
of POP2 is in its infancy, its apparent biochemical roles
in regulating NF-�B activity and inflammasome forma-
tion suggest a variety of possibilities that may shed light
on important differences between higher primates and
other mammalian species.

Methods
Database search strategy, and sequence prediction
TBLASTN searches of the NCBI genome databases for
human (build 36.3, March 2008), chimp (Build 2.1,
October 2006), macaque (Build 1.1 June 2006), dog
(build 2.1, September 2005), cow (Btau_4.0, August
2008), chicken (build 2.1, November 2006), and mouse
(build 37.1, July 2007); Washington University genome
databases for orangutan (Pongo pygmaeus abelii 2.0.2
contigs) and marmoset (Callithrix jacchus 2.0.2 contigs)
were performed without the low complexity filter and
with default expect (E) values using the huPOP2
(PYDC2, AY858112.1) as the query. Subsequent analysis
of the marmoset genome used the Ensembl database
(Callithrix jacchus 3.2). TBLASTN searches of the nr/nr

and non-human, non-mouse EST databases were also
performed as above.

Phylogenetic analysis of nucleotide and protein sequence
Predicted or known nucleotide and protein sequences
for all the identified loci were aligned with each other
using CLUSTALX [34] or MUSCLE [35]. Phylogenetic
trees were constructed using the MEGA 3.1 [36] or
MEGA 4 [37] software packages. For nucleotide align-
ments trees were constructed based on the Maximum
Likelihood method (Tamura-Nei model [38]) with gaps
and missing data eliminated and bootstrapped with 1000
repetitions. Protein alignments were analyzed and neigh-
bor-joining trees were constructed based on the amino
acid: number of differences algorithm with pairwise
deletion of gaps and bootstrapped with 1000 repetitions.

Cells
The kidney epithelial fibroblast cell line HEK293T was cul-
tured in DMEM with 10% FBS, 1% L-glutamine and 0.1%
penicillin/streptomycin cocktail at 37°C, 5% CO2. Periph-
eral blood leukocytes from Rhesus macaque were the kind
gift of Drs. Deborah H. Fuller and Michael Murphey Corb.

RNA isolation and cloning
RNA was isolated from Rhesus macaque peripheral
blood leukocytes using RNEasy (Qiagen) reagents. RNA
was treated with DNAaseI and the macaque POP2 spe-
cific primers 5’-AA GAATTC ATG GCA TCT TCT
GCA CAG CTG G-3’ and 5’-AA CTCGAG TCA ATA
TAC TGG TGA TAT AGA TAT TTC-3’ were used
with the One-Step RT-PCR kit (Qiagen) to amplify
mqPOP2 cDNA. The cDNA product was digested with
EcoRI and XhoI and ligated into pcDNA3 (Invitrogen).
Two independently isolated clones were sequenced
(Genewiz) and returned identical nucleotide sequences.
The sequence of this clone of macaque POP2 has been
deposited at GenBank (Accession Number: JF327668).

NF-�B reporter assays
NF-�B Luciferase reporter assays were performed as
previously described [12]. Briefly, HEK293T (2 × 105

cells/well) were seeded in 6-well plates, transfected with
100 ng 3 × NF�B-luciferase reporter and 50 ng NF�B-
p65 with 1 μg myc-huPOP2, myc-macaque POP2, or
empty vector using Fugene6 (Roche) as described by the
manufacturer (2.5:1 ratio Fugene6:ug DNA. Cells were
harvested 18 hours post-transfection, lysed in 1 × repor-
ter lysis buffer (Promega), and luciferase activity was
assayed using a Victor3V luminometer (Perkin-Elmer).
For TNFa-induced NF�B activation, cells were stimu-
lated with TNFa (10 ng/ml) 3 hrs prior to harvesting.
All relative light unit values were normalized to total
protein as described [39].
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Inflammasome inhibition assays
HEK293T cells were seeded (5 × 104 cells/well) in 24
well plate a day before the experiment. For inflamma-
some reconstitution, cells were transfected with plas-
mids encoding Pro-caspase1 (50 ng), Pro-IL1b (200 ng),
and ASC (400 ng) in presence or absence of POP1, full-
length huPOP2 or macaque POP2 (500 ng). At 18 hrs
post-transfection, culture supernatants were harvested,
centrifuged briefly to remove any cellular debris and
immediately used for the measurement of secreted
IL-1b by human IL-1b ELISA kit (eBiosciences) as per
manufacturer’s instructions or stored at -20°C for later
use. For ASC over-expression, similar experiments were
performed by using 400 ng of ASC instead of 20 ng.
Note that in ASC over-expression experiments there
was no transfection of any NLR.

Immunoblotting
HEK293T cells were transfected with 1 μg of myc-tagged
huPOP2, mqPOP2 WT or mqPOP2 1-97. Cells were
lysed 24 hr post-transfection using 1% NP-40 lysis buffer
[50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1% NP-40 (v/
v), 2 mM EDTA, 2 mM DTT with protease inhibitors
(Roche)], run on SDS-PAGE (Bio-Rad) and transferred to
PVDF membrane. After blocking with 3% milk/PBS,
membrane was probed using mouse anti-myc antibody
(1:1000, Millipore) overnight, followed by HRP-conju-
gated goat anti-mouse antibody (1:5000, Sigma) for 1 hr.
Protein bands were detected using SuperSignal West
Pico detection reagents (Thermoscientific).

Statistical analysis
Experiments were repeated at least three times unless
indicated otherwise. Statistical significance between
experimental groups were measured by Student’s t-test
with p < 0.05 considered significant.

List of abbreviations
PRR: pattern recognition receptor; TLR: Toll-like receptor; NLR: nucleotide-
binding, leucine repeat receptor; PYD: pyrin domain; CARD: caspase
recruitment domain; COP: CARD-only protein; POP: pyrin-only protein;
cjΨPOP2: C. jacchus POP2 pseudogene.
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