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Queen pheromones in Temnothorax ants: control
or honest signal?
Elisabeth Brunner1*, Johannes Kroiss1,2, Andreas Trindl1, Jürgen Heinze1

Abstract

Background: The division of reproductive labor among group members in insect societies is regulated by “queen
pheromones”. However, it remains controversial whether these are manipulative, i.e., actively suppress worker
reproduction, or honestly signal the fertility status of the queen to which workers react in their own interest by
refraining from laying eggs. Manipulative queen control is thought to lead to an evolutionary arms race between
queens and workers, resulting in complex queen bouquets that diverge strongly among different populations and
species. In contrast, honest signals would evolve more slowly and might therefore differ less strongly within and
among species.

Results: We aimed at determining the tempo of the evolution of queen signals in two ways. First, we investigated
whether queens of Temnothorax ants are capable of controlling egg laying by workers of their own, closely, and
distantly related species. Second, we compared the species- and caste-specific patterns of cuticular hydrocarbons,
which are assumed to convey information on reproductive status. In mixed-species colonies, queens were not able
to fully suppress egg-laying and male production by workers of unrelated species, while workers did not reproduce
under the influence of a queen from their own species. Furthermore, the chemical profiles differed more strongly
among queens of different species than among the respective workers.

Conclusions: Our results suggest that cuticular hydrocarbons associated with fecundity are not fully conserved in
evolution and evolve slightly faster than worker-specific components in the blend of cuticular hydrocarbons. While
this higher rate of evolution might reflect an arms race between queens and workers, the observation that workers
still respond to the presence of a queen from another species support the honest signal hypothesis. Future studies
need to examine alternative explanations for a higher rate of evolution of queen-specific substances, such as an
involvement of such compounds in mating.

Background
The efficiency and integrity of the societies of ants, bees,
and wasps relies on a well-controlled division of repro-
duction [1,2]. Workers rarely lay eggs in the presence of
a fertile queen [3,4]. This is surprising, as workers are
more closely related to their own sons (r = 0.5) than to
the sons of the queen (r = 0.25) and in queenless condi-
tions are usually capable of producing male offspring
from their own, unfertilized eggs [5,6].
Complete worker sterility benefits the queen, which

should be selected to inhibit worker reproduction. How-
ever, overt aggression by the queen is very rare and
appears restricted to very small colonies [7-10]. Instead,

reproduction appears to be controlled chemically by
glandular or cuticular pheromones [11,12]. In honey-
bees, secretions from the mandibular glands and other
sources are thought to regulate egg laying in the hive
[reviewed in [13,14]]. In contrast, the chemical composi-
tion of cuticular waxes is correlated with fecundity in a
wide and diverse range of species of ants. This suggests
the involvement of cuticular hydrocarbons in the regula-
tion of reproduction [11,12], and indeed, 3-methyl-
hentriacontane has recently been shown to regulate
worker sterility in the ant Lasius niger [15].
The question why workers respond to queen phero-

mones by foregoing their own reproduction is a special
case of the more general, fundamental problem of
whether intraspecific communication is honest or
manipulative. Queen-specific chemicals might act as
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primer pheromones that actively suppress the ovaries of
workers [16,17]. However, it has been argued that such
inhibitive queen control were instable in evolution if
acting against the fitness interests of the workers [18].
Mutations rendering workers insensitive to queen inhi-
bition would spread in the population, again changing
the selection pressures on queens and favoring queen
mutations that qualitatively or quantitatively changed
their manipulative agents. The resulting arms race
between queens and workers would eventually lead to
more and more complex pheromone mixtures. As an
alternative, pheromones produced by the queens might
honestly signal their level of fertility. Workers might
respond in their own interest, e.g., to avoid being
attacked (“policed”) by the queen or other workers
[11,18-21]. Worker altruism might therefore be
“enforced” [21-25].
Honest signaling requires that the quantity or quality of

queen pheromones is strictly associated with their level
of fertility and mating status [18]. This, however, is often
not the case. For example, unmated reproductives may
produce similar pheromonal bouquets as mated repro-
ductives [11,22]. Furthermore, the hypothesis of manipu-
lative regulation of reproduction appears to gain renewed
support from the observation that, at least in honeybees,
the regulation of reproduction is based on a very large
number of substances from multiple glands [13,14].
Distinguishing between queen control and honest sig-

naling is difficult without detailed knowledge about the
molecular and cellular mechanisms involved. However,
both mechanisms might leave different traces in evolu-
tion [11]. The series of manipulation and counter-
manipulation associated with the scenario of queen
control results in a rapid evolution of queen com-
pounds. Queen pheromones therefore likely differ even
between related species. In contrast, honest signals are
expected to be more stable in evolution and to evolve
more slowly. Unfortunately, little is known about the
variation of fertility-associated chemical compounds
among related species. In this study, we compared the
composition of worker and queen cuticular hydrocar-
bons among different species of the ant genus Tem-
nothorax. In addition, we investigated whether workers
begin laying eggs in the presence of a queen from
another, closely or distantly related species. We
hypothesized that with queen control and rapid evolu-
tion, queens should be less efficient in suppressing ovary
development by workers from another species. Further-
more, we expected the chemical bouquet of queens to
differ more between species than those of workers. In
contrast, in the case of honest signaling, workers would
react to fertility signals by queens from another species,
and the bouquets of queens from different species
would be not more different than those of workers.

Results
Worker ovary activation and male-production by workers
Experimental colonies, in which queens and workers
either belonged to the same species or to different spe-
cies, were created by exchanging worker pupae among
colonies. Ovary dissection showed that all queens had
elongated ovaries with numerous yellow bodies and
maturing eggs, i.e., they were fully fertile. None of the
workers in the control colonies had activated ovaries
(colony groups NN, CC, UU, and RR; Figure 1a-d).
Though we had observed sporadic worker egg-laying in
queenright colonies of T. recedens in a previous study
(unpublished data), dissection data did not corroborate
this result for the presently studied colonies.
In all queenless colonies, the ovaries of several work-

ers were activated (Figure 1a-d). This indicates that
workers are capable of activating their ovaries within six
weeks after removal of the queen. Fertile workers were
also found in some of the mixed-species colonies,
such as RC (Figure 1b), CU (Figure 1c), NR and CR
(Figure 1d; for colony abbreviation see Table 1).
In 2007, a total of 752 males were collected from 60

colonies (Table 2). Five colonies, in which the queen or
most of the workers had died, were excluded from
further analyses. In all colonies, except RC8, queens had
fully developed and activated ovaries with yellow bodies
and maturing eggs.
Allozyme analyses revealed that males in mixed-spe-

cies colonies were produced by the queen (e.g., CN13),
by the workers (e.g., CN8) or both (e.g., RN5, NU12,
CU15, Table 2). Queens of colonies UC6 and UC8 were
homozygous for the s allele, and m-males were therefore
offspring of T. crassispinus workers, while the one s-
male was son of a T. unifasciatus queen. All queens of
colonies NU10 to NU15 were homozygous ff, and the s-
and m-males were therefore offspring of T. unifasciatus
workers.
In the CU colonies, s-males were presumably produced

by T. unifasciatus workers, but m-males could in princi-
ple be sons of a T. crassispinus queen or T. unifasciatus
workers. Mitochondrial DNA analysis revealed that the
eight males in colony CU12 were offspring of T. unifas-
ciatus workers, while the 18 males from the colony CU15
were produced by the T. crassispinus queen.

Cuticular hydrocarbons of queens and workers from
different species of Temnothorax ants
The cuticular profiles of queens and workers of the six
Temnothorax species consisted of a total of 64 peaks
(Numbers of peaks in each species is given in Table 3).
40 peaks consistently appeared in all six species and 47
peaks could be identified by GC-MS [Additional file 1.
Representative chromatography profiles from a queen of
each species; Additional file 2. Proportions (%) of peak
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Figure 1 a-d - Worker ovary activation in mixed species colonies of Temnothorax ants. Number of workers per colony with activated
ovaries. Minimum and maximum (horizontal lines), first and third quartiles (rectangle), and the median (dot) are shown. The total number of
colonies and the number of colonies with at least one worker with activated ovaries in each group is given in parentheses. P-values are from
two-sample permutation tests (*p < 0.01; **p < 0.0001; n.s. nonsignificant). After Bonferroni’s correction, p-values of < 0.01 are significant at the
0.05 level. 1a. T. nylanderi workers in colonies with a T. nylanderi queen (NN, control), T. crassispinus queen (CN), T. unifasciatus queen (UN),
T. recedens queen (RN) and in colonies without a queen (ØN). 1b. T. crassispinus workers in colonies with a T. crassispinus queen (CC, control),
T. nylanderi queen (NC), T. unifasciatus queen (UC), T. recedens queen (RC) and in colonies without a queen (ØC). 1c. T. unifasciatus workers in
colonies with a T. unifasciatus queen (UU, control), T. nylanderi queen (NU), T. crassispinus queen (CU), T. recedens queen (RU) and in colonies
without a queen (ØU). 1d. T. recedens workers in colonies with a T. recedens queen (RR, control), T. nylanderi queen (NR), T. crassispinus queen
(CR), T. unifasciatus queen (UR) and in colonies without a queen (ØR).
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areas from cuticular hydrocarbon extracts of queens and
workers of each species; Additional file 3. Identification
of cuticular compounds and differences of their relative
amounts between queens (Q) and workers (W) of each
species; see also [26] for identification of compounds in
T. unifasciatus]. The profiles of queens and workers
were predominantly characterized by the linear alkane
n-C27 (Additional file 1, 2), while individuals of T. rece-
dens were characterized by several longer chained
hydrocarbons. Due to their very low abundance, peaks
36 to 40 and a few other peaks marked in Table S1
(Additional file 3) with an asterisk could not be identi-
fied. However, the latter peaks had exactly the same
retention time as peaks in other species, which could be
identified and are therefore assumed to be chemically
identical to these compounds.
The chemical distances between T. nylanderi and T.

crassispinus queens are lower compared to the other
pair-wise comparisons among queens (Figure 2;
Table 4). The groups of T. recedens queens and workers

are chemically most distant from the groups of the other
three Temnothorax species (Figure 2; Table 4). Interest-
ingly, distances among queens are higher than among
workers in four of six pair-wise comparisons (Table 4).
Within each species, chemical distances between

groups of queens and workers are statistically significant
and their cuticular profiles are classified correctly in a
discriminant analysis (Table 3).

Discussion and Conclusions
Our study about the cross-specificity of the chemical
compounds used in the regulation of reproduction in
colonies of Temnothorax ants reveals a promising new
approach to answering the question of whether queen
pheromones are manipulative or honest signals. Queen
pheromones appear to be less active across species-bor-
ders than within species. No worker reproduction was
observed in single-species colonies. In contrast, queens
were not able to fully prevent ovary development and
male-production by workers from non-related species,

Table 1 Mixed-species colony set ups composed of four different Temnothorax species

Colony composition Colony
name

Colonies
set up in
2005

Colonies set
up in 2006

No.
total

colonies

No. colonies used for the
assessment of ovary

activation

No. colonies used for the
assessment of worker male-

production

Queen species Worker
species

T. nylanderi
(control)

T. nylanderi NN NN1 - NN5 NN6 - NN15 15 10 5

T. crassispinus CN CN1 - CN5 CN6 - CN15 15 10 5

T. unifasciatus UN UN1 - UN5 UN6 - UN15 15 10 5

T. recedens RN RN1 - RN10 10 5 5

no queen ØN ØN1 - ØN5 5 5 -

T. crassispinus
(control)

T. crassispinus CC CC1 - CC5 CC6 - CC15 15 10 5

T. nylanderi NC NC1-NC5 NC6-NC15 15 10 5

T. unifasciatus UC UC1 - UN5 UC6 - UN15 15 10 5

T. recedens RC RC1 - RC10 10 5 5

no queen ØC ØC1 - ØC5 5 5 -

T. unifasciatus
(control)

T. unifasciatus UU UU1 - UU5 UU6 - UU15 15 10 5

T. nylanderi NU NU1-NU5 NU6-NU15 15 10 5

T. crassispinus CU CU1 - CU5 CU6 - CU15 15 10 5

T. recedens RU RU1 - RU10 10 5 5

no queen ØU ØU1 - ØU5 5 5 -

T. recedens
(control)

T. recedens RR RR1 - RR10 10 5 5

T. nylanderi NR NR1 - NR5 5 5 -

T. crassispinus CR CR1 - CR5 5 5 -

T. unifasciatus UR UR1 - UR5 5 5 -

no queen ØR ØR1 - ØR5 5 5 -

Total no. of colonies: 45 165 210 145 65

Colonies were set up in the years 2005 and 2006. The number of colonies randomly chosen for the assessment of ovary activation and for the assessment of
worker male-production is given. The first letter in colony denominations indicates the species of the queen (Ø for queenless), the second the species of the
workers.
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Table 2 Male production by queens and workers in control and mixed-species colonies composed of different
Temnothorax species

Colony No. total males produced
per colony

No. males Allozyme
electromorph

No. males produced by the
queen

No. males produced by
workers

NN11, NN13, NN14,
NN15

none

CN7, CN12 none

CN8 15 15 f - 15

CN13 3 3 m 3 -

UN7, UN11, UN12, UN14,
UN15

none

RN4 3 3 -

RN5 20 11 9

RN6 20 15 5

RN8 5 5 -

CC12, CC13, CC14, CC15 none

NC11, NC12, NC13,
NC14, NC15

none

UC7, UC13, UC15 none

UC6 3 1s, 2m 1 2

UC8 1 1m - 1

RC3 6 6 -

RC4 2 2 -

RC6 1 1 -

RC8 54 1 53*

UU6 1 1 -

UU8 2 2 -

UU9 1 1 -

UU10 5 5 -

UU12 29 29 -

NU10 8 8s - 8

NU12 74 42s, 19m, 13f 13 61

NU13 37 28s, 3m, 6f 6 31

NU14 13 6s, 7f 7 6

NU15 59 59s - 59

CU6 8 8s - 8

CU9 2 2s - 2

CU12 14 6s, 8m - 14

CU15 44 26s, 18m 18 26

RU7 31 31 -

RU8 95 27 68

RU9 105 105 -

RR1 27 27 -

RR4 10 10 -

RR5 7 7 -

RR6 8 8 -

RR8 24 24 -

*In colony RC8 the ovaries of the queen were not fully developed.

Numbers of males produced per colony by the queen or by workers are shown, respectively. Colony composition and colony names are explained in Table 1.
Explanation of Allozyme electromorphs are given in the text.

Brunner et al. BMC Evolutionary Biology 2011, 11:55
http://www.biomedcentral.com/1471-2148/11/55

Page 5 of 11



which indicates that queen pheromones are not fully
conserved in evolution in this group of species. Further-
more, the rate of worker reproduction and ovary devel-
opment of workers in mixed-species was lower than in
queenless colonies, which speaks against the rapid evo-
lution of queen pheromones expected from the queen
control hypothesis.

These behavioral results are reflected in the chemical
profiles of queens and workers, which in most pair-wise
comparisons differed more between queens than
between workers from different species but not tremen-
dously so. This might suggest that queen bouquets
diverge slightly more quickly than those of workers, but
not at an extremely rapid speed. A faster divergence of

Table 3 Discriminant Analysis between groups of queens and workers within six Temnothorax species based on their
specific cuticular hydrocarbon profiles

Species No. of peaks Wilks’ l F-values p-levels correct classification

T. nylanderi 46 0.1098 F (7.7) = 8.105 < 0.01 100%

T. crassispinus 48 0.0068 F (10.4) = 58.828 < 0.001 100%

T. unifasciatus 46 0.0614 F (8.8) = 15.290 < 0.0001 100%

T. recedens 52 0.1919 F (11.32) = 12.248 < 0.0001 100%

T. lichtensteini 48 0.1326 F (8.14) = 11.453 < 0.0001 100%

T. affinis 46 0.1972 F (8.13) = 6.616 < 0.01 100%

Percentages of correct classifications of individuals from predefined groups are given in the right column.
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Figure 2 PCO ordination based on the cuticular hydrocarbons profiles from four Temnothorax species. Bidimensional PCO ordination
based on the cuticular hydrocarbons profiles of queens (Q) and workers (W) from four different species of Temnothorax ants involved in the
mixed-species experiment: T. unifasciatus (Tu Q, n = 5; Tu W, n = 12), T. nylanderi (Tn Q, n = 6; Tn W; n = 9), T. crassispinus (Tc Q, n = 6; Tc W, n =
9), T. recedens (Tr Q, n = 10; Tr W; n = 34). The percentages of variance explained by the two main principal coordinates are given in
parentheses.
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queen- than worker-specific substances is in agreement
with the hypothesis of a queen-worker arms race with
manipulation and counter-manipulation. However, it
might also reflect other forces of selection. For example,
if queen-specific cuticular compounds were involved in
attracting mates, avoidance of hybridization would
quickly lead to species-specific queen bouquets. More
information about the contexts in which cuticular sub-
stances are used in communication is therefore needed.
Studies on the paper wasp Polistes dominulus sug-

gested a relatively high speed of evolution. Here, the
cuticular hydrocarbons that differed between egg layers
and non-reproductives varied even between different
populations [27]. The observation that the chemical pro-
files of T. crassispinus and T. nylanderi queens are more
similar compared to the other Temnothorax species,
even though the two taxa diverged more than 1 Million
years ago [28], makes similar intraspecific variation unli-
kely, but this remains to be investigated.
Our data do not reveal a clear trend in the chemistry

of those hydrocarbons that differentiate queens and
workers among the six investigated species. This
matches the heterogeneous picture found in other, less
closely related ants, where reproductives are character-
ized by particular long-chained hydrocarbons in some
species but shorter or branched hydrocarbons in others
[12,15,29-31]. However, it needs to be pointed out that
it is usually not known, which of the large number of
substances that differ between queens and workers are
biologically active and which are mere side-products of
the hydrocarbon metabolism without a function in com-
munication [11].
Our study reveals a number of species idiosyncrasies

that do not match phylogenetic relationships and are
difficult to explain in the light of hypotheses about the
nature of queen pheromones. For example, T. nylanderi
and T. crassispinus workers seem to respond to the pre-
sence of a T. unifasciatus queen, while T. unifasciatus
workers readily develop their ovaries in the presence of
a T. nylanderi or T. crassispinus queen. This resembles
the situation in honeybees, in which the presence of a
heterospecific queen increases the rate of worker ovary

activation strongly in Apis cerana but only slightly in
Apis mellifera [32]. In contrast, workers of the bumble-
bee Bombus terrestris develop their ovaries in queenright
colonies of the phylogenetically related B. lapidarius at a
similar rate as under queenless conditions, but not in
queenright homospecific colonies [33]. The results in
these studies might have been affected by the presence
of workers belonging to the species of the queen, as
they might have an interest in preventing heterospecific
workers from reproducing through aggression or egg
eating. Worker nepotism might explain the common
absence of reproduction by host workers in socially
parasitic ants. Temnothorax workers are often parasi-
tized by queens of slave-making species, such as Chale-
poxenus, Myrmoxenus or Protomognathus. Though these
genera are less closely related to Temnothorax than the
pairs of species used in our study [e.g., [34]], enslaved
workers rarely produce males [e.g., [35-37]]. Either
slave-making queens have evolved particularly manipula-
tive queen pheromones, which are active across large
phylogenetic distances, or their reproductive monopoly
is additionally enforced by aggression. Indeed, both
queens and workers of slave-making ants have been
observed to attack host workers in a way resembling the
dominance interactions among the slave-makers them-
selves [8,37].
Though our results do not allow drawing final conclu-

sions about the speed of queen pheromone evolution,
comparisons of their cross-species activity might help to
learn more about the nature of such pheromones and
how quickly they diverge among species. The heteroge-
neity of queen substances might reflect an ongoing arms
race between queens and workers [14]. However, it
might also be a consequence of species-specific queen-
bouquets serving to avoid hybridization. The fact that
workers in mixed-species colonies did not behave like
workers in queenless colonies strongly suggests that
workers recognize queens belonging to another species
and that queen pheromones regulating worker repro-
duction are partly conserved in evolution. This would
be in agreement with the honest signal hypothesis.

Methods
In spring 2005 and 2006 we collected complete colonies of
six different Temnothorax species: T. nylanderi (Förster,
1850) and T. affinis (Mayr, 1855) in Sommerhausen (Würz-
burg, Germany), T. crassispinus (Karavejev, 1926) in Unter-
isling (Regensburg, Germany), T. unifasciatus (Latreille,
1798) in Waldenhausen (Germany) and Gargnano (Lago di
Garda, Italy) and T. recedens (Nylander, 1856) and T. lich-
tensteini (Bondroit, 1918) Gargnano (Lago di Garda, Italy).
While T. nylanderi and T. crassispinus are closely related
sibling species [38], the other four species are phylogeneti-
cally more distantly related (Additional file 4).

Table 4 Chemical distances between queens and workers
among four Temnothorax species

Queens Tn Q Tc Q Tu Q Workers Tn W Tc W Tu W

TcQ 0.077 TcW 0.093

TuQ 0.108 0.088 TuW 0.093 0.066

TrQ 0.116 0.125 0.120 TrW 0.093 0.128 0.110

Euclidean resemblance matrix based on cuticular hydrocarbon profiles of
queens (Q; left side) and workers (W; right side) from the four species of
Temnothorax ants involved in the mixed-species experiment (Tn = T. nylanderi,
Tc = T. crassispinus, Tu = T. unifasciatus, Tr = T. recedens). Figures in bold
indicate a close Euclidean Distance between a pair of groups in contrast to
the other compared pairs of groups.
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Temnothorax colonies were collected from their nests
in decaying branches on the ground and, in T. unifascia-
tus, T. lichtensteini and T. recedens, also from crevices
in stone walls. The colonies were transferred into small
plastic boxes (10 cm × 10 cm × 3 cm) with a regularly
moistened plaster floor and kept in incubators under
artificial climate conditions with the temperature gradu-
ally being raised from spring (10°C night/20°C day) to
summer (17°C night/28°C day) conditions [39,40]. Twice
per week, colonies were provided with water, honey, and
pieces of cockroaches.

Mixed-species colony set up
In 2005, colonies of T. nylanderi, T. crassispinus and T.
unifasciatus, with a sufficient amount of larvae in each col-
ony, were chosen for the mixed-species experiment (N =
45 colonies; Table 1). In 2006, the same mixed-species
colonies were set up with additional mixed colonies plus
T. recedens and colonies without a queen (N = 165 colo-
nies; Table 1). The number of worker pupae in T. recedens
colonies was restricted; therefore, only five mixed colonies
with T. recedens worker pupae were set up (Table 1).
Mixed colonies were set up in early summer, when most
larvae had developed into pupae. We transferred 50
worker pupae of the same species into a nest with either a
queen from a different species in mixed colonies or a con-
specific queen in control colonies (Table 1). To obtain the
required sample size of 50 pupae, worker pupae were
taken from five different con-specific colonies. No larvae
or eggs were added to the colonies. To allow worker
pupae to fully develop, we placed 30 marked adult workers
from the colony of queen origin into each nest and
removed them four weeks later after most of the pupae
had developed into adult workers.
Several experimental colonies, in which the transferred

worker pupae did not develop into adults (2005: 18 of
45 colonies; 2006, 8 of 100 colonies), had to be excluded
from the study.

Worker ovary activation
In 2005, worker ovary activation was investigated in all
colony set ups. In 2006, we investigated worker ovary
activation in all colonies without a queen, all colonies
with T. recedens workers and a queen from a different
species, and five randomly chosen colonies of each of the
remaining colony set ups (total N = 145 colonies;
Table 1). The colonies were frozen six weeks after the
transferred worker pupae had developed into adult
worker, and workers and queens were dissected to assess
their ovary activation [41]. Workers having elongated
ovaries (> 1 mm) with viable, oval eggs similar in shape
and color to those found in the ovaries of queens were
classified as “fertile”.

For statistical analyses, two sample permutation tests
were used to assess the difference of numbers of fertile
workers per colony between groups of control colonies
and mixed colonies and between control colonies and
colonies without a queen.

Male-production by workers
The remaining 65 colonies of the 2006 set up were kept
in incubators (gradual decrease of temperature to 0°C
night/10°C day for 15 weeks and gradual increase again
to 17°C night/28°C day thereafter) until hibernated
brood had developed in 2007 (Tables 1 and 2). From
May to August 2007 all freshly enclosed adult males
were collected and frozen at -20°C for further analyses.
After all male pupae had enclosed, all colonies were fro-
zen and queens were dissected to determine their ovar-
ian status.
T. nylanderi, T. crassispinus and T. unifasciatus males

are of dark brown pigmentation. T. recedens males have
a pale pigmentation and could easily be distinguished
from males of the other three species by inspecting their
coloration. T. nylanderi, T. crassispinus and T. unifas-
ciatus males are morphologically similar and thus were
distinguished by electrophoresis of the glucose-6-phoso-
ate isomerase [GPI; [27,38]] or sequencing the mito-
chondrial cytochrome b (Cyt b) gene.
Allozyme analyses
Electrophoresis of glucose-6-phosoate isomerase for
Temnothorax ants has been described previously [27].
Electromorphs were named according to their migration
velocities in the gel (fast f; medium m; slow s). T. cras-
sispinus and T. nylanderi are fixed almost completely
for the electromorphs m and f, respectively [27,38] and
T. nylanderi occasionally exhibits the electromorph s
[27]. In T. unifasciatus, 32 of 36 workers from 20 colo-
nies were homozygous for the electromorph s and 4
were heterozygous with electromorph genotype sm [see
also [42]]. Queens were analyzed when necessary.
The gasters of individual workers and queens were

homogenized in 20 μl Tris-EDTA pH 7.0 buffer. Pro-
teins were separated by 90 min electrophoresis at 10 V/
cm and 20 mA on 10 cm × 8 cm × 0.75 mm 7.5% poly-
acrylamide slab gels using a Tris-glycine pH 8.3 buffer.
The enzyme was stained using standard histochemical
techniques [43].
Mitochondrial analyses
When males could not be distinguished by electrophor-
esis, we in addition sequenced the cytochrome b (Cyt b)
gene. DNA was extracted from the gasters of males
using the CTAB method (1%) as previously described
[44]. The mitochondrial cytochrome b (Cyt b) gene was
analyzed using the primers CbI (CB-J-10933) and 16Sar
(LR-N-13398) [45]. The 20 μl PCR reaction mixture
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consisted of 1 μl DNA, 0.125 mM dNTPs, 0.25 μM of
each primer, 11.1 μl dd H2O, 2 μl 10× PCR buffer
(MBI), 2.5 mM MgCl2 and 1 μl of 1 unit/μl Taq Poly-
merase. Genes were amplified at an annealing tempera-
ture of 48°C with 38 cycles. PCR products were
separated by electrophoresis on a 1% ethidiumbromide-
stained agarose gel (TAE buffer) for 30 min at 100 mA
and then purified with High Pure PCR cleanup Micro
Kit (Roche). Cycle sequencing was carried out with 3 μl
of purified PCR-Product using ABI-Cycle sequencing
Kit Version 1.1. Single-stranded PCR products were
sequenced using an ABI PRISM 310 automatic sequen-
cer (Perkin-Elmer, Applied Biosystems). The first 450
base pairs of the Sequences representing the Cyt b gene
were read and aligned with Sequencing Analysis Soft-
ware version 3.4 (Perkin-Elmer, Applied Biosystems).

Cuticular hydrocarbons of queens and workers from
different species of Temnothorax ants
To estimate the chemical distances between the four
species of Temnothorax ants used for the mixed-species
colony set ups, queens and workers from T. nylanderi,
T. crassispinus, T. unifasciatus, and T. recedens were
analyzed. For the identification of queen specific signals,
queens and workers from two additional species, T. affi-
nis and T. lichtensteini, were included in the analysis.
From each species the queens of 5 to 10 unmanipulated
colonies plus 1 to 3 workers from each of the colonies
were chemically analyzed. All colonies were collected in
spring 2006 (see above). T. unifasciatus colonies were
used only from the population in Italy.
Chemical Analysis
Hydrocarbons were extracted four to five weeks after
colonies had been subjected to artificial summer condi-
tion (17°C night/28°C day; see above). Workers were
frozen and hydrocarbons were obtained through solvent
extraction by individually immersing each worker for
10 min in 20 μl pentane. After evaporation of the sol-
vent, the residues were re-dissolved in 15 μl pentane, of
which 2 μl were injected into an Agilent Technologies
6890N gas chromatograph. Hydrocarbons of queens
were obtained through SPME (Solid Phase Micro
Extraction) which gives qualitative and quantitative simi-
lar results [46]. A 30 μm polydimethylsiloxane fiber was
gently rubbed for 10 min against the gaster of the
immobilized queen and injected into the injection port
of the same gas chromatograph as above. The gas chro-
matograph was equipped with a flame ionization detec-
tor and a HP-5 capillary column (30 m × 0.32 mm ×
0.25 μm, J&W Scientific, USA). The injector was split/
splitless and the carrying gas was helium at 1 ml/min.
The same temperature program was used for the solvent
and the solid phase micro extraction with the tempera-
ture initially held at 70°C for 1 min, increased from

70°C to 180°C at 30°C/min, from 180°C to 310°C at 5°C/
min, and held constant at 310°C for 5 min.
For identification of the peaks, the pooled extracts of

30 workers of each species were injected into a com-
bined gas chromatography and mass spectrometry (GC-
MS; Agilent Technologies 6890N) equipped with a RH-
5 ms+ fused silica capillary column (30 m × 0.25 mm ×
0.25 μm, J&W Scientific, USA). The injector was split/
splitless (250°C) with the purge valve opened after 60
sec and the carrying gas was helium at 1 ml/min. Tem-
perature was held constant for 1 min at 60°C, increased
from 60°C to 300°C at 5°C/min and held constant for 10
min at 300°C. The electron impact mass spectra (EI-MS;
Agilent 5973 inert mass selective detector) were
recorded with an ionization voltage of 70 eV, a source
temperature of 230°C and an interface temperature of
315°C. We identified n-alkanes by comparing mass spec-
tra with data from a commercial MS library (NIST,
Gaithersburg, MD, USA). Methyl-alkanes were identified
by diagnostic ions, standard MS databases (see above),
and by determining Kovats indices by the method of
Carlson et al. [47]. MSD ChemStation Software (Agilent
Technologies, Palo Alto, CA, USA) for Windows was
used for data acquisition.
For statistical analysis of the chemical distance

between the four species involved in the mixed-species
experiment, we included peaks consistently present in
queens and workers of all four species, plus peaks with
a relative area of more than 1% that were present in at
least 50% of individuals in a group of workers or queens
within each species. Standardized peak areas were trans-
formed by square root. Principle coordinate (PCO) ana-
lyses based on Gower’s centered matrix was used to
visualize the patterns of differences in the multivariate
chemical structure among groups [48-50]. Euclidean dis-
tance matrix was analyzed based on centroids of groups
calculated from principle coordinates. PCO and Eucli-
dean distance analyses were performed using the pro-
gram PCO [49].
For the identification of queen specific signals we ana-

lyzed each species separately and included peaks consis-
tently present in the groups of queens and workers
within each species. Standardized peak areas were trans-
formed by using the formula: Zij = log[Xi, j/g(Xj)], with
Xi, j being the standardized peak area i for the sample j,
and g(Xj) the geometric mean of all peaks of the sample
j [51]. For multivariate analyses, the number of variables
was reduced by principle component analysis (PCA).
The factor scores obtained by PCA were used in a sub-
sequent discriminant analyses (DA) to determine
whether groups could be distinguished on the basis of
their cuticular profiles. Wilks’ l significance and the
percentage of correct assignments were used to evaluate
the validity of the discriminant function. We used
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Mann-Whitney U-tests to compare percentages of single
compounds between groups and adjusted p-values for
multiple comparisons using Bonferroni’s method. PCA
and DA analyses were performed using Statistica 6.0.

Additional material

Additional file 1: Gas chromatography profiles. Representative gas
chromatography profiles of queens from six Temnothorax species. Peaks
used for the statistical analysis are marked with numbers. Identification of
peaks is given in Additional file 3.

Additional file 2: Proportion of peak areas. Proportions (%) of peak
areas in chromatograms from cuticular hydrocarbon extracts of queens
and workers in six Temnothorax species. Box plots show medians and
25% and 75% quartiles. Whiskers depict the range of 90% of all cases.
Extreme outliers are denoted by circles. P-values of substances differing
significantly between the various groups are given in Additional file 3.

Additional file 3: Table S1 - Identification of cuticular compounds.
Identification of cuticular compounds and differences of their relative
amounts between queens (Q) and workers (W) in five Temnothorax
species. The number of samples of queens and workers is given in
parentheses. Peak numbers correspond with numbers in Additional file 1
and 2. Directions of difference are shown in Additional file 2. Bold p-
values from Mann-Whitney U-tests are significant at the 5% probability
after Bonferroni’s correction (p’ < 0.001); n.s = not significant. *Due to
very low abundance, peaks marked with a star could not be identified.
They had exactly the same retention time in GC as peaks in other
species, which could be identified. We therefore assume these
compounds to be chemically identical.

Additional file 4: Phylogenetic tree of Temnothorax species.
Phylogenetic tree of Temnothorax species. Majority rule consensus tree
recovered in a Bayesian analysis (4,000,000 generations) with the GTR + I
+ G model. The tree is based on 651 base pairs of the mitochondrial CO
I gene and numbers represent clade credibility values (J. Beibl, pers.
comm.).
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