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Abstract

Background: Chloroplasts and mitochondria evolved from the endosymbionts of once free-living eubacteria, and
they transferred most of their genes to the host nuclear genome during evolution. The mechanisms used by
plants to coordinate the expression of such transferred genes, as well as other genes in the host nuclear genome,
are still poorly understood.

Results: In this paper, we use nuclear-encoded chloroplast (cpRPGs), as well as mitochondrial (mtRPGs) and
cytoplasmic (euRPGs) ribosomal protein genes to study the coordination of gene expression between organelles
and the host. Results show that the mtRPGs, but not the cpRPGs, exhibit strongly synchronized expression with
eUuRPGs in all investigated land plants and that this phenomenon is linked to the presence of a telo-box DNA motif
in the promoter regions of mtRPGs and euRPGs. This motif is also enriched in the promoter regions of genes
involved in DNA replication. Sequence analysis further indicates that mtRPGs, in contrast to cpRPGs, acquired telo-
box from the host nuclear genome.

Conclusions: Based on our results, we propose a model of plant nuclear genome evolution where coordination of
activities in mitochondria and chloroplast and other cellular functions, including cell cycle, might have served as a
strong selection pressure for the differential acquisition of telo-box between mtRPGs and cpRPGs. This research also

highlights the significance of physiological needs in shaping transcriptional regulatory evolution.

Background

Mitochondria and chloroplasts evolved from the endo-
symbionts of once free-living o.-proteobacteria and cya-
nobacteria, respectively [1]. Most of the genes in the
endosymbionts were transferred to the nuclear genome
during evolution, resulting in much smaller current
organelle genomes than their ancient cousins [2-4].
Many transferred genes acquired promoters from their
eukaryotic hosts [1], and most proteins expressed by
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these functional transferred genes were eventually trans-
located back to their organelle, guided by targeting pep-
tides [4,5]. Intuitively, a tight coordination of gene
expression between organelle genomes and the host
nuclear genome should be important for cellular func-
tions, as well as the overall fitness of the organism [6,7].
In fact, coordination between host and organelles
through biochemical signaling has been extensively stu-
died [8]. Genetically, the coordination between nuclear
and mitochondrial genome expression [6], as well as the
coordination between nuclear and chloroplast genome
expression [7] has been investigated. However, the
molecular mechanisms underlying the coordination
between host and organelle functions are still far from
understood. In this work, we aim to identify signals
coordinating the expression of genes in mitochondrion,
chloroplast and nucleus.

© 2011 Wang et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.


mailto:zhuowang@sjtu.edu.cn
mailto:leiliu@sibs.ac.cn
mailto:zhuxinguang@picb.ac.cn
mailto:xiaotuma@utdallas.edu
http://creativecommons.org/licenses/by/2.0

Wang et al. BMC Evolutionary Biology 2011, 11:161
http://www.biomedcentral.com/1471-2148/11/161

On the other hand, chloroplasts, mitochondria and
the host cell all have protein translation machineries.
In addition to the cytoplasmic ribosome of the host
cell, mitochondria and chloroplasts each have their
own respective ribosomes to translate proteins encoded
in their genomes [9]. The existence of ribosomes in
mitochondria and chloroplasts provides a certain free-
dom of independent biogenesis and/or development
for these organelles [10,11]. Given that protein synth-
esis is required for organelle biogenesis, development
and various biological processes in these different cel-
lular compartments, investigation of the coordination
of expression and regulation of ribosomal protein
genes (RPGs) between host nucleus and each type of
organelle can shed light on the coordination of orga-
nelle biogenesis, development and biological processes
in these different compartments. Since most organelle
RPGs were transferred to the nuclear genome during
evolution (Figure S1 in Additional File 1), specialized
trans-factors and cis-elements may have evolved to
ensure the expression of these transferred RPGs in a
coordinated manner. As such, identification of these
factors or elements is critical to understanding the
coordination of biogenesis and development between
these different organelles. We thus chose to examine
the expression and regulatory patterns of these trans-
ferred RPGs.

Our analysis show that the expression patterns of
transferred mitochondrial (mtRPGs) and cytoplasmic
(euRPGs) ribosomal protein genes are highly coordi-
nated, while expressions of chloroplasts (cpRPGs) and
euRPGs are not. This phenomenon appears in all inves-
tigated monocot and dicot plants, the expression data-
sets of which are available. By sequence analysis on the
promoter regions of these RPGs, we identified a func-
tional DNA motif, telo-box, which is linked to the
observed differential coordination patterns. The telo-box
is present in promoters of mtRPGs and euRPGs, but
absent in promoters of cpRPGs across all examined land
plants. The telo-box is also enriched in the promoter
regions of genes encoding enzymes involved in DNA
replication, indicating a potential role of telo-box in the
cell cycle. Evidences from comparative genomics analysis
indicated that the telo-box in mtRPGs was acquired
from the host nuclear genome. Based on these results,
we proposed a model of land plant nuclear genome evo-
lution. In this model, after endosymbiosis, many genes
in endosymbionts were transferred to the nuclear gen-
ome. The demand for a high-level coordination of
energy supply might have been a strong selection pres-
sure, which gradually led to coordinated expression of
proteins in mitochondria with those involved in other
cellular functions, including cell cycle.
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Results

In this section, we first examined the expression
patterns of cytoplasmic, mitochondrial and chloroplast
ribosomal protein genes (RPGs) using expression pro-
files across a wide array of tissues of A. thaliana, and
confirmed our findings in several other monocot and
dicot plants. Such comprehensive tissue-specific expres-
sion datasets provide an unbiased sampling of gene
expression. Based on the striking co-expression between
euRPGs and mtRPGs, but not between euRPGs and
cpRPGs, we further studied the promoter sequences of
these three sets of RPGs. We found a DNA motif
known as telo-box in promoters of euRPGs and mtRPGs
but not cpRPGs in all studied land plants, which
explains the observed differential coordination patterns.
Functional implication of telo-box and regulatory evolu-
tion of mtRPGs and cpRPGs after gene transfer is then
studied.

Co-expression between mtRPGs and euRPGs

Intuitively, biogenesis of cellular organelles needs to be
highly coordinated to ensure the optimal growth of a
plant cell and hence the organism. Since production of
proteins is the key step for organelle biogenesis, the
study of protein translational machinery, i.e., ribosomes,
may provide insights on the coordination between host
and the organelles. We therefore first asked how the
expression of mtRPGs, euRPGs and cpRPGs are coordi-
nated across various tissues in plants. Here we chose to
use tissue-specific expression data to minimize possibi-
lity of spurious findings due to sample bias. Correlation
analysis of the expression of cpRPGs, mtRPGs and
euRPGs in Arabidopsis thaliana showed that the expres-
sion of mtRPGs was strongly positively correlated with
the expression of euRPGs (Pearson’s Correlation Coeffi-
cient, PCC = 0.6260 + 0.3220, p < 1.0E-10, ¢-test). On
the other hand, although the expression of cpRPGs
showed significantly positive correlation with mtRPGs
and euRPGs (PCC = 0.1582 4; 0.1901, p < 1.0E-10), the
magnitude was much lower (p < 1.0E-10, Figure 1A).
Similar results were also obtained in Populus tricho-
carpa (Figure 1B), Medicago truncatula (Figure 1C), and
Oryza sativa (Figure 1D). Furthermore, the above
observed correlation patterns were also found using tis-
sue-specific protein expression level data in A. thaliana
(Figure S2 in Additional File 1), where the protein
expression levels between mtRPGs and euRPGs were
significantly positively correlated (PCC = 0.1844 +
0.4031, p = 4.8E-12), while the protein expression levels
of cpRPGs were significantly negatively correlated with
those of both mtRPGs and euRPGs (PCC = -0.1461 +
0.4115, p = 1.4E-31). These results indicated that some
regulatory mechanisms might exist for the differential
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Figure 1 Correlation between mRNA expression of mtRPGs, cpRPGs and euRPGs in four angiosperms. The expression profiles of RPGs of
A. thaliana (A), P. trichocarpa (B), M. truncatula (C) and O. sativa (D). Each element of the matrix represents the Pearson’s correlation coefficient
between the expression profiles of two RPGs. Color code is illustrated at the bottom panel.
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coordination of expression between mtRPGs and
cpRPGs.

The correlation of expression among RPGs was
further examined in detail by using A. thaliana microar-
ray data at several developmental stages (Figure S3 in
Additional File 1). We found that the expression of
mtRPGs and euRPGs was positively correlated across all
developmental stages. In contrast, the correlation
between the expression of cpRPGs with either mtRPGs
or euRPGs changed dramatically during developmental
progression. In particular, cpRPGs were found to be
negatively correlated with mtRPGs and euRPGs at early
developmental stages (7" day: PCC = -0.2855 + 0.3040,
p < 1.0E-10 and 17™ day: PCC = -0.3166 + 0.3086, p <
1.0E-10; Figure S3A, S3B in Additional File 1), but
cpRPGs became positively correlated with mtRPGs and

euRPGs at later developmental stages (21°" day:
PCC = 0.3509 * 0.2192, p < 1.0E-10; 8™ week: PCC =
0.3488 + 0.5719, p < 1.0E-10; Figure S3C, S3D in Addi-
tional File 1). Notably, cpRPGs showed a much higher
level of coordination in their expression levels at the 8™
week of seed development, as compared to the co-
expression within either mtRPGs or euRPGs (within
cpRPGs, PCC = 0.8681 + 0.2332; within mtRPGs,
PCC = 0.0361 + 0.4613; within euRPGs, PCC = 0.3940
+ 0.3984; Figure S3D in Additional File 1).

Telo-boxes are Enriched in Promoters of

mtRPGs and euRPGs

We next asked if the above observations could be
explained by transcriptional regulatory elements. Analy-
sis of the promoter sequences of nuclear-encoded
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in certain classes of RPGs are shown in Figure S4 in Additional File 1.

Figure 2 Promoter motifs of cpRPGs, mtRPGs and euRPGs in A. thaliana. The first (GCCCA) and third (AAACCCT) motifs are known as site |l
motif and telo-box motif, respectively. The number on the upper left of each logo is the E-value of MEME prediction. Some motifs only enriched

cpRPGs, mtRPGs and euRPGs in A. thaliana using
MEME [12] revealed conserved DNA motifs (Figure 2).
The first motif, GCCCA, known as site II motif and
highly enriched in promoters of all three classes of
RPGs in A. thaliana (Figure 2), is a binding target of
the transcription factor At-TCP20 [13]. The transcrip-
tion factor corresponding to the second shared motif,
GAAGAA, has not been identified. The third motif,
AAACCCT, known as telo-box, is enriched in promoters
of both euRPGs and mtRPGs, but not in promoters of
cpRPGs in A. thaliana (Figure 2 and 3A). Similar results
(Figure S5 in Additional File 1) were obtained using
other DNA motif-finding tools e.g. AlignACE and DME
[14,15]. Thus, the absence or presence of telo-box in
RPG promoters was considered to be associated with
the differential expression coordination patterns among
cpRPGs, mtRPGs and euRPGs. In addition, mitochon-
drial and cytoplasmic RPGs with telo-box in their
respective promoter regions showed significantly higher
co-expression than those without telo-box (p < 0.001,
Figure S6 in Additional File 1), further indicating the
functional importance of telo-box in synchronizing the

expression patterns of mtRPGs and euRPGs. In fact,
such an association was also observed in three other
angiosperm land plants, P. trichocarpa, M. truncatula
and O. sativa (Figure 3B, 3C, 3D; though the appearance
of telo-box in mtRPGs of Figure 3B and 3C is slightly
less than that of Figure 3A and 3D, possibly due to
noise in promoter annotation), for which both DNA
sequence data and expression profiling data are avail-
able. In two recently sequenced land plant species, Sela-
ginella moellendorffii and Physcomitrella patens, telo-
boxes are also enriched in the promoter regions of cor-
responding mtRPGs and euRPGs, but not in cpRPGs
(Figure 3E, 3F; the appearance of telo-box is slightly
above background in cpRPGs of S. moellendorffii, possi-
bly due to noise in promoter annotations). Furthermore,
the chromosome location of telo-box is also consistently
close to the translation start codon in all these examined
plants (Figure 3), indicating that the positioning of telo-
box may be functionally important for the proper
expression of the regulated genes. The examined plant
species covered a wide range of land plant species
(including moss, spikemoss, monocot and dicot plants)
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(Figure S7 in Additional File 1); therefore, the associa-
tion between the coordinated expression pattern of
RPGs and the presence of telo-box pattern in the pro-
moter regions of RPGs might be conserved in all land
plants.

Telo-boxes are Enriched in Promoters of Non-RPGs Highly
Co-expressed with mtRPGs or euRPGs

We next examined whether telo-boxes are enriched in
the promoter regions of non-ribosomal protein genes
(non-RPGs) which are highly co-expressed with either
mtRPGs or euRPGs in A. thaliana. In the identified 243
non-RPGs with PCC > 0.9 to mtRPGs or euRPGs, the
telo-box motif is significantly enriched in their promoter
regions (p = 8.7E-63, Chi-square test, Figure 4). In con-
trast, in 341 non-RPGs which are highly co-expressed
(PCC = 0.9) with cpRPGs no significant enrichment of
telo-box in their promoters is observed (Figure 4). This
result further supports felo-box as the molecular
mechanism underlying differential coordination patterns
among cpRPGs, mtRPGs and euRPGs.
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In the 243 non-RPGs highly co-expressed with
mtRPGs or euRPGs (PCC > 0.9), gene ontology analysis
using DAVID [16] (on 127 genes with “biological
process” annotation) indicates that most of these gene
products are significantly related to “RNA processing
and metabolism”, “cell organization and biogenesis”, and
“protein translation and location” (Table 1). In addition,
140 genes with “molecular function” annotation are
mostly related to “RNA, nucleotide, nucleic acid or pro-
tein binding”, and “translation initiation factor activity”
(Table 1).

Since it has been shown in Drosophila [17] that
euRPGs are regulated by a transcription factor, DREF,
which participates in DNA replication, and since the
expression of ribosomal protein genes is related to cell
proliferation [18], we next studied whether DNA repli-
cation genes (e.g., origin recognition, replicative heli-
cases, helicase loading factors) in A. thaliana had
coordinated expression with mtRPGs/euRPGs and
showed enriched telo-boxes in their promoters. Interest-
ingly, our analysis revealed that expression of these
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Table 1 GO enrichment of non-RPGs highly correlated
with mtRPGs or euRPGs

NO.* GO term Count® FDR'
BP1 RNA processing 24 8.2E-9
BP 2 ncRNA metabolic process 19 2.3E-8
BP 3 protein folding 17 1.2E-6
BP 4 ribonucleoprotein complex biogenesis 16 8.9E-6
BP 5 mitochondrion organization 8 1.5E-5
BP 6 rRNA processing 12 1.8E-5
BP 7 ribosome biogenesis 15 49E-5
BP 8 NcRNA processing 13 1.6E-4
BP 9 chromatin organization 13 8.8E-4
BP 10 translational initiation 8 6.0E-3
BP 11 protein targeting to mitochondrion 5 24E-2
MF1 RNA binding 43 1.6E-9
MF2 nucleotide binding 68 2.5E-8
MF3  translation factor activity, nucleic acid binding 14 1.7E-6
MF4 translation initiation factor activity 12 35E-6
MF5 unfolded protein binding 12 7.8E-6

* BP: Biological process, MF: Molecular function. ® The total numbers of
annotated genes in GO biological process and molecular function are 127 and
140, respectively. T P-value is corrected by False Discovery Rate (FDR) using
DAVID [16].

DNA replication genes was also highly positively corre-
lated with that of mtRPGs/euRPGs (PCC = 0.5643 +
0.2998). In addition, these genes have significantly
enriched telo-boxes in their promoter regions (p = 3.8E-
6, Chi-square test, Figure 4). Therefore, the shared regu-
lation between ribosomal protein genes and DNA repli-
cation genes are conserved between insects and plants.

Conservation of Transcription Factor Pura that Binds to
Telo-box

Given the coordinated expression pattern between
mtRPGs and euRPGs, and the common felo-box in pro-
moters of mtRPGs and euRPGs, it will be interesting to
ask whether the trans-factor of telo-box is conserved
among the studied species. We therefore studied the
conservation pattern of transcription factor Purca, which
is known to recognize telo-box [19-21]. First, the homo-
log of Pura. was found to be present in all the examined
land plants. Secondly, multiple sequence alignment for
the Pura protein (Figure S8 in Additional File 1) reveals
that several domains are highly conserved in all studied
land plants, including the DNA-binding domain [21].
This observation is consistent with the highly conserved
sequence of telo-boxes in land plants (Figure 3), and
provides further support that telo-box might be a con-
trolling mechanism of the coordinated expression
between mtRPGs and euRPGs. In addition, this result
indicates that Pura. may participate in regulating the
biogenesis and development of mitochondria.
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Evolutionary Origin of Telo-box in Promoters of
Transferred mtRPGs

Mitochondrial RPGs may have acquired telo-boxes for
their coordinated expression with euRPGs in one of two
ways: (1) they acquired telo-boxes after transferring into
the nuclear genome or (2) they possessed telo-boxes in
the endosymbionts, and the regulatory regions were car-
ried on during transfer. To study these hypotheses, we
searched genomic sequences of mitochondrion and
chloroplast ancestors, respectively. Our result indicated
that neither proto-mitochondrial ancestor (Rickettsia
prowazekii str. Madrid E [22,23]) nor proto-chloroplast
ancestor (Synechocystis sp. PCC6803 [4,24]) contained
telo-boxes (data not shown). In addition, to account for
the possibility that telo-boxes may have been lost during
the evolution of R. prowazekii and Synechocystis, we also
searched all available 132 chloroplast genomes and 25
plant mitochondria genomes, and telo-box was still not
found (data not shown). These results indicated that
mtRPGs acquired telo-box after endosymbiosis, whereas
cpRPGs did not either successfully acquire or keep the
telo-box after endosymbiosis.

Given the above results, it is interesting to ask if these
transferred mtRPGs happened to be inserted into
nuclear genomic regions where telo-box was enriched.
To test this hypothesis, we first studied the appearances
of telo-boxes in the vicinity of mtRPGs and cpRPGs
(between upstream 40kb and downstream 40kb of the
translation start codon). As can be seen in Figure S9A
in Additional File 1, no significant difference of telo-box
enrichment in flanking sequences between mtRPGs and
cpRPGs was found. This result indicates that biased
insertion during gene transfer between mtRPGs and
cpRPGs is unlikely. To further confirm this conclusion,
we studied the distances from each mtRPG/cpRPG to
the closest non-ribosomal nuclear gene in the same
chromosome which has telo-box in its promoter region,
as these non-ribosomal nuclear genes might provide
source of telo-boxes for transferred mtRPGs. As seen in
Figure S9B in Additional File 1, no significant difference
was observed between mtRPGs and cpRPGs in their dis-
tances to their respective closest non-RPG neighbors
regulated by telo-boxes (p > 0.1, ¢-test for the mean dis-
tances of mtRPGs and cpRPGs to the closest non-RPG
neighbors with telo-box). Taken together, these results
indicate that selective pressures, rather than preferential
insertion regions, may be the reason for mtRPGs and
cpRPGs to acquire different regulatory mechanisms to
coordinate their biogenesis with host after gene transfer.

The Coordination between mtRPGs and euRPGs

is Land Plant-Specific

To check whether the coordinated pattern between
mtRPGs and euRPGs is unique in land plants, we
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studied whether this pattern also existed in algae. We
chose to study the brown algae Ectocarpus siliculosus,
which is phylogenetically distant from land plants [25]
(Figure S7 in Additional File 1) and genome sequence
and gene expression profiling data of which are available
[25,26]. Analysis on RPGs of E. siliculosus indicated that
telo-boxes were not enriched in promoters of any types
of RPGs (data not shown) and that the expression of
mtRPGs is clearly independent from that of euRPGs
(PCC = -0.0365 £ 0.2127, p > 0.01; Figure S10A in
Additional File 1). This result indicated that the coordi-
nation of mtRPGs and euRPGs might be land plant-spe-
cific. To further confirm this conclusion, we used the
unicellular green algae Chlamydomonas reinhardtii
which diverged from land plants over a billion years ago
[27]. We separately measured the expression levels of 6,
7 and 10 highly reliable mtRPGs, cpRPGs and euRPGs
of C. reinhardtii under four conditions, including con-
tinuous light, continuous dark, high and low nitrogen
treatments (see Methods). Results indicate that the
expression levels of mtRPGs and euRPGs are not coor-
dinated (Figure S10B in Additional File 1); furthermore,
RPGs in C. reinhardtii lack telo-box motifs (data not
shown). Taken together, these results indicate that the
differential transcriptional modulation of cpRPGs and
mtRPGs by telo-box is land plant-specific.

Regulatory Changes are Common for RPGs in other
Species

In addition to the mitochondrion shared by all eukar-
yotes, plants, as compared to the animal species, have
chloroplasts. Therefore, the transcriptional evolution of
plant organelle ribosomal proteins may have been more
complicated than other species. As demonstrated in this
work, the acquisition of telo-boxes of transferred genes
after endosymbiosis is different between mtRPGs and
cpRPGs. In fact, such a dramatic change in the tran-
scriptional regulation of ribosomal protein genes has
already been seen in other organisms. For example, the
cis-elements for cytoplasmic ribosomal protein genes are
found to be significantly different among fungi, insects
and mammals [17]. It was also reported that the riboso-
mal regulation is highly evolvable in yeast through the
use of an intermediate redundant regulatory program
[28]. Most strikingly, it was shown that the loss of a cis-
element AATTTT in promoters of mtRPGs following
whole-genome duplication is linked to rapid anaerobic
growth of S. cerevisiae [29]. However, unlike the above-
mentioned discoveries, our results highlight the differen-
tial acquisition of cis-elements after gene transfer, possi-
bly due to the different physiological needs between
mitochondria and chloroplast. Taken together, these dis-
coveries indicate that the gene expression regulatory
programs are highly evolvable for ribosomal protein
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genes, which are one of the most conserved gene
families among all kingdoms. Therefore it will not be
surprise to see dramatic changes in regulatory programs
in other less conserved gene families which are specific
to certain species. In fact, our discovery adds more sup-
port for the view that speciation primarily arise from
changes in gene regulatory regions [30].

Discussion

The co-expression pattern of RPGs in different

cellular compartments and the regulatory

elements controlling this pattern

Analysis of the expression pattern of genes involved in
ribosomal proteins in different compartments showed
that mtRPGs exhibited a high level of co-expression
with euRPGs, while cpRPGs did not show such a high
level of co-expression with euRPGs (Figure 1). This pat-
tern of expression was conserved across different land
plant species examined in this study (Figure 1, Figure S2
in Additional File 1). These results indicated that the
strong coordination of expression of mtRPGs and
euRPGs possibly increased plant fitness, although the
detailed mechanisms have not yet been elucidated.
Interestingly, although the expression of cpRPGs was
not well correlated with euRPGs when data from differ-
ent developmental stages were pooled together in the
analysis, cpRPG expression showed negative correlation
with expression of mtRPGs and euRPGs in the early
developmental stage in A. thaliana (Figure S3A, S3B in
Additional File 1). In contrast, at the later developmen-
tal stages of A. thaliana, cpRPGs showed a positive cor-
relation with expression of euRPGs and mtRPGs (Figure
S3C, S3D in Additional File 1). Thus, while the expres-
sion levels of mtRPGs showed a strongly positive corre-
lation with euRPGs under different developmental
stages, the relationship between the expression of
cpRPGs and euRPGs was developmental stage-depen-
dent. Since expression data at developmental stage reso-
lution are only available for Arabidopsis, it will be
interesting to see if similar observations can be made in
more plant species. Nonetheless, since the plants species
we studied give a very good representation of the land
plants (Figure S7 in Additional File 1), it is highly likely
that the differential modulation of the transcriptional
regulation of mtRPGs, cpRPGs, and euRPGs is a ubiqui-
tous phenomenon for all land plants. However, the phy-
siological significance of these patterns awaits further
investigation.

Analyses of the promoter regions of RPGs help iden-
tify the cis-regulatory motifs potentially responsible for
the different patterns of co-expression between RPGs in
different cellular compartments (Figure 1). Three dis-
tinct cis-regulatory motifs were identified, two shared by
mtRPGs, cpRPGs and euRPGs and one only existing in
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mtRPGs and euRPGs (Figure 2). The first motif,
GCCCA, is called a site II motif, which is the binding
site of a transcription factor known as At-TCP20 [31].
At-TCP20 is expressed in many different tissues in A.
thaliana and can influence cell division and growth
coordination [31]. The third motif, AAACCCT, called
telo-box, is the binding site of the Pura transcription
factor, which has been suggested to be a partner of the
At-TCP20 [20]. Our analysis provided additional evi-
dence for this viewpoint, since the felo-box is in close
proximity to the site II motif in promoter regions of the
RPGs (Figure S11 in Additional File 1). Therefore, both
cis-elements could work as a module to coordinate gene
expression, or they could also participate in controlling
the cell cycle. The function of the second motif, GAA-
GAA, is not clear at this point, but it is preferentially
enriched in chromosomal locations close to the other
motifs (Figure S11 in Additional File 1), which indicates
that its function might also be related to cell cycle con-
trol. Interestingly, the identified promoter motifs do not
seem to be shared with either mammals or insects
[17,32]. This result indicates that the regulatory
mechanisms of ribosomal protein genes, one of the
most conserved gene families, are highly evolvable and
highlights the contribution of regulatory network
changes in evolution, in addition to the contribution of
gene sequences.

The special role of telo-box in coordinating DNA, protein
synthesis, energy production and cell cycle
Telo-box, which is the binding site of the Pura tran-
scription factor, clearly does not exist in chloroplasts
(Figure 2 and 3). This motif (AAACCCT or AACCCTA)
is homologous to a telomere repeat (AAACCCT), of
land plants, which is enriched in the ends of chromo-
somes [33]. Telo-box was first observed in promoters of
translation elongation factor eEF1A [34-37] and subse-
quently found within the promoters of PCNA (prolifer-
ating cell nuclear antigen) and RNR (ribonucleotide
reductase), both of which are over-expressed in cycling
cells [19]. Our analysis further showed that telo-box was
enriched in genes involved in nucleotide (DNA or
RNA), protein binding and in processes ranging from
“cell organization and biogenesis”, “RNA processing and
metabolism”, to “protein translation and location”
(Table 1). These results indicated that the telo-box motif
likely functioned at the top of the hierarchy coordinat-
ing host and mitochondrion in these different processes.
Furthermore, this study indicated that the telo-box
might be a major regulator of cell cycle activity, which
is supported by the following evidences: 1) The telo-box
motif is enriched in mtRPGs, euRPGs and genes of
DNA replication machinery; 2) DNA replication, protein
synthesis, and energy production by mitochondria are
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all required for normal cell cycle [38]; 3) cells need to
synthesize large amounts of DNA and protein in order
to increase cell size before mitosis [39,40]; 4) the tran-
scription factor, At-Pura, which is a trans-factor for the
telo-box, controls both gene transcription and DNA
replication [41].

A hypothetical model for the differential acquisition

of telo-box during organelle evolution

Both mitochondria and chloroplasts are the descendents
of endosymbionts; however, mtRPGs showed a high
level of co-expression with euRPGs, while cpRPGs did
not (Figure 1). We have linked this phenomenon to a
lack of telo-box in the promoter regions of cpRPGs (Fig-
ure 3), which indicates the possibility that telo-box
might be the critical binding motif contributing to the
difference in the expression of RPGs in different cellular
compartments. This, in turn, has raised a number of
important questions.

First, what is the origin of telo-box? The fact that the
genomic sequence of ancestors of mitochondrion and
chloroplast did not have telo-box indicated that mtRPGs
acquired and successfully maintained the telo-box after
endosymbiosis, while cpRPGs either did not acquire or
failed to maintain the telo-box during the evolutionary
process after endosymbiosis. Although cpRPGs have a
relatively short evolutionary span (1.2~1.5 Ga) compared
to mtRPGs (>1.5 Ga) [1], it is unlikely that the cpRPGs
never acquired telo-box. In fact, after endosymbiosis,
most of the genes in the endosymbionts’ genome were
transferred to the host nuclear genome [4,42,43] and
formed a unique metabolic network of the current
chloroplast [44,45]. Most of these genes have acquired
new cis-regulatory motifs in their promoter sequences
(Figure S12 in Additional File 1).

Secondly, why did cpRPGs fail to maintain the telo-
box during evolution? Although telo-box could have
been integrated into the promoter regions of cpRPGs,
these regulatory elements were clearly selectively purged
out after gene transfer. This indicates that a strong
negative selection pressure may have resulted from
simultaneous expression of cpRPGs with those of
mtRPGs and euRPGs. One possible mechanism of this
negative selection pressure is that photosynthesis gener-
ates oxygen, which can potentially generate reactive oxy-
gen species under high light [46]. Reactive oxygen
species, such as superoxide, not only cause direct
damage to DNA [47], but also influence structure and,
correspondingly, the function of proteins [48,49], includ-
ing proteins involved in DNA replication and protein
synthesis. As a result, it is disadvantageous to have
photosynthesis occur simultaneously with the DNA
replication and protein synthesis, which are required for
normal cell cycle. Indeed, DNA replication usually
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occurs at midnight, quite possibly to avoid damaging
DNA by UV radiation [50,51]. Therefore, the potential
damage caused by concurrence of photosynthesis and
processes related to cell cycle might have generated a
strong negative selection pressure, which purged the
telo-box from the cpRPGs.

Thirdly, what is the reason for the strong coordinated
expression of mtRPGs and euRPGs? In all the examined
land plant species, the expressions of mtRPGs and
euRPGs are highly co-expressed (Figure 1). This co-
expression does not seem to be dependent on develop-
mental stage or growth conditions (Figure S3 in Addi-
tional File 1). This fact indicates that there is a strong
positive selection for co-expression of mtRPGs and
euRPGs. Again, the clue may come from the cell cycle.
Two of the three conserved binding sites, Site II and
telo-box, are related to cell cycle control [13,20,31].
Furthermore, the genes involved in DNA replication are
highly positively correlated with mtRPGs and euRPGs
and also harbor enriched Site II and telo-box motif in
their promoters (Figure 4). In addition, the genes highly
co-expressed with euRPGs or mtRPGs are enriched in
nucleotide (DNA or RNA) and protein binding function
(Table 1). This indicates that cell cycle might be coordi-
nated with mitochondrial function. To enable a cell go
through cell cycle, cells need to have large amounts of
protein synthesized and have DNA replicated in order
to reach a certain cell size [40]. Protein synthesis and
DNA replication requires energy, which will be supplied
by mitochondria. Therefore, a highly coordinated func-
tion of mitochondria and cell cycle might have created a
positive selection pressure, which facilitated the mainte-
nance of telo-box after mtRPGs gained it from the host
nuclear genome.

Following the above reasoning, we proposed a model
to explain the evolution of the promoter structure in
mitochondria and chloroplast (Figure 5). In this model,
after endosymbiosis, endosymbionts transferred most of
their genes into the host nuclear genome. The trans-
ferred genes, in turn, acquired regulatory elements,
including the telo-box, from the nuclear genome. During
the evolutionary process, DNA damage by the reactive
oxygen species from aberrant cpRPG expression created
a negative selection pressure and purged telo-box from
the cpRPGs, while, on the other hand, the high level of
coordination between mitochondria function and cell
cycle created a positive selection force, thus maintaining
the telo-box in mtRPGs. Therefore, the selective removal
or maintenance of telo-box in RPGs by possibly different
mechanisms, one being negative selection force and
another being positive selection force, created the dra-
matic differences we found in the expression pattern of
these two organelles. Furthermore, these negative and
positive selection forces might have been major forces
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in shaping the evolution of promoter structure in these
two important organelles in plant cell.

Conclusions

This study showed that mtRPGs, but not cpRPGs, dis-
played strongly correlated expression with euRPGs in
land plants. This phenomenon is linked to a highly con-
served cis-regulatory element, AAACCCT, known as the
telo-box motif, which is present in promoters of cyto-
plasmic and mitochondrial RPGs, but not in cpRPGs.
Considering the fact that the telo-box is also enriched in
promoters of genes involved in DNA replication, it
seems likely that coordination of mitochondria function
(mainly ATP production) with other cellular functions
might have been a strong positive selection pressure in
shaping the genome structure of land plants. Similarly,
the potential damage caused by the concurrence of
photosynthesis and cell cycle might have created a
strong negative selection pressure which purged telo-
box from the promoters of cpRPGs. This study indi-
cated that the gain and loss of a single cis-element, pos-
sibly by different reasons, could result in dramatic
differences in transcriptional regulation between chloro-
plast and mitochondria in land plants (Figure 5).

Methods

Species

Five plant species with both gene expression data and
genome sequence data available are included in this
study: Arabidopsis thaliana (mouse-ear cress), Populus
trichocarpa (black cottonwood), Medicago truncatula
(barrel medic), Oryza sativa (rice) and Ectocarpus silicu-
losus (brown algae). Two other recently sequenced spe-
cies, Selaginella moellendorffii (spikemoss) and
Physcomitrella patens (moss), are also included in our
analysis to demonstrate the conservation of discovered
DNA motifs. In addition, we also include the green
algae Chlamydomonas reinhardtii, which has complete
genome sequence and gene expression data, although,
unfortunately, its micro-array did not include mtRPGs.
We thus measured the expression levels of its ribosomal
protein genes by RT-PCR experiments as described in
the section subtitled “RT-PCR experiment for RPGs in
C. reinhardtii“. The evolutionary relationship of the stu-
died species is shown in Figure S7 in Additional File 1
[25,52,53].

Catalogs of cytoplasmic and transferred organelle
ribosomal protein genes

Sequence information for A. thaliana, M. truncatula
and E. siliculosus was downloaded from http://www.
ncbi.nlm.nih.gov/http://www.medicago.org/index.php
and http://bioinformatics.psb.ugent.be/webtools/bogas/
[25], respectively. Sequences for P. trichocarpa, O.
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Figure 5 The model of plant nuclear genome evolution. (A) a-proteobacteria and cyanobacteria with RPGs not containing telo-box motif
(purple curve) were engulfed in host cell, which possesses euRPGs with telo-boxes. (B) RPGs of endosymbionts (chloroplast and mitochondrion)
are transferred into host nuclear genome. (Cl) mtRPGs, but not cpRPGs, acquired telo-boxes from host nuclear genome. (Cll) both mtRPGs and
CpRPGs acquired telo-boxes from host nuclear genome. (DIl) under negative selection pressures, telo-boxes of cpRPGs are purged. As a result,
mtRPGs and euRPGs share telo-box and exhibit synchronized expression (thick red arrow). On the other hand, cpRPGs do not have telo-boxes in
their promoter regions, and the expression coordination between cpRPGs and euRPGs is weak (dashed green arrow).
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sativa, S. moellendorffii, P. patens and C. reinhardtii
were obtained from the U.S. Department of Energy Joint
Genome Institute (http://genome.jgi-psf.org/). To collect
a full catalog of cytoplasmic and transferred organelle
ribosomal protein genes, BLASTP was used to search
the protein sequences of all studied species, using E-
value of 107 as the significance cutoff. To obtain
nuclear-encoded cpRPGs and mtRPGs, ribosomal pro-
teins encoded in Syn (Symechocystis sp. PCC6803, cur-
rent-day cyanobacteria as proto-chloroplast ancestor
[22,23]) and Rpr (Rickettsia prowazekii str. Madrid E,
current-day o-proteobacteria as proto-mitochondrial
ancestor [4,24]) were used as query sequences, respec-
tively. However, some genes in Syn and Rpr may have
been lost since the endosymbiosis events. Therefore, we
further collected ribosomal protein genes still present in
any of the currently available plant chloroplast (132

plant species) and mitochondrial (25 plant species) gen-
omes to account for the above concern. In A. thaliana,
cytoplasmic ribosomal protein genes (euRPGs) were
obtained from NCBI. These well annotated euRPGs
were further used to annotate euRPGs in other species
(provided as Additional File 2).

We then used TargetP [54] to predict the cellular
localization of the above collected proteins in each spe-
cies. Since proteins were predicted to be targeted to a
specific organelle with reliability class > 3 are considered
to be highly reliable [54], here only proteins with E-
value < 10 by BLASTP and reliability class > 3 by Tar-
getP were selected as RPGs for corresponding orga-
nelles, respectively. For C. reinhardtii, euRPGs were
obtained from the Ribosomal Protein Gene database
[55], and cpRPGs were identified using the experimental
results [56,57]. The promoter sequences and expression
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datasets of ribosomal protein genes for each class in
each species are summarized in Additional File 2 and
Additional File 3, respectively. The catalog of cytoplas-
mic and transferred organelle ribosomal protein genes is
also provided in Table S1 in Additional File 1.

Gene expression data

To study the expression characteristics of ribosomal
protein genes, large-scale microarray expression datasets
were collected. The gene expression profile focusing on
A. thaliana development [58], which includes various
tissue samples across 4 developmental stages, i.e., 7',
17", 21°* day and 8™ week, was downloaded from
http://www.weigelworld.org. The gene expression data
for O. sativa and M. truncatula were downloaded from
http://www.plexdb.org/. The gene expression data with
platform number GPL5921 and GPL963 were down-
loaded from NCBI GEO for P. trichocarpa and the
green algae C. reinhardltii, respectively. The gene expres-
sion data for E. siliculosus were downloaded from http://
www.ebi.ac.uk/microarray-as/ae/ (accession numbers: E-
TABM-578 [26]). Each array was first standardized to
have a mean value of 0 and a standard deviation of 1.
Probe sets corresponding to the same gene were col-
lapsed to a single number by taking the mean value.
Expression data for ribosomal protein genes were then
extracted for further expression analysis (provided as
Additional File 3). The gene expression data for special
developmental stages in A. thaliana were extracted from
whole expression data according to developmental
stages of samples, as described [58]. In addition, tissue-
specific protein expression level data for A. thaliana
were obtained from http://fgcz-atproteome.unizh.ch/
[59]. We used Pearson’s Correlation Coefficient (PCC)
to measure the co-expression between gene/protein
pairs.

Promoter sequences of RPGs

To analyze the transcriptional regulatory mechanism of
cpRPGs, mtRPGs and euRPGs, we retrieved the promo-
ter sequences (upstream 1kb relative to the translation
start codon) for each ribosomal protein gene in each
species (also provided as Additional File 2). These
sequences were further used to search for potential cis-
regulatory motifs using the MEME software with para-
meters of 5-10 in width for motif discovery [12]. To
avoid possible bias in motif discovery, other tools
including AlignACE [14] and DME [15] were also used.
Motif width was set to be 10 for both software, and the
background sequences for DME were the promoters of
non-RPGs. Background sequences used in Figure 3 were
randomly selected from promoters (upstream 1kb) of
genes except RPGs in each species. We bootstrapped
fifty datasets, each consisting of the same number as the

Page 12 of 15

set of cpRPGs, mtRPGs and euRPGs, and then took the
mean value and standard deviation as the motif density
and corresponding errors of background sequences,
respectively. The distances between RPGs and non-
RPGs with telo-box were calculated according to their
translation start codon. The non-RPGs located in the
same chromosome and transcribed at the same orienta-
tion with RPGs were choose for calculating the shortest
distances.

RT-PCR experiment for RPGs in C. reinhardtii

C. reinhardtii strain CC-503 c¢cw92 mt+ [60] was cul-
tured in liquid TAP medium [61] at 25°C under contin-
uous light or dark. NH4Cl concentration in TAP
medium (7 mM) was increased five-fold for the high
nitrogen treatment and reduced ten-fold for the low
nitrogen treatment. There were at least three replicates
for each condition. Cells were collected at their mid-
exponential phase of growth by centrifugation (4000 x g
for 3 min). Isolation of total RNA was performed with
the Triazol reagent (Invitrogen) according to instruc-
tions of the manufacturer. After DNase treatment, sin-
gle-stranded ¢cDNA was synthesized from total RNA
according to the manual of PrimeScript II 1st Strand
c¢DNA Synthesis Kit (TaKaRa) and used as templates for
real-time PCR reactions. Real-time PCR was performed
on the LightCycler® instrument (Bio-Rad CFX96 Real-
time PCR Detection System) using SYBR Green as a
fluorescent dye (iQ SYBR Green Supermix, Bio-Rad; 2x
mixture contains 100 mM KCI, 40 mM Tris-HCI, pH
8.4, 0.4 mM each dNTP, 50 U/ml iTaq DNA polymer-
ase, 6 mM MgCl,, SYBR Green I and 20 Nm fluores-
cein). Each individual reaction contains 1.0 pmole of the
indicated primers (provided in Additional File 4) and 1
ul of 5-fold diluted single-stranded ¢cDNA. The final
volume of each reaction was 20 ul. PCR conditions were
as follows: 10 min at 95°C for activation of the hot start
Taq polymerase and 40 cycles for the melting (30s at
95°C), annealing (30s at 60°C) and extension (30s at 72°
C). The fluorescence measurement was made at the end
of the annealing step. The Ubiquitin ligase (Chlamydo-
monas GenBank ESTs: BU648530, BE237749, BE237718,
BU648531) was used as the housekeeping gene ([62],
the primer sequences are provided as Additional File 4).
Expression of this gene was previously shown to be con-
stitutive under the different conditions used [63]. For
each condition and gene, we first filtered the undetected
values, calculated the mean value of CT (cycle thresh-
old), and then normalize the expression value with for-
mula: 2[Mean value (CT) - Control value]/Control value' The
resulted value was used as expression level for the analy-
sis of expression correlation by calculating Pearson’s
Correlation Coefficient (PCC) of each gene pair (pro-
vided as Additional File 3).


http://www.weigelworld.org.
http://www.plexdb.org/.
http://www.ebi.ac.uk/microarray-as/ae/
http://www.ebi.ac.uk/microarray-as/ae/
http://fgcz-atproteome.unizh.ch/
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BU648530
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BE237749
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BE237718
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BU648531

Wang et al. BMC Evolutionary Biology 2011, 11:161
http://www.biomedcentral.com/1471-2148/11/161

Additional material

Additional file 1: Table S1 and Figures S1-S12. Table S1: Catalogs of
cytoplasmic and transferred organelle ribosomal protein genes. Figure
S1: Occurrence frequency of RPGs in 132 plant chloroplast and 25 plant
mitochondrial genomes. (A) More than half of chloroplast RPGs are
absent in most chloroplast genomes of 132 plants surveyed (green dash
line), providing a raw estimate of the lower bound of transfer frequency
of cpRPGs. (B) Similarly, there are over 50 RPGs in Rickettsia prowazekii str.
Madrid E (o.-proteobacteria, an ancient cousin of mitochondrion),
whereas only 18 mtRPGs can be found in the union of all 25 plant
mitochondrial genomes and most mtRPGs are absent in over half
studied species (red dash line). Genes with zero occurrence frequency
are present in corresponding ancient cousin but absent in chloroplast/
mitochondria of all studied plants. Figure S2: Protein expression
correlation of mtRPGs, cpRPGs and euRPGs in A. thaliana. Each element
of the matrix represents the Pearson's correlation coefficient between the
expression profiles of two ribosomal proteins. Figure S3: RNA expression
correlation of mtRPGs, cpRPGs and euRPGs in different tissues of several
developmental stages in A. thaliana. 7" day (A), 17" day (B), 21° day (O)
and 8" week (D) corresponds to stage of seedling, leaf, flower and seed
of A. thaliana, respectively. Each element of the matrix represents the
Pearson’s correlation coefficient of the expression profiles of each two
RPGs. Color code is illustrated in bottom panel. Figure S4: Putative
promoter motifs only enriched in one of cpRPGs, mtRPGs, and euRPGs in
A. thaliana. The number on the left of each logo is E-value of MEME
prediction. Figure S5: Putative promoter motifs predicted by AlignACE
and DME. The number on the left of each logo is score of AlignACE and
DME prediction.Figure S6: Expression correlation between RPGs with
telo-box and those without telo-box. Telo-box here indicates the
sequence AAACCCT or AACCCTA. The error-bar is the standard deviation
of expression correlation. A symbol of the three stars (***) indicates the
p-value is less than 0.001. Figure S7: The phylogenetic relationship of all
investigated species. The phylogenetic relationship of angiospermae is
derived according to the 16S rRNA of chloroplast genome in each
species, using the neighbor-joining method. Both gene expression data
and genome sequence data are available for O. sativa, A. thaliana, P.
trichocarpa, M. truncatula and E. siliculosus, whereas only genome
sequence data are available for P. patens and S. moellendorffii. The
current gene expression data for C. reinhardtii do not include mtRPGs.
Gray fonts indicate species that are not sequenced yet. Branch lengths
are not scaled to time. Figure S8: Alignment of Pura. proteins in all
studied land plants. Some species have two Pura proteins. Here three
highly conserved domains of Pura. are shown. The tree on the left is
drawn based on the sequences of Pura proteins with neighbor-joining
method. The sequence labeled with the cyan line is involved in DNA-
binding. Asterisks, colons, and dots indicate identical (red), strongly
similar (green) and weakly similar (blue) residues, respectively. Figure S9:
The occurrence of telo-boxes (A) and non-RPGs with telo-box (B)
relative to mtRPGs or cpRPGs: (A) The star symbol indicates the
significance of the occurrence within -1kb for mtRPGs. (B) The insets
indicates mean distances of mtRPGs (cyan) and cpRPGs (magenta)
relative to their closest upstream (left) or downstream (right) non-
ribosomal protein genes (non-RPGs) with telo-box, respectively. The error-
bar in the insets is the standard deviation of the distances. Figure S10:
RNA Expression correlation of mtRPGs, cpRPGs and euRPGs in brown (A)
and green (B) algae. Each element of the matrix represents the Pearson’s
correlation coefficient between the expression profiles of two RPGs. RNA
expression level is measured by RT-PCR experiment for green algae C.
reinhardtii (see Methods). Figure S11: Positional distribution of Site I,
GAAGAA and telo-box of RPGs in A. thaliana. Site Il motif (GCCCA,
magenta line), GAAGAA (dark green line) and telo-box motif (AAACCCT,
cyan line) are close to each other in promoter regions of RPGs. Figure
$12: Promoter motifs of nuclear-encoded chloroplast genes in A.
thaliana. (A) The logos of the motifs are predicted with MEME. The
upper-left number of each logo is E-value. (B) The motif density of
nuclear-encoded chloroplast genes (NCGs) in A. thaliana (Ath) and
corresponding genes in Synechocystis sp. PCC6803 (Syn). The nuclear-
encoded chloroplast genes in A. thaliana are identified by Martin et al.
(2002).
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Additional file 2: The promoter sequences of RPGs for studied
species
Additional file 3: The expression levels of RPGs for studied species

Additional file 4: The primers of RPGs for RT-PCR experiment in C.
reinhardtii

List of Abbreviations

RPGs: Ribosomal Protein Genes; mtRPGs: mitochondrial RPGs; cpRPGs:
chloroplast RPGs; euRPGs: cytoplasmic RPGs; non-RPGs: non-Ribosomal
Protein Genes; PCC: Pearson’s Correlation Coefficient.
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