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Abstract 

Background  Sassafras tzumu, an elegant deciduous arboreal species, belongs to the esteemed genus Sassa-
fras within the distinguished family Lauraceae. With its immense commercial value, escalating market demands 
and unforeseen human activities within its natural habitat have emerged as new threats to S. tzumu in recent decades, 
so it is necessary to study its genetic diversity and influencing factors, to propose correlative conservation strategies.

Results  By utilizing genotyping-by-sequence (GBS) technology, we acquired a comprehensive database of single 
nucleotide polymorphisms (SNPs) from a cohort of 106 individuals sourced from 13 diverse Sassafras tzumu natural 
populations, scattered across various Chinese mountainous regions. Through our meticulous analysis, we aimed 
to unravel the intricate genetic diversity and structure within these S. tzumu populations, while simultaneously inves-
tigating the various factors that potentially shape genetic distance. Our preliminary findings unveiled a moderate 
level of genetic differentiation (FST = 0.103, p < 0.01), accompanied by a reasonably high genetic diversity among the S. 
tzumu populations. Encouragingly, our principal component analysis painted a vivid picture of two distinct genetic 
and geographical regions across China, where gene flow appeared to be somewhat restricted. Furthermore, employ-
ing the sophisticated multiple matrix regression with randomization (MMRR) analysis method, we successfully 
ascertained that environmental distance exerted a more pronounced impact on genetic distance when compared 
to geographical distance (βE = 0.46, p < 0.01; βD = 0.16, p < 0.01). This intriguing discovery underscores the potential 
significance of environmental factors in shaping the genetic landscape of S. tzumu populations.

Conclusions  The genetic variance among populations of S. tzumu in our investigation exhibited a moderate 
degree of differentiation, alongside a heightened level of genetic diversity. The environmental distance of S. tzumu 
had a greater impact on its genetic diversity than geographical distance. It is of utmost significance to formulate 
and implement meticulous management and conservation strategies to safeguard the invaluable genetic resources 
of S. tzumu.
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Introduction
The genetic architecture and genetic variation serve as 
the underpinnings for plants to acclimate to their sur-
roundings and ensure their survival and reproductive 
success [1, 2]. The greater the wealth of genetic diver-
sity, the more adaptable a species becomes in navigat-
ing its environment, thus bestowing it with a heightened 
advantage in terms of survival and evolutionary potential 
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[3]. Factors such as the geographical distribution range, 
growth patterns, and reproductive strategies exert influ-
ence on the genetic structure and diversity of plant spe-
cies [4]. Species with a broader range of distribution may 
exhibit a greater tapestry of genetic variability [5]. Self-
pollinating species, due to reproductive assurance, pos-
sess a more extensive geographical reach compared to 
their hybrid counterparts [6–9]. The duration of a spe-
cies’ generational growth profoundly impacts its genetic 
diversity. Species with shorter generations are anticipated 
to possess more restricted gene pools, hence fostering 
population isolation. Conversely, species with lengthier 
generation times are expected to experience a more grad-
ual decline in genetic diversity [10], albeit this trend could 
also lead to genetic homogeneity. Furthermore, species 
with limited dispersal capabilities tend to exhibit greater 
differentiation, while those with long-distance dispersal 
mechanisms are more prone to population homogeniza-
tion [10]. Thus, the genetic structure and diversity of spe-
cies can, to a certain extent, serve as a reflection of their 
genetic evolutionary potential and adaptive capacity to 
their environment [11].

Sassafras tzumu, an arboreal species, pertains to the 
botanical family Lauraceae and falls under the genus 
Sassafras. It thrives abundantly across the southern 
region of the Yangtze River in China, flourishing at alti-
tudes ranging from 100 to 1900  m amidst both sparse 
and dense woodland habitats [12]. Although the Inter-
national Union for Conservation of Nature (IUCN) 
classifies S. tzumu as least concern (LC) and this spe-
cies is not listed in the China Species Red List, in 2017, 
S. tzumu was included in the Reference List of Major 
Cultivated Precious Tree Species in China by the State 
Forestry Administration [13]. It usually begins to bloom 
from an early spring. With its vibrant crimson foliage in 
the autumn, ever-changing leaf patterns, and exceptional 
quality, S. tzumu not only served as a splendid ornamen-
tal tree but also boasted remarkable timber properties 
[14]. Moreover, the roots and bark possessed medicinal 
properties, known for their ability to enhance blood cir-
culation, disperse blood stasis, alleviate wind and damp-
ness, and treat contusions and lumbar muscle strains 
[13]. Regrettably, due to its immense commercial value, 
certain regions had suffered from rampant deforestation 
(http://​qjwb.​theho​ur.​cn/​html/​2017-​07/​18/​conte​nt_​35479​
87.​htm?​div=-1) and theft of S. tzumu specimens (http://​
www.​jiande.​gov.​cn/​art/​2018/6/​27/​art_​14686​90_​18903​
167.​html). In recent decades, escalating market demands 
and unforeseen human activities within its natural habi-
tat had emerged as new threats to S. tzumu [15].

Presently, investigations pertaining to the genetic 
diversity and genetic structure of S. tzumu populations 
predominantly center around the analysis of genetic 

diversity utilizing isoenzymes and the development of 
microsatellite loci [14, 16–18]. Wang et  al. [17] used 27 
polymorphic nSSRs of S. tzumu to conduct genetic diver-
sity, genetic structure analysis and mantel tests, thus 
providing corresponding theoretical basis for the protec-
tion and utilization of S. tzumu. A study conducted an 
analysis of the genetic structure of three diminutive natu-
ral populations of S. tzumu in Hubei Province, wherein 
the findings explicated that the proportion of polymor-
phic loci in the three populations stood at 49.5%. These 
populations were characterized by an inadequacy of het-
erozygotes and a surplus of homozygotes, thus signifying 
a state of disequilibrium [18]. Jiang et al. [14] found that 
five wild populations of S. tzumu at different altitudes had 
high genetic diversity (HE = 0.84) and moderate genetic 
differentiation with 13 polymorphic SSR markers from 
S. randaiense and Cinnamomum camphora. Employ-
ing ArcGIS 10.2 and MaxEnt 3.3.2, the distribution pat-
tern of S. tzumu in different timeframes was simulated. 
The outcomes demonstrated that precipitation of driest 
month, precipitation of wettest month, temperature sea-
sonality, and mean temperature of wettest quarter chiefly 
influenced the distribution. Furthermore, a compari-
son between the simulated outcomes of the distribution 
range during distinct periods revealed that the suit-
able habitat for S. tzumu contracted and shifted from the 
southern to the northern regions [19].

Genotyping-by-sequence (GBS) technology repre-
sented one of the streamlined genome sequencing meth-
odologies, aiming to reduce genome complexity through 
the application of restriction enzymes and the incorpo-
ration of single nucleotide polymorphisms (SNPs) [20]. 
This technique yielded a substantial number of SNPs, 
which were harnessed for exploring interspecies diversity, 
constructing haplotype maps, conducting genome-wide 
association studies, and facilitating genome selection 
[21]. Notably, GBS offered the advantage of requiring 
fewer steps for database construction and enabled the 
establishment of databases for a large number of samples 
[22]. In certain genomic studies, the utilization of geno-
typing-by-sequencing (GBS) technology allowed for the 
elucidation of species’ genetic diversity and hybridization 
characteristics [23].

The fragmentation of habitats caused by anthropogenic 
activities and other contributing factors, coupled with the 
escalating effects of global climate change, has resulted in 
a significant decline in the genetic diversity of numerous 
indigenous plant species. Such diminishment in genetic 
diversity has profound implications for the long-term 
viability and survival of these plants [24, 25]. In order 
to establish a robust theoretical framework for future 
judicious development and utilization of germplasm 
resource collections, this study employed cutting-edge 
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genotyping-by-sequencing technology to delve into the 
intricacies of genetic diversity and genetic structure 
across thirteen distinct populations. The primary objec-
tives of this research endeavor encompass the following: 
(1) elucidating the genetic diversity and genetic structure 
within the species S. tzumu; (2) discerning the interplay 
between genetic distance, geographical distance, and 
environmental factors; (3) formulating pertinent conser-
vation policies. The findings of this study hold the poten-
tial to enhance our understanding of the genetic diversity 
and structural dynamics within the thirteen populations 
of S. tzumu, thereby furnishing the necessary scientific 
foundation and conservation strategies.

Results
Genotyping and sequencing analysis results
In this study, GBS technology was used to genotype 
106 S. tzumu samples collected from 13 different dis-
tributions in China, and a total of 134,935 SNPs were 
obtained. A total of 11,862 SNPs were obtained after 
Vcftools filtering. Meanwhile, clean reads ranged from 
2,946,429 (TMS10) to 7,999,731 (GZS03), and the mean 
value of clean reads of 106 samples was 4,693,475. HighQ 
reads ranged from 2,436,391 (TMS10) to 6,541,952 
(JHS06), and the mean value was 3,815,536. HighQ reads 
rates ranged from 77% (SS01) to 88% (LS05), and the 
mean value of the HighQ reads rates was 83.22%. HighQ 
bases ranged from 345,967,522 (TMS10) to 928,957,184 
(JHS06), and its mean value was 541,806,161. HighQ 
bases rates were from 73% (SS01) to 84% (LS05), and its 
average value was 78.77%. HighQ Q20 bases rates were 
from 98.934% (SS01) to 99.4015% (GZS08), HighQ Q30 

bases rates were from 95.742% (GZS17) to 97.654% 
(GZS08), and their average values were 99.19% and 
96.83%, respectively. HighQ N content ranged from 13 
(FD08)—1738 (LS05), HighQ GC content ranged from 
43.554 (WYS01) to 49.0725 (JGS02), and their mean 
values were 630.55 and 45.0424 (Supplementary file 1), 
respectively.

Genetic diversity and genetic differentiation
The populations exhibited a number range of 2.020 (JGS) 
to 2.571 (SS) alleles (NA), with an average of 2.428. The 
effective number of alleles (NE) ranged from 1.912 (JGS) 
to 2.129 (SS), with an average of 2.057. The Shannon’s 
information index (I) varied from 0.628 (JGS) to 0.779 
(SS), with a mean of 0.734. Expected heterozygosity (HE) 
ranged from 0.426 (JGS) to 0.490 (SS), while observed 
heterozygosity (HO) ranged from 0.492 (JHS) to 0.595 
(JGS). The average values of HE and HO for S. tzumu were 
0.469 and 0.515, respectively. The polymorphism infor-
mation content (PIC) ranged from 0.8396 (JGS) to 0.9676 
(SS), with a mean of 0.9459 (Table  1). The results of 
AMOVA revealed that the genetic variation of different 
populations of S. tzumu was 10% (p < 0.01) among popu-
lation, 19% (p < 0.01) among individual, and the primary 
variation in S. tzumu was attributed to differences within 
populations (71%, p < 0.01). Therefore, there was greater 
genetic differentiation within populations (Table  2). 
Moderate genetic differentiation was observed among 
the 13 populations of S. tzumu (FST = 0.103, p < 0.01). The 
inbreeding coefficient (FIS) was calculated to be 0.215 
(p < 0.01). The number of migrants (Nm) between the 
13 populations exceeded 1 (Nm = 2.172; Table  3). This 

Table 1  Genetic diversity index of the 13 populations of Sassafras tzumu 

Abbreviations: NA Number of alleles, NE Effective number of alleles, I Shannon’s information index, HO Observed heterozygosity, HE Expected heterozygosity, PIC 
Polymorphism information content

Population NA NE I HE HO PIC

FD 2.458 2.054 0.735 0.469 0.495 0.9459

GZS 2.486 2.069 0.745 0.473 0.502 0.9555

HS 2.425 2.071 0.742 0.474 0.522 0.9439

JGS 2.020 1.912 0.628 0.426 0.595 0.8396

JHS 2.447 2.043 0.729 0.466 0.492 0.9448

LCS 2.450 2.056 0.735 0.469 0.498 0.9446

LS 2.391 2.073 0.739 0.474 0.534 0.9363

ML 2.511 2.083 0.752 0.476 0.503 0.9559

MS 2.524 2.076 0.750 0.474 0.501 0.9610

SS 2.571 2.129 0.779 0.490 0.519 0.9676

TMS 2.506 2.081 0.751 0.476 0.505 0.9546

TTS 2.504 2.078 0.750 0.476 0.503 0.9566

WYS 2.274 2.019 0.703 0.458 0.532 0.9063

Mean 2.428 2.057 0.734 0.469 0.515 0.9459
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indicated that the 13 S. tzumu populations had more 
gene exchange overall at the species level.

Genetic structure analysis was conducted on the popu-
lation data of 11,862 SNPs from the 13 populations. The 
results obtained from structure harvester indicated that 
the most suitable clustering was achieved when K = 4 
(Fig.  1 a, b). When K = 2, 13 populations of S. tzumu 
could be divided into two genetic clusters, specifically, 
Hengshan Mountains (HS), Shaoshan Mountains (SS), 
Meiling Mountains (ML) and Lushan Mountains (LS) 
were divided into one cluster, and other populations were 
clustered into the other one. When K = 3, 13 populations 
of S. tzumu could be divided into three genetic clusters, 
in which HS, SS, ML and LS were still one cluster, Jiuhua 
Mountains (JHS), Longchi Mountains (LCS), Maoshan 
Mountains (MS) and Tianmu Mountains (TMS) were 
clustered into one cluster, Fuding Mountains (FD), Guan-
zhai Mountains (GZS), Jigong Mountains (JGS), Tian-
tai Mountains (TTS) and Wuyi Mountains (WYS) were 
clustered into one cluster. The findings of the genetic 
structure analyses revealed that the populations were 
organized into distinct clusters when K = 4. Cluster 1 
consisted of samples from HS and SS, while cluster 2 
comprised samples from ML and LS. Cluster 3 encom-
passed a significant number of samples from FD, GZS, 
JGS, MS, TMS, TTS and WYS. Additionally, a few speci-
mens sourced from the JHS and LCS were consolidated 
within cluster 4 (Fig. 1c).

The first principal component (PC1) and the second 
principal component (PC2) of the PCA captured 7.68% 
and 11.94% of the total variance, respectively. The pro-
portions of inertia associated with PC1 and PC2 were 

statistically significant (p < 0.01). The results showed that 
HS, SS, ML and LS clustered, and others segregated from 
them (Figs. 2 and 3).

The multiple matrix regression with randomization 
(MMRR) analysis
The utilization of MMRR analysis had unveiled a note-
worthy positive correlation between genetic and geo-
graphical distances amongst the 13 populations (r = 0.58, 
p < 0.01; Fig.  4a). Within the 13 S. tzumu populations, 
the regression coefficient of environmental distance 
(βE = 0.46, p < 0.01) exceeded that of geographical dis-
tance (βD = 0.16, p < 0.01) by approximately threefold, 
implying that IBE predominantly accounted for the 
genetic distance. However, IBD also made a consider-
able contribution (Fig.  4b). Additionally, a significant 
association between genetic and environmental dis-
tances was observed (r = 0.56, p < 0.01; Fig.  4c). Further-
more, the outcomes of MMRR analyses demonstrated a 
significant association between environmental distances 
and geographical distances (r = 0.97, p < 0.01; Fig. 4d). In 
conclusion, the genetic distance among the 13 S. tzumu 
populations was jointly influenced by environmental and 
geographical distances (Table 4). Notably, environmental 
distance exhibited a more pronounced impact on genetic 
distance.

Discussion
Genetic diversity is the main factor leading to population 
survival and evolution. It determines the coping ability of 
natural populations under the stress of various biotic and 
abiotic factors, which is crucial for the long-term survival 
of populations [26]. Genetic diversity is directly affected 
by species’ own factors, including mating system, mei-
otic behavior, gene flow, mutation and natural selection 
[27–29]. In addition, human activities and environmen-
tal factors can also affect the level of genetic diversity of 
species, such as temperature, water, light, wind, soil salin-
ity and nutrients, and the surrounding biological com-
munities may exert different selective pressures on plant 
populations, thereby determining the evolution process 
of the population and shaping the genetic diversity and 
structure of populations [30, 31]. The greater the genetic 

Table 2  The results of analyses of molecular variance (AMOVA) for Sassafras tzumu 

Abbreviations: df degrees of freedom, SS sums of squares, MS mean squares, Est. Var. estimated variance

Source df SS MS Est. Var Percentage of variation 
(%)

P-Value

Among Pops 12 46677.17 3889.764 145.62 10  < 0.01

Among Indiv 93 142978.7 1537.405 272.438 19  < 0.01

Within Pops 106 105208 992.528 992.528 71  < 0.01

Total 211 294863.8 1410.587 100 -

Table 3  The change in genetic differentiation (FST) (above 
diagonal) where p < 0.01, inbreeding coefficient (FIS), and number 
of migrants (Nm) among 13 populations of Sassafras tzumu 

F-Statistics Value P-Value

FST 0.103  < 0.01

FIS 0.215  < 0.01

Nm 2.172
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Fig. 1  Genetic structure analyses of 13 populations of Sassafras tzumu. a Relationship between mean LnK and K value. b Relationship 
between Delta K and K value. c Genetic structure plots based on SNPs data (K = 2, 3 and 4)
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Fig. 2  Principal component analyses (PCA) among 13 populations. PCA axis 1 explained 7.68% of the variance, whereas PCA axis 2 explained 
11.94%. Different colors represented 13 populations

Fig. 3  Red points were sampling locations of S. tzumu used in this study. The map was obtained from the National Geomatics Center of China 
(NGCC, https://​www.​ngcc.​cn/​ngcc/​html/1/​391/​392/​16114.​html)

https://www.ngcc.cn/ngcc/html/1/391/392/16114.html
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variation of a species, the stronger its capacity to adapt to 
intricate and ever-changing environments [32]. We can 
quantify the genetic diversity of a species by calculating 
its expected heterozygosity (HE) [33]. The mean HE value 
of the 13 S. tzumu populations stood at 0.469, surpass-
ing that of 39 Cinnamomum camphora populations dis-
tributed in China (HE = 0.322) [34]. Moreover, the HE and 
HO values of the 13 S. tzumu populations were lower than 
those of other arboreal species, such as Xanthoceras sorb-
ifolium (HE = 0.53 and HO = 0.72) [35] and Olea europaea 
L. (HE = 0.60 and HO = 0.75) [36]. In contrast to the exten-
sive genetic diversity observed in the aforementioned 

studies, it can be inferred that the level of genetic diver-
sity of the S. tzumu populations examined in this study is 
inherently high.

Wright [37] believed that genetic differentiation coef-
ficient (FST) among populations was between 0 and 0.05, 
indicating that there was no genetic differentiation, and 
the FST value between 0.05 and 0.15 was moderately dif-
ferentiated, then the FST value between 0.15 and 0.25 was 
highly differentiated. Furthermore, the mean FST value in 
our study was calculated to be 0.103, suggesting a mod-
erate level of differentiation among 13 S. tzumu popu-
lations Compared with other Lauraceae plants, it was 
much lower than and Cryptocarya chinensis (FST = 0.141) 
[38] and Litsea szemaois (GST = 0.37) [39], and had a 
similar value with Cinnamomun camphora (FST = 0.109) 
[40]. The predominant distribution of genetic varia-
tion within 13 S. tzumu populations was observed to be 
within populations (71%, p < 0.01), whereas the genetic 
variation among populations was minimal (10%, p < 0.01). 
These findings aligned with the outcomes of previous 
studies on perennial plants [41] and further supported 
the notion that the genetic differentiation of S. tzumu 
primarily occurred within populations (93.6%, p < 0.001) 

Fig. 4  a Correlations between genetic distance and geographical distance. b Geographical distance and environmental distance effects on genetic 
distance. c Correlations between genetic distance and environmental distance. d Correlations between environmental distance and geographical 
distance

Table 4  The results of multiple matrix regression with randomization 
(MMRR) analyses of among genetic distance and different factors

Abbreviations: Gen genetic distance, Geo geographical distance, Env 
environmental distance

File1 File2 R. Squared P-Value

Gen Geo 0.58  < 2.2e−16

Gen Env 0.56 9.831e−16

Gen Geo and Env 0.57 3.61e−16

Env Geo 0.97  < 2e−16
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[14]. Similar to Zhang’s investigation, which focused on 
genus Phoebe, the primary source of variation in this 
species was within population (about 75.5%) rather than 
between populations (about 24.5%) [42]. Genetic diver-
sity played a crucial role in adapting to extreme environ-
ments, and insufficient diversity could impede survival 
advantages in the face of environmental changes. Despite 
the current wide distribution of S. tzumu, it may lack suf-
ficient genetic diversity to adapt to climate change. The 
inbreeding coefficient (FIS) was calculated to be 0.215. It 
was worth noting that a high inbreeding coefficient might 
result in a decrease in genetic diversity and an increase in 
genetic structure within the 13 S. tzumu populations [43].

The reproductive strategy of S. tzumu entails cross-pol-
lination, facilitated by its amphimerotic flowers. Insects 
act as the primary agents for pollen dispersal, while birds 
play a role in fruit dispersion [44]. These two mechanisms 
of transmission are the key drivers of gene flow among 
populations. The transfer of genetic information occurs 
through the fruits, thereby contributing to gene flow [16]. 
This study revealed a certain degree of gene exchange 
(Nm = 2.172) among the 13 S. tzumu populations. This 
could be attributed to the prolonged presence of frugiv-
orous birds within the same population, who consumed 
the fruit seeds of S. tzumu and facilitated gene exchange 
within populations. Additionally, it was determined that 
the genetic differentiation level among the 13 natural S. 
tzumu populations was a moderate significance.

Based on the genetic structure analysis results of 13 
populations of S. tzumu, S. tzumu could be divided into 
four clusters: cluster 1 was distributed in Hunan Prov-
ince (HS and SS populations), cluster 2 was distributed 
in Jiangxi Province (ML and LS populations), cluster 3 
(FD, GZS, JGS, MS, TMS, TTS and WYS) was mostly 
located in the eastern part of the populations, and clus-
ter·4 included JHS and LCS populations (Fig. 1c). How-
ever, the results of PCA supported the HS, SS, ML and 
LS groups were cluster 1 and other groups were cluster 
2 (Figs. 2 and 3). And the results of IBD analysis showed 
that the spatial distribution pattern of gene clusters and 
geographical distance of S. tzumu populations were 
extremely significant correlation (r = 0.58, p < 0.01, see 
Fig.  4a). Based on the study of major peaks and moun-
tains in China by Wang et  al. [45], the divergence of 
cluster 1 and cluster 2 was related to the geographical 
boundaries of Wuyi Mountains. The four populations in 
this study, HS, SS, ML and LS formed one cluster, which 
was consistent with cluster 2 in Zhou’s research results 
[46]. A total of 9 populations of S. tzumu, FD, GZS, JGS, 
JHS, LCS, MS, TMS, TTS and WYS constituted another 
cluster, which was consistent with cluster 1 in Zhou’s 
study. Finally, we are more supportive of the grouping of 
genetic structures in PCA.

Woody plants have a similar life history. Tapiscia sin-
ensis (Tapisciaceae), whose life history is defined as out-
crossing, and its seeds and pollen also spread over short 
distances [47]. In addition, other species with dioecious 
or morphologically dioecious but functionally dioecious 
breeding systems tend to maintain high genetic structure 
[48, 49]. Meanwhile, some potential factors may affect 
genetic structure, such as habitat fragmentation, breed-
ing system and life forms of plants [50, 51].

The Multiple Matrix Regression with Randomization 
(MMRR) analysis is a linear regression model that aims 
to quantify the impact of multiple explanatory variables. 
A portion of the genetic variation could be accounted 
for geographical distance (r = 0.58, p < 0.01; Fig. 4a). The 
S. tzumu populations in cluster 1 and cluster 2 were dis-
tinct due to geographical distance. This could explain 
the results of the previous principal component analysis. 
Moreover, the results of MMRR analyses demonstrated 
that genetic distance was influenced by both geographical 
distance and environmental distance (r = 0.57, p < 0.01; 
Fig. 4b). But environmental distance of S. tzumu in this 
study had a greater and profounder impact on its genetic 
diversity than geographical distance (βE = 0.46, p < 0.01; 
βD = 0.16, p < 0.01; Fig. 4b), which could be attributed to 
its preference for warm and humid habitats based on its 
biological characteristics [52]. IBD and IBE (βD = 0.404, 
p < 0.001; βE = 0.382, p < 0.001) were the major and equal 
contributor to genetic differentiation among 61 popu-
lations of Neolitsea sericea (Lauraceae) in the study of 
Cao et  al. [53]. Notably, IBE (r = 0.56, p < 0.01; Fig.  4c) 
exerted a significant influence on genetic distance. In 
the event of unfavorable environmental conditions, such 
as cold frosts or inclement weather during the pollina-
tion period, the pollination success of S. tzumu could be 
easily compromised [16], resulting in blooming without 
fruiting. Meanwhile, the distribution pattern of S. tzumu 
populations was found to be associated with elevation, 
slope direction, slope position, and humus thickness [54]. 
Research indicated that relative humidity (accounting for 
26.2% of permutation importance), mean temperature 
of coldest quarter (16.6%), annual precipitation (12.6%), 
and temperature annual range (10.3%) were the primary 
factors influencing the distribution of S. tzumu in China 
[15].

In the research, 13 populations of S. tzumu exhibited 
a moderate degree of genetic diversity, rendering them 
less resilient to diverse habitats and intricate climate fluc-
tuations, thereby posing a potential threat to the species’ 
survival [55]. Consequently, it is imperative to implement 
protective measures. Firstly, there is a need to enhance 
the promotion of plant preservation and cultivate pub-
lic consciousness regarding this matter. This can be 
achieved by implementing localized protective measures 
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in economically underdeveloped and remote areas with 
limited transportation and inadequate awareness, as well 
as intensifying the dissemination of information regard-
ing the conservation of S. tzumu to curb deforestation. 
Secondly, it is advisable to establish a nationwide net-
work for ex situ conservation of plants, with National 
Botanical gardens playing a pivotal role. This network 
should encompass the creation of ecological corridors to 
facilitate gene flow among S. tzumu populations. Thirdly, 
in regions highly susceptible to climate change, it is rec-
ommended to introduce tree species that are known to 
adapt well to specific climatic conditions, instead of fur-
ther expanding the cultivation of S. tzumu. Lastly, it is 
suggested to prioritize single plant selection and asexual 
propagation, while developing a comprehensive and sci-
entifically guided breeding strategy for the development 
and utilization of S. tzumu.

In conclusion, we screened and developed 11,862 SNPs 
to effectively elucidate the genetic structure of S. tzumu 
populations. The findings revealed that S. tzumu popula-
tions exhibited a high level of genetic diversity. Simulta-
neously, it had come to our attention that the existing S. 
tzumu resources had suffered significant damage due to 
deforestation. In remote areas characterized by relatively 
underdeveloped economies, limited transportation, and 
insufficient protection and public awareness, it became 
imperative to implement in  situ conservation measures 
and bolstered the dissemination of information regard-
ing the protection of S. tzumu to deter indiscriminate 
deforestation. As for the development and utilization 
of S. tzumu resources, we propose placing emphasis on 
selective breeding of individual camphor trees, comple-
mented by asexual reproduction. Additionally, it is cru-
cial to formulate scientifical and comprehensive breeding 

strategies, manage S. tzumu genetic resources in a scien-
tific manner, and enhance the sustainable utilization of 
these resources.

Methods
Collection and preservation of plant materials
During the summer of 2017, we gathered fresh leaves 
without pests or diseases as plant material samples from 
13 naturally existing populations of S. tzumu across its 
range in China (Fig. 3). We made sure to collect individu-
als that were at least 50 m apart, with a collection of 2–10 
individuals from each population. Ultimately, we care-
fully selected a total of 106 samples of S. tzumu for analy-
sis (Table  5). To maintain the plant leaves’ integrity, we 
carefully dried the leaves in sealed plastic bags with silica 
gel and stored them in a freezer at -20℃.

DNA extraction and genotyping‑by‑sequencing data set
For DNA extraction, dried floral leaves were subjected 
to the Plant Genomic DNA kit (Tiangen, Beijing, China) 
following the manufacturer’s instructions. The extracted 
DNA from all samples was quantified using a Qubit spec-
trophotometer. To facilitate genotyping by sequencing, 
all samples were sent to the esteemed Institute of Shang-
hai OE Biotech. Co., Ltd. In brief, the DNAs from the 
106 individuals were digested with EcoRI-HF and MspI 
to reduce the complexity of the genome. Subsequently, a 
106-plex GBS library, comprising 105 DNA samples and 
a negative control (no DNA), was meticulously prepared 
by ligating the digested DNA to unique barcode nucleo-
tide adapters, followed by standard PCR amplification. 
Finally, the resulting 106-plex library was sequenced on 
a single lane of an HiSeq X Ten platform. Sequence data 
obtained from the Hiseq X Ten platform were processed 

Table 5  The sampling locations of Sassafras tzumu 

Code Longitude Latitude Number of 
Samples

Temperature Precipitation Altitude (m)

FD 120.0398 27.13686 10 16.48 1686 497

GZS 116.7378 25.4839 10 19.03 1708 157

HS 112.7029 27.27414 6 16.03 1763 598

JGS 114.0766 31.81327 2 14.08 1212 158

JHS 117.8004 30.54553 10 16.12 1477 91

LCS 119.702 31.22193 10 15.52 1168 59

LS 115.9744 29.54243 5 12.58 1626 98

ML 115.7197 28.80984 10 17.04 898 397

MS 119.3055 31.8222 10 15.5 1078 384

SS 112.4749 27.91357 10 17.24 1510 479

TMS 119.5007 30.3415 9 14.1 1548 882

TTS 121.086 29.2522 10 12.44 1708 902

WYS 117.7218 27.83386 4 12.75 2135 957
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for SNPs identification using the GBS pipeline integrated 
within Stacks 3.0.166 [56]. In brief, variants were filtered 
using Vcftools 0.1.14 [57] based on criteria such as a min-
imum depth of coverage (> 5), quality score (> 30), and an 
initial maximum missingness of 50% [58]. Subsequently, 
the dataset was examined to ensure that no samples 
exhibited high levels of missingness (all samples were 
found to have less than 30% missing data). The final set 
of SNPs was further filtered to retain those with a maxi-
mum of 20% missing values and a minor allele frequency 
below 0.05.

Genetic diversity and genetic structure analysis
The resulting vcf file in our GBS data set was converted 
into compatible formats using PGDspider 2.0.9.0 [59] 
Genetic differentiation (FST) was calculated for each SNP 
using GenAlEx 6.501 [60], and these values were utilized 
for analyses of molecular variance (AMOVA) among 
populations. To determine the number of genetic clus-
ters across populations, the STRU​CTU​RE 2.3.4 [61] was 
employed. The genetic structure analysis was conducted 
with three independent replicates, ranging from K = 2 to 
K = 13. Each run consisted of 5.0 × 104 burn-in iterations 
and 3.0 × 104 MCMC replications under the admixture 
model. The resulting output was submitted to the Struc-
ture Harvester [62] website for further analysis. The best 
K value was determined to represent the best number of 
clusters. The Q-matrix data, including Kx. indfile (indi-
viduals) and Kx. popfile (populations), obtained from 
multiple runs were downloaded. These data were then 
analyzed using CLUMPP [63] and visualized using DIS-
TRUCT [64] and Adobe Illustrator 2021. To explore the 
clustering patterns between populations, principal com-
ponents analysis (PCA) was performed using GenAlEx 
6.501 [60].

The multiple matrix regression with randomization 
analysis
Geographical distance and environmental distance affect 
gene flow and genetic differentiation between popula-
tions [65], and isolation by distance (IBD) and isola-
tion by environment (IBE) are important ways to reflect 
that the complex landscapes affect the genetic structure 
of natural populations [66–70]. When gene flow may 
be affected by geographical and environmental vari-
ables, multiple matrix regression analysis (MMRR) [71] 
provides a valuable approach to quantify the impact of 
geographical and environmental isolation on genetic dis-
tance. In contrast to the many methods used to analyze 
distance matrices in landscape genetics [72–74], MMRR 
can ask not only whether variables are correlated but 
also how the dependent variable changes with respect 
to multiple independent variables, contributing to a 

comprehensive understanding of how landscape influ-
ences gene flow patterns.

In the study, the geosphere package in R software [75] 
was utilized to compute the euclidean distance of the 
latitude and longitude information from 13 populations. 
Additionally, MEGA 11 [76] was employed to deter-
mine the genetic distance among these populations. In 
this study, we used climate variables, soil pH and eleva-
tion as environmental factors. The climate variables 
(1970–2000) and elevation layer were downloaded from 
WorldClim website (https://​world​clim.​org), and soil pH 
was downloaded from ISRIC — World Soil Information 
(https://​www.​isric.​org/). Then, we used Maxent 3.3.1 [77] 
to simulate the suitable layer in the species distribution 
model. SDM Tools in ArcMap 10.8 was used for con-
verting from environment suitability layer to migration 
resistance layer. The value of the environmental layer in 
sampling locations was extracted from the matrix format 
utilizing ArcMap 10.8 [78], and the specifical operation 
was “Spatial Analyst Tools—Extract by points”.

The isolation by distance (IBD) and isolation by envi-
ronment (IBE) were quantified using the "MMRR" func-
tion in R software [79]. We used genetic information 
as the response variable, with geographical and envi-
ronmental distances serving as explanatory variables 
to describe the patterns of IBD and IBE, the correlation 
between the three matrices was computed to assess the 
impact of geographical distance and environmental dis-
tance on genetic distance.
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