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Abstract 

Background  Selection of climate-change adapted ecotypes of commercially valuable species to date relies on DNA-
assisted screening followed by growth trials. For trees, such trials can take decades, hence any approach that supports 
focussing on a likely set of candidates may save time and money. We use a non-stationary statistical analysis with spa-
tially varying coefficients to identify ecotypes that indicate first regions of similarly adapted varieties of Douglas-fir 
(Pseudotsuga menziesii (Mirbel) Franco) in North America. For over 70,000 plot-level presence-absences, spatial differ-
ences in the survival response to climatic conditions are identified.

Results  The spatially-variable coefficient model fits the data substantially better than a stationary, i.e. constant-effect 
analysis (as measured by AIC to account for differences in model complexity). Also, clustering the model terms identi-
fies several potential ecotypes that could not be derived from clustering climatic conditions itself. Comparing these 
six identified ecotypes to known genetically diverging regions shows some congruence, as well as some mismatches. 
However, comparing ecotypes among each other, we find clear differences in their climate niches.

Conclusion  While our approach is data-demanding and computationally expensive, with the increasing availability 
of data on species distributions this may be a useful first screening step during the search for climate-change adapted 
varieties. With our unsupervised learning approach being explorative, finely resolved genotypic data would be helpful 
to improve its quantitative validation.

Keywords  Climate-change adaptation, Douglas-fir, Ecotype, Genetic variation, Identifying ecotypes, Provenance 
tests, Pseudotsuga menziesii, Spatially variable coefficient models

Introduction
Local adaptation strategies to current environmental 
changes—be it climatic, with respect to atmospheric 
pollution with NOx, CO2 and SOx, or to pests and 

diseases—heavily rely on identifying species, breeds 
and lineages that are best suited for such conditions and 
hence maintain higher yields in forests, croplands and 
animal production [1–4]. Widespread species such as 
common forest trees live under differing climatic con-
ditions throughout their range. These conditions exert 
selective pressure, often leading to specific local adapta-
tion to habitat conditions [2, 5]. In trees, this may result 
in substantial variation in cold hardiness or drought 
resistance among populations of the same species [1, 6–9]. 
Adaptive differences may eventually become genetically 
encoded and analysis of such intra-specific variation thus 
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can reveal geographic patterns that are related to external 
selective factors [1, 10].

Populations of a species descending from different 
provenances can be tested for climatic adaptation by 
their growth performance under new conditions [11–13]. 
However, such growth trials are extremely time con-
suming, and tree provenance trials initiated in the 20th 
century are now still analysing young trees [14–16]. 
Genetic investigations can aid the identification of cli-
matically adapted populations by delimiting ecotypes, 
which are then subjected to experimental physiological 
investigations (e.g. [17]). Yet, there may be hundreds of 
seed sources to choose from and being able to pre-select 
regions from which to sample specimen for genetic and/
or physiological investigations could save both time and 
money.

Douglas-fir (Pseudotsuga menziesii) is a wide-ranging 
tree species, known to be closely adapted to its envi-
ronment [18]. Due to the high economic and ecological 
importance, its characteristics have been well analysed 
in many studies and data on its distribution and char-
acteristics are available. Its habitat extends from the 
coast of British Columbia (Canada), through the Rocky 
Mountains and adjacent mountainous regions down to 
the Mexican mountains. Two varieties are recognized: 
Pseudotsuga menziesii var.  menziesii, growing along the 
Pacific coast line from British Columbia into Califor-
nia and Pseudotsuga menziesii var.  glauca, inhabiting 
the interior mountain ranges. Since it is highly adaptive 
and productive, Douglas-fir has also been introduced 
as a non-native species to European forests [19]. Long-
term provenance trials have been carried out in order to 
monitor provenance performance [15, 16, 20, 21]. Data 
from these trials can be used to investigate adaptive and 
genetic variation among populations (e.g. [19, 22, 23]). 
Based on their genetic, morphological or physiological 
population characteristics, ecological adaptation models 
predict best performing provenances and thereby sup-
port the delineation of seed zones that are suitable for 
reforestation and restoration management [14, 24]. Dif-
ferent modelling approaches have been used for such 
purposes, including purely generic clustering [22, 25], cli-
mate envelope models (e.g. [14]), transfer functions (e.g. 
[26, 27]), genecological models [21] and regression trees 
[28].

Most studies focus on the performance of test prov-
enances, while less attention has been paid to the pre-
selection of provenance regions [29]. In the work of 
Rehfeldt et  al. [30], the importance of a climate-based 
approach to provenance selection in the face of climatic 
changes is highlighted. Based on the findings of Wei et al. 
[22], the authors classified “climatypes” of Douglas-fir 
populations in North America. When local adaptation 

occurs, optimal climatic habitat conditions for a popula-
tion vary from those of other populations farther away 
[1]. So does a model that represents the varying relation 
between the climatic environment and a species’ occur-
rence. The issue of spatial variability in modelled rela-
tions is referred to as (spatial) non-stationarity [31, 32]. 
Most common modelling approaches assume stationar-
ity and represent the relation between model predictors 
and model response globally: the model estimates are 
constant throughout the complete spatial distribution. 
The assumption of stationarity, however, is not met when 
intra-specific variation occurs [31, 33]. In contrast, mod-
elling this relation locally, model coefficients vary across 
space and thus represent the individual-environment 
linkage for each observation [31, 32]. If a priori genetic 
information is available, one can separately analyse sub-
populations (e.g. [33–38]). Without such information, 
two methods commonly used to capture non-stationary 
model relations are spatially varying-coefficient models 
(SVCMs) and geographically weighted regression (GWR) 
(both approaches reviewed and compared in [39]).

In this study, we use a non-stationary modelling 
approach, specifically a SVCM, to identify ecotypes of 
a wide-spread species based only on climatic distribu-
tion data. We do this for Douglas-fir, whose occurrence 
data are available for its entire North American range. 
Ecotypes, sensu Turesson [40], are varieties of a species 
which show genotypic similar responses to a specific hab-
itat. Our analysis is based on the assumption that envi-
ronmental adaptations can be an early stage of genetic 
differentiation (e.g. [21, 41]). Our aim is to demonstrate 
how this approach can aid identification of populations 
to be sampled for climate-tolerance related genetic pro-
filing. The method is based on the assumption that 
ecotypic variations of Douglas-fir in responses to climate 
are reflected in the model coefficients. We hypothesize 
that clustering of these model coefficients yields tentative 
ecotypes from which provenance regions can be inferred. 
To test these emerging ecotypes, we compare their distri-
bution to six DNA classes as delineated by Rehfeldt et al. 
[13].

Methods
Study distribution and data
Analysis was carried out with a dataset that contains 
the complete distribution of Douglas-fir throughout 
Canada, USA and Mexico in form of binary coded pres-
ence and absence observations (Fig.  3a). It consists of 
73,932 records of which 18,601 are presences and 55,331 
absences. The data set was assembled by the USDA For-
est Service and supplied to us by G.E. Rehfeldt ([13], 
and pers. comm.). Presence-absence data were collated 
from a network of forest inventory and research ground 
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plots of Mexican, Canadian and US American organiza-
tions (CONAFOR, CFS, FIA, respectively). Non-forested 
areas have been presented by a random sample of data 
points, used in North American vegetation analysis [13, 42].  
According to their geographic location, each presence 
observation in the data set has been assigned to one of 
six DNA classes, which correspond to genetics-based 
large-scale provenance regions (Fig. 3b; [13]). The assign-
ment was done by Rehfeldt et  al. [13] and is based on 
well-documented knowledge and supported by the gen-
otypic classification of a preceding study carried out by 
Wei et  al. [22]. The data provided along with [13] con-
tains information on 44 populations from large-scale 
genotypic regions in Douglas-fir that were used to inves-
tigate the intervarietal phylogeographic history in the 
original study [22]. In [13] however, they were used to 
assign the 18,601 presences to six DNA classes and that 
we in this work use for qualitative comparison with our 
ecotypic regions.

Climatic and bioclimatic variables were generated for 
each presence and absence location (reference period: 
1961-1990) with the ClimateNA v5.10 software package, 
available at http://​tinyu​rl.​com/​Clima​teNA, based on the 
PRISM methodology described by Wang et al. [43].

Model selection
SVCMs are computationally expensive, which is why we 
fit the model using only three uncorrelated climate vari-
ables that have been identified before as being the main 
drivers for the climatic niche of Douglas-fir [18]. The 
spatially-varying coefficient Generalized Additive Model 
(GAM) was substantially more computer intensive than 
an ordinary Generalized Linear Model (GLM) (in our 
case by a factor of 10,000). Pre-selecting a manageable 
number of (uncorrelated) predictors thus is advisable 
also in  situations where the ecological niche is less well 
known than in our study species. Climate predictors and 
their squares, e.g. temperature difference and squared 
temperature difference, were standardised to mean 0 and 
standard deviation 1 before being fit. The use of second 
polynomials in a regression model allows for non-linear 
effects of predictors on the response, as we would expect 
for climatic niches [44].

Spatially varying‑coefficient model
We build a spatially varying-coefficient model (SVCM) 
through a generalized additive model (GAM) [45, 46] as 
implemented in the mgcv package for the R program-
ming environment [47]. The GAM was chosen due to its 
straightforward implementation of SVCMs [46]. Extend-
ing the class of GLMs by allowing specification of (semi-
parametric) smooth-functions fj that can be imposed 

on a set of predictors x1, . . . , xk , a generalized additive 
model for logistic regression can be written as

with the expected value of the response variable 
µ = E(Y ) , transformed by the link function 
g(p) = ln(

p
1−p ) for logistic regression, and an intercept β0 

[45]. To implement spatially variable coefficients, the 
smooth functions are specified as functions of equidis-
tant longitude (x) and latitude (y) of each datum, { xx, xy }, 
in km. These were centered on the origin of the coordi-
nate system for more robust estimation [48]. In the model 
setup, { xx, xy } were multiplied by the covariates of inter-
est [39, 49]. Thus, the SVCM looked like this:

We chose to represent climatic predictors as quadratic 
functions, with separate spatial smooths for the linear 
and the quadratic model terms. We thus have the fol-
lowing predictors with spatially variable parameters in 
the model: a spatial intercept, yearly mean temperature 
difference (TD), TD2 , total summer (May to August) 
precipitation (PPT_sm), PPT_sm2 , mean temperature 
of warmest month (MTWM) and MTWM2 . Gaussian-
process splines with (initial) 100 base dimensions were 
chosen for each term to smooth estimates [50]. Model 
parameters were fit by maximum likelihood estimation. 
Predicting the model terms to the presence locations 
yielded a 18,601 × 7 matrix with individual model coef-
ficients for each plot where Douglas-fir occurs.

We used two reference models to be able to gauge the 
effect of spatially variable coefficients: in direct analogy 
to the SVCM we fit a (stationary) GLM with quadratic 
terms; just like the GAM fits linear and quadratic effects 
(where the splines refer only to how these parameters 
change through space: see eqn 2), so does the GLM. Sec-
ondly, we fit a GLM with additional pairwise interactions: 
if the spatial variation in the estimated coefficients of the 
SVCM are due to statistical interactions of the climatic 
predictors, then this model would capture this effect. 
All models were compared by their Akaike Information 
Criterion.

Coefficient clustering
Ecotypes were defined as groups of populations with sim-
ilar responses to environmental variables. The statistical 
model captures this similarities in its spatially-varying 
coefficients (SVCs) that are therefore implicitly assumed 

(1)g(E(Y )) = β0 +

p

j=1

fj(xj),

(2)g(E(Y )) = fβ0(xx, xy)+

k∑

j=1

fj(xx, xy)xj

http://tinyurl.com/ClimateNA
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to represent similar ecotypic traits. An unsupervised 
classification algorithm, namely a fast k-medoids cluster-
ing algorithm ([51], using R’s cluster::pam) was applied 
to detect similar subsets in the SVC matrix of presence 
observations and subsequently assign these observations 
to ecotypic clusters based on the detected similarity (see 
Fig. 1 for a schematic overview of where this procedure 
is embedded in the analysis). In this matrix, estimates 
for MTWM and the intercept were relatively narrowly 
distributed, whereas estimates for the effect of TD and 
PPT_sm exhibited some extreme values. For visualisa-
tion, these were 96%-windosorised [52], i.e. extreme val-
ues reduced to the second or 98th percentile, resulting in 
Fig. 2. For clusters of environmental responses however, 
we omitted the spatial intercept (Fig.  2, panel g), as it 
only adjusts prevalence estimates. Thus, we used a SVC 
matrix of 18,601 × 6 model terms. Correspondence of the 
detected ecotypes with the six large-scale DNA regions 
was quantified by the Rand index, R(C ,C ′) =

2(n11+n00)
n(n−1)  , 

where n11 is the number of observations both in clusters 
C and C ′ , n00 those neither in C nor C ′ , and n the total 
number of observations [53].

Based on the observation that coefficients exhibit 
very different ranges, we decided to compare k-medoids 
on two different versions of the coefficient matrix: 
1. directly on the terms as returned by the model, 2. on 
the standardised terms (i.e. the correlation matrix), 
which reduced domination by MTWM estimates. 
While standardization did not remove the effect of 
extremes completely, it at least mitigated it (SI, Fig. 1). 
The resulting clusters differed slightly between these 
two versions (see Fig.  3 and SI, Fig.  1), but we deem 
the first approach to be more appropriate for grouping 
environmental responses, as it keeps the model param-
eters’ magnitudes, which are directly interpretable as 
strength of an effect [54].

In the unsupervised classification, we determined 
the optimal number of clusters using the GAP statis-
tic [55] (SI, Fig.  2). While this indicated as a global 
optimum without any clusters, the gap statistics 
identifies a local maximum at ten clusters. We con-
ducted our analysis towards two different ways for 
validation: (1) the SVC matrix was clustered into six 
ecotypes to quantify the proposed method with the 

Fig. 1  Schematic outline of technical steps from fitting the spatially-varying coefficient (SVC) model to outlining ecotypic regions. A) We fit a GAM 
to Douglas-fir occurrence data, allowing the smooth terms to vary in space. B) This model predicts occurrences at present populations based 
on a SVC matrix. C) The coefficients in the SVC matrix are classified by an unsupervised classification algorithm and based on a choice of the optimal 
amount of clusters, populations are assigned to these ecotypic classes
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available large-scale DNA classes.(2) We examined 
higher resolved ecotypes based on the suggested ten 
clusters to qualitatively validate these with recent evi-
dence of smaller-scale DNA classes ([14, 25, 56], e.g.). 
We will discuss the results of the qualitative valida-
tion, while corresponding figures can be found in the 
supplementary information (SI, Qualitative validation 
of ten ecotypes).

Cluster differentiation
Variation within and among clusters were assessed by 
comparing predicted climate niches, depicting individ-
ual response norms in marginal conditional effect plots. 
The effect of a climate predictor on the predicted occur-
rence was calculated over a sequence from its smallest to 
its largest value with the other two predictors held con-
stant at the cluster’s mean value. This was done for each 

Fig. 2  Map of rounded estimates for the effect of the three climatic predictors (top row), their quadratic terms (second row) and the intercept 
(bottom row). Note that all predictors were standardized before the SVCM was fitted
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observed environmental condition separately, and then 
averaged across all presence locations of a cluster (also 
referred to as partial dependence plot). Changes in model 
prediction for the observation then indicated an effect of 
the climatic factor on its occurrence.

In order to test for the importance of the Douglas-fir spe-
cific clusters, we pursued the cluster analysis also with a 
“neutral” model, i.e. we fitted the same model with spatially-
varying coefficients to randomized presences and absences. 
Its model terms thus only represent the clustering of cli-
matic predictors across space but carry no Douglas-fir spe-
cific information. Similarity of the results was compared with 
both, the genetic-based provenance regions and the ecotypes.

Results
The spatially-variable coefficient model (SVCM, 
Table  1) had a substantially better fit than the sta-
tionary GLM with the same structure or a GLM with 
additional pairwise interactions (Akaike Informa-
tion Criterion (AIC)SVCM = 23439 , AICGLM = 38891 , 
AICGLM-I = 34694 ). It explained 72.4% of the deviance, 
indicating a very well-fitting model (see also Fig. 3a and 
b). All three predictors were contributing significantly 
to the model (see Table  1). Mean temperature of the 
warmest month (and its square) were the most impor-
tant model parameters, with χ2-values at least four times 
higher than those of other model parameters (Table  1). 

Fig. 3  Distribution of Douglas-fir and its deduced ecotypes. Panel a displays the presence and absence observations as contained in the data set. 
Panel b shows model predictions for probability of Douglas-fir occurrence, computed by the generalized additive model with spatially variable 
coefficients. In panel c, assignments of observed data points to provenance regions, provided within the data set are mapped in grey tones [13]. 
The coloured points represent the 44 populations which were genetically analysed and used as baseline for outlining the large scale genotypic 
regions [22]. Panel d shows the assignment of presence data points to one of six ecotypes derived from the model coefficients



Page 7 of 13Wesselkamp et al. BMC Ecology and Evolution           (2024) 24:70 	

The spatial variability of model parameter estimates is 
depicted in Fig. 2, the averages sizes of these coefficients 
per ecotype are given in the supplementary informa-
tion. While in itself hardly interpretable, the result dem-
onstrates clear spatial patterns, with smooth transitions 
between regions of high and low values. These patterns 
form the basis for the clustering analysis to identify 
ecotypes.

The “neutral” spatially-varying coefficent model 
reported a poor fit with a deviance explained of 0.02% 
and an AIC of 83431. The model summary can be found 
in the supplementary information (SI: Table 5).

Identification of ecotypes
The six ecotypes identified by k-medoids clustering 
based on the terms of the SVCM exhibit large overlap 
with the DNA classes (Table  2), but also suggest some 
deviations. A quantitative comparison of the clustering 
output to the DNA-classes yielded an agreement of over 
75% (Rand index = 0.756, see also Table  2). Ecotypes 
differed from the genotypes in that, firstly, some are 
geographically disjunct (ecotypes 1 and 2) and that, sec-
ondly, specifically inland they range further than the 
homogeneous large-scale DNA classes (ecotypes 4 and 5) 
(Fig. 3, bottom panels).

With the exception of ecotype 3, clusters do not 
explicitly accord with only one DNA class (Table  2). In 
their upper ranges, cluster allocations reveal between 
47% accordance (ecotype 6 with DNA class 3) and 
86% accordance (ecotype 3 with DNA class 2). While 
ecotype 6 ranges across the two northern interior geno-
typic regions (DNA class 3 and 4) nearly equally strong, 
ecotype 3 covers much of the range of the southern 
coastal genotype (DNA class 2), with some disjunct but 
spatially close ecotypic populations in the southern inte-
rior region and the northern transition zones.

Another ecotype that is strongly disjunct is ecotype 1 
with already two disjunct groups in the northern coastal 
genotypic region, ranging until the southern coast, and 
some visible group in the interior north and middel, as 
well as in Mexico. Ecotype 2 can mainly be found in the 
northern coastal regions but also ranging than the gen-
otype in this area, namely further south along the coast 
and further towards the inland regions of DNA class 3. 
Ecotype 4 shows the largest spread in latitude, from 
British Columbia over Washington and into the central 
and southern Rocky Mountains. Overall, these findings 
show some clear contrasts to the large-scale genetic and 
taxonomic distinction of coastal and interior subspecies 
(Fig. 3 bottom left).

Quantifying the similarity of the “neutral” clusters with 
the DNA classes also yielded an accordance of over 76% 
(Rand index = 0.763), while they also correspond to over 
77% with our ecotypes (Rand index = 0.77) (SI, Fig.  7). 
This essentially suggests that the SVCM-ecotypes indeed 
indicate climatic niches.

Response norms
Douglas-fir ecotypes respond to climatic conditions in 
a similar, yet separable way. The overall climate niche 
of Douglas-fir seems to be at a temperature optimum 
around 15°C, with a preference for 10-20°C temperature 
difference and low precipitation ( < 400 mm) (Fig. 4). The 
signal of all three climatic predictors is an occurrence 
probability larger than 0.75, suggesting that the underly-
ing ecotypes are well constrained by the predictors used. 

Table 1  Summary of the spatially variable-coefficient model. Edf 
and Ref.df refer to two different ways to compute the numbers 
of degrees of freedom absorbed by the spatial spline for a model 
term. TD, PPT_sm and MTWM refer to temperature difference, 
summer precipitation and temperature of the warmest month. 
All χ2-values are significant at p < 0.001

edf Ref.df χ2

s(y,x) 43.76 47.43 330.35

s(y,x):TD 3.00 3.00 127.58

s(y,x):TD2 3.00 3.00 125.35

s(y,x):PPT_sm 32.72 37.25 301.61

s(y,x):PPT_sm2 35.32 39.39 193.43

s(y,x):MWMT 41.68 45.75 1406.34

s(y,x):MWMT2 47.78 51.37 1345.66

Table 2  Confusion matrix of the 18,601 Douglas-fir presence classifications by DNA (columns) and by coefficient similarity (rows) 
(percentage of ecotypes assigned to each DNA class in brackets)

DNA_1 DNA_2 DNA_3 DNA_4 DNA_5 DNA_6

Ecotype 1 1132 (52.8) 509 (23.8) 257 (12.0) 164 (7.7) 8 (0.4) 73 (3.4)

Ecotype 2 1405 (57.1) 986 (40.1) 4 (0.2) 5 (0.2) 9 (0.4) 53 (2.2)

Ecotype 3 135 (4.5) 2580 (86.8) 0 (0.0) 8 (0.3) 211 (7.1) 37 (1.3)

Ecotype 4 70 (1.9) 28 (0.7) 2351 (62.4) 796 (21.1) 520 (13.8) 0 (0)

Ecotype 5 64 (1.6) 29 (0.7) 2305 (57.1) 1500 (37.2) 137 (3.4) 0 (0)

Ecotype 6 61 (1.9) 42 (1.3) 1524 (47.3) 1515 (47.0) 83 (2.6) 0 (0)
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Douglas-fir ecotypes are distinguishable, firstly, by the 
signal of the climatic predictors, secondly by the varia-
tion in that signal and thirdly by its range, i.e. peakedness 
of the effect curve.

Ecotypes 1 and 2, both mainly found in the north-
ern and southern coastal regions, show a very strong 

(Table  3) and sharp signal (Fig.  4) over all climatic pre-
dictors. The variation in their response to precipitation, 
however, is large. Not so for the ecotype 3, found mainly 
in southern coastal regions that specifically for precipita-
tion shows the highest, sharpest and most robust signal. 
In contrast, the ecotypic responses to MTWM and TD 

Fig. 4  Climate niches of the six clusters identified from model coefficients. Plots are effects of changing the focal predictor while holding the other two 
at there mean value, for each presence location of that cluster. The median effect (with grey smooth defined by 0.05 and 95% quantiles) is displayed 
in the ecotypes’ colours. A reduced total size of response indicates a climatic niche with small effect of this predictor on Douglas-fir occurrence
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are clearly wider and more variable than their northern 
coastal friends.

The niche positions of the mainly interior distrib-
uted ecotypes are very similar but with a slightly less 
signal. Further, the variations of their responses have 
a left (e.g. TD, ecotypes 5 and 6) or right (MTWM, 
ecotype 4) tendency. Their response to precipitation is 
poorly constrained by the data. In part, the poorer def-
inition of ecotypes 3 and 6 may be explained by their 
lower number of records over the larger geographic 
range (Table 2).

In direct comparison with the map of ecotypes (Fig. 3) 
it becomes apparent that even disjunct ecotypes of the 
northern and southern regions (ecotype 4, 5) or eastern 
and western (ecotypes 1, 2) exhibit rather similar cli-
matic niches with respect to the three predictors under 
consideration.

Discussion
Data on the geographic distribution of a species may hold 
information allowing us to identify groups of populations 
with similar responses to the environment, as shown 
here for Douglas-fir and climate. Based on the assump-
tion that trait adaptations to environmental variables 
are a component of genetic differentiation, we interpret 
these groups as tentative ecotypes of Douglas-fir [41]. 
Assigning Douglas-fir populations in their distribution 
area in North America to six different response groups, 
ecotypes exhibit different responses characteristics to cli-
mate effects, presumably having different climate optima. 
Quantification of the geographic distribution of the iden-
tified ecotypes showed overlap with available large-scale 
DNA regions to some degree, while qualitative compari-
son with finer resolved and genetically analysed prove-
nance regions implies ecotypic and genotypic similarities 
[14, 25, 56]. The results suggest that ecologically induced 
intra-specific variation in (unobserved) occurrence-
related traits, as well as an increased intra-variety differ-
entiation, potentially hybrids, found in transition zones 
([57, 58], p. 38) can be detected in a first screening step 
with a climate-based, local modelling approach to prove-
nance outlining. With this being an explorative approach, 
the resulting model hypothesises ecotypes which are not 
validated until compared with genetic information.

Identified provenance regions
The two main varieties of Douglas-fir, Pseudotsuga 
menziesii var. menziesii and Pseudotsuga menziesii var. 
glauca, consist of sub-specific populations adapted to 
certain environments [18]. In allozyme studies it has been 
shown that beyond variation among varieties, there are 
also intra-varietal allozymic differences as well as clinal 
variations in both, the coastal and Rocky Mountains sub-
species [58, 59]. As such, multiple studies on the genetic 
differentiation of these two varieties linked genotypes to 
large-scale regions (e.g. [23, 25, 59, 60]). Allozyme and 
fossil pollen surveys detected two population sources for 
the coastal variety, var. menziesii, and suggest two to four 
sources for the Rocky Mountains variety, var. glauca [23, 59]. 
The Mexican populations are mostly treated separately 
and have even been suggested as an own variety [61]. 
Although belonging to the subspecies of Pseudotsuga 
menziesii var.  glauca, particularly the central Mexican 
populations morphologically and physiologically differ 
from this variety [61, 62].

Based on the genetic literature, we grouped Douglas-
fir populations first into six classes to quantitatively com-
pare deduced ecotypes with available data on large-scale 
DNA regions [13, 22, 63]. Then we also grouped Doug-
las-fir populations into ten classes to qualitatively assess 
their similarities with recent smaller-scale DNA regions 
[14, 25, 56]. Clustering of the spatially-varying coeffi-
cient (SVC) matrix partly reproduced the six DNA class 
regions without using the DNA-data: we identified spa-
tially well separated, latitudinally arranged, yet disjoint 
mainly coastal (ecotypes 1, 2 and 3) and interior ecotypes 
(ecotypes 4, 5, 6). A Mexican ecotype is only indicated 
but has not been classified as a standalone group. Com-
paring these ecotypes to the available large-scale DNA 
classes (Fig. 3c) yields up to a maximum of 86% accord-
ance for the southern coastal variety. Overall, identified 
ecotypes show much larger ranges, transition into each 
other and are more fragmented than the strictly outlined 
DNA class regions, even within the two varieties of Pseu-
dotsuga menziesii.

Clustering of the SVC matrix into six groups only 
approximated the spatial pattern of genetic variation 
[13]. By allowing for more clusters, which would also be 
the approach if no DNA-based clusters were previously 

Table 3  Maximum conditional median effect size of each predictor on ecotypes, corresponding to the median largest occurrence 
probability in Fig. 4. The closer the value to 1, the narrower the niche with respect to this variable

Ecotype 1 Ecotype 2 Ecotype 3 Ecotype 4 Ecotype 5 Ecotype 6

MTWM 0.96 0.92 0.88 0.85 0.88 0.83

PPT_sm 0.93 0.96 0.98 0.81 0.86 0.77

TD 0.96 0.95 0.84 0.84 0.86 0.75
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identified (e.g. [55]), a wider range of ecotypic clusters 
emerged (see supplementary information), in line with 
European provenance trials of Douglas-fir and studies 
on intra-varietal genetic structures [14, 56]. Such a larger 
number of clusters leads to more spatial compactness in 
the southern coastal ecotypes and points out an inter-
varietal small-scale differentiation in the north (SI, Fig. 5 
and SI Tab.  4). An experiment on clustering the SVC 
matrix separately for the coastal, interior and mexican 
varieties suggested a fragmentation of the coastal variety 
into six ecotypes (SI, Fig. 6), which does not fully match a 
current evidence of four coastal genetic cluster with addi-
tional admixed populations [56], but supports its known 
small-scale differentiation [25]. Douglas-fir is known for 
its strong local diversity in association to environmental 
forcing variables [58], of which we only considered three. 
This might also lead to finer resolved ecotypic regions 
than considered in our qualitative comparison. In a 
future work, more predictors could be considered and by 
dimensional reduction techniques still used in this com-
putationally demanding approach. Dependencies might 
remain partially incomplete, as selective forces are not 
restricted to climatic conditions, but also to soil [64], fire 
[65], pests and so forth [19]. Still, the high spatial coher-
ence of the clusters suggests that the approach as such 
may have potential that warrants further testing.

Differentiation of ecotypes
Our ecotypic classification is determined by the interplay 
of three climatic factors throughout the range of Doug-
las-fir that might have been responsible for part of the 
genotypic adaptations in its biogeographic history [66]. 
These predictors constrain ecotype identification by prior 
knowledge that is taken from the literature [13]. Doug-
las-fir, as a highly adaptable species, responds strongly to 
temperature- and moisture-related changes in its envi-
ronment ([67], Fig. 4). Gen-ecological studies repeatedly 
confirmed that intra-specific variation is mainly driven 
by temperature, specifically winter cold, and by drought, 
related to summer precipitation [6, 13, 67]. In our analy-
sis, winter temperature was substituted by the highly 
correlated proxy ‘yearly temperature difference’ (i.e. con-
tinentality), while summer temperature and precipitation 
were directly included in the model. Traits which report 
adaptation to summer temperature and precipitation 
change from north to south throughout the distribution 
of coastal Douglas-fir [60]. Cold hardiness-related traits 
typically characterize populations of higher elevations 
and with greater distance to the Pacific ocean, i.e. interior 
populations [67]. Variation in these traits appears along 
latitude and elevation [57, 68].

The growth responses of the interior variety, Pseudot-
suga menziesii var.  glauca, to climate change scenarios, 

have been shown to remarkably differ between central 
and southern interior populations [63]. Our analysis does 
indeed differentiate within this subspecies, since the 
three large-scale DNA-regions (Fig. 3c) were also in our 
analysis subdivided into overall three population clusters, 
with some fragmented disjunct populations that were 
assigned to the mainly coastal ecotypes. Increasing eleva-
tion of growth sites towards lower latitudes is reflected 
in rather subtle changes of responses to the temperature 
related predictors [57]. That might be the reason why 
climate niches of Pseudotsuga menziesii var.  menziesii 
ecotypes differ only slightly from those of Pseudotsuga 
menziesii var. glauca, i.e. in the strength of the signal and 
its variation. As known beforehand, precipitation vagary 
(PPT_sm) and continentality (TD), which characterize 
the habitat of the coastal and interior varieties respec-
tively [63], reveal large-scale clinal patterns in space 
(Fig.  2). The effect of summer temperature (MTWM), 
seems to be the strongest and sharpest for northern 
coastal ecotypes (1 and 2) and together with a contrast-
ing high variation in precipitation vagary distinguishes 
them clearly from the southern coastal ecotype 3 (Fig. 4. 
Southern populations of this variety (corresponding to 
ecotype 3) are known to suffer from both heavier sum-
mer drought and winter precipitation [63] and are also 
more resistant to drought, while northern populations 
(corresponding to ecotypes 1 and 2) are more productive 
[69].

The most glaring difference between botanical knowl-
edge and genetics on one side, and the statistically iden-
tified ecotypes on the other, is the disjunct distribution 
of some subgroups of ecotypes, which cover areas in 
both coastal and interior range. Also the wide latitudi-
nal range of ecotypes that mainly cover the interior dis-
tribution (Fig. 3) is not in line with this knowledge. The 
subdivision into ecotypes that belong to both, the coastal 
and interior variety of Pseudotsuga menziesii on a small 
range, such as in British Columbia where we find popula-
tions of all ecotypes, indeed happens in a transition zone 
where we can expect a lot of substructure in populations 
[57, 66]. This becomes evident when allowing for more 
clusters in SI, Fig.  4 where the fragmented populations 
of each variety belong to an own ecotype. Even though 
local adaptation diversity is known to be very high in 
Douglas-fir [58], in this area however, is was shown that 
neural genetic processes shape the differentiation. The 
wide ranging distributions of our interior ecotypes (4, 5 
and 6) do not overlap much with genotypic regions that 
were classified in other studies [25, 56]. Yet, the dis-
junct ecotypic subgroup of ecotype 3, of which we find 
populations in Arizona and New Mexico might point 
out some of the intra-varietal diversity [25]. However, 
when applying the cluster algorithm to the coastal and 
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interior varieties separately (see supplementary infor-
mation), we find strong similarities with the hierarchical 
genotypic clusters from [25]. While some ecotypes seem 
to represent higher levels and cover the whole interior 
distribution, the resolution of ecotypic differentiation in 
the canadian states as well as in Montana, Wyoming and 
Idaho is denser and higher (SI, Fig. 7).

The approach used here only identifies ecotypes with 
respect to climate, and is ignorant of other environmen-
tal drivers (soil, fire, pests). It is conceivable that the two 
varieties differentiated by soil preferences overlap sub-
stantially in their survival response to climate. Since we 
analyse occurrence data, and not growth as e.g. Rehfeldt 
et al. [30], only survival responses matter for the results 
presented here. Lab research in Douglas-fir seedlings of 
coastal vs interior provenance found differences in some 
phenotypic traits, such as growth rates [66], but failed 
to find difference in others, such as twig water potential 
response to drought, in CO2 assimilation or stomatal 
conductance, despite differences in root and leave ter-
pene concentrations [17]. The classification of Douglas-
fir populations into six ecotypes by similar responses is 
somewhat a simplification, as intra-specific variation 
in adaptation is continuous [13]. Allowing for more 
ecotypes, for example ten (see supplementary informa-
tion) did reduce the disjunction of both the coastal and 
interior variety, but is still limited in representing known 
interior provenances (SI, Fig. 4).

Conclusion
Modelling the distribution of a species allowing for spa-
tially variable responses to model predictors allows us 
to suggest populations that are more similar to another 
in their response to climate. Since genetic variation 
is moulded by climate [8], it could prove helpful to 
pre-select populations for provenance testing by their 
ecotype-climate niches.

The resulting ecotypes are tentative hypotheses and 
simultaneously require independent validation, ideally 
by a combination of genetic and common garden experi-
ments on survival and growth [25]. We propose to use 
existing occurrence information to inform such sampling 
as a first screening method (see also [70]).

Ideally, we could follow up on our analysis with 
sampling of sites with different environmental condi-
tions within ecotypic regions to test for within-cluster 
homogeneity. In regions with overlap of ecotypes, sam-
pling may need to be more intense (e.g. in Alberta, 
Canada; Idaho, Wyoming, Arizona, New Mexico, 
USA; and Durango, Mexico). At the large scale of our 
analysis, transitions zones and overlaps may also be 
statistical artefacts of the smooth representation of 

environmental effects. The strictness of ecotype bound-
aries cannot be estimated from our data and would 
require genetic analyses.

Statistical ecotype proposals are likely to improve with 
the number of data points and finer grain of distribution 
data. Also, a good prior knowledge of the species’ main 
environmental constraints helps reducing computational 
burden. In addition to our example of a commercially 
interesting tree species, the suitability of this approach 
can be further investigated at widespread species that are 
known for sub-specific genetic and morphological dif-
ferentiation, such as red deer (Cervus elaphus) [71], wolf 
(Canis lupus) [72] or barn owl (Tyto alba) [73].
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