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Abstract
Mechanical phenotyping of tumors, either at an individual cell level or tumor cell population level is gaining 
traction as a diagnostic tool. However, the extent of diagnostic and prognostic information that can be gained 
through these measurements is still unclear. In this work, we focus on the heterogeneity in mechanical properties 
of cells obtained from a single source such as a tissue or tumor as a potential novel biomarker. We believe that 
this heterogeneity is a conventionally overlooked source of information in mechanical phenotyping data. We use 
mechanics-based in-silico models of cell-cell interactions and cell population dynamics within 3D environments 
to probe how heterogeneity in cell mechanics drives tissue and tumor dynamics. Our simulations show that the 
initial heterogeneity in the mechanical properties of individual cells and the arrangement of these heterogenous 
sub-populations within the environment can dictate overall cell population dynamics and cause a shift towards the 
growth of malignant cell phenotypes within healthy tissue environments. The overall heterogeneity in the cellular 
mechanotype and their spatial distributions is quantified by a “patchiness” index, which is the ratio of the global 
to local heterogeneity in cell populations. We observe that there exists a threshold value of the patchiness index 
beyond which an overall healthy population of cells will show a steady shift towards a more malignant phenotype. 
Based on these results, we propose that the “patchiness” of a tumor or tissue sample, can be an early indicator for 
malignant transformation and cancer occurrence in benign tumors or healthy tissues. Additionally, we suggest 
that tissue patchiness, measured either by biochemical or biophysical markers, can become an important metric in 
predicting tissue health and disease likelihood just as landscape patchiness is an important metric in ecology.
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Introduction
Cancer arises from malfunctioning cells where a deregu-
lation of normal signaling pathways leads to the acquisi-
tion of hallmark features such as chronic proliferation 
and evasion of apoptosis, which disrupts normal tissue 
structure and function [1–4]. While the majority of focus 
in literature has been on how changes to biological sig-
naling pathways can aid cancerous behavior, less atten-
tion has been drawn to the effects of altering mechanical 
signaling pathways [2–4]. Mechanical signals, generated 
via cell-cell and cell-matrix interactions and transcribed 
by corresponding changes in intra-cellular tension, cell 
size, cell shape and nucleus architecture, alter the local-
ization, activation, and interaction of various protein 
effectors within the cytosol and the nucleus [5–9]. Modi-
fications to these mechanical signaling pathways can dis-
rupt a variety of cellular processes such as cell division, 
cell death, and cell differentiation via mechanotrans-
duction - a process by which cells sense their physical 
environment and relay mechanical cues into biochemi-
cal signals [10, 11]. Malignant transformation has been 
associated with changes to both extra-cellular and intra-
cellular mechanical properties, with studies suggesting 
that these altered physical properties are significant in 
promoting tumor progression [2, 4, 12–14]. One such 
manifestation of these altered mechanical properties in 
malignant cells is that they are significantly softer than 
their healthy counterparts, an observation consistent 
across many cancer types [4, 15–17]. This decrease in cell 
stiffness has been linked to certain cancerous features 
like uncontrollable proliferation, evasion of apoptosis, 
and increase in motility [3, 16, 18].

Studies have suggested that the stiffness of cells can 
grade its metastatic potential, where highly invasive 
malignant cells are on an average (at the population 
level) softer than less invasive cells [19, 20]. Since no two 
individuals are perfectly identical, cell stiffness measure-
ments, irrespective of stiffness measurement techniques, 
produce a distribution of cell stiffness values for any given 
cell population. This distribution arises from phenotypic 

heterogeneity across individual cells and can be persis-
tent over several cell generations [21–23] (Fig. 1). While 
the heterogeneity in cell mechanical properties (such as 
cell stiffness or adhesion) has been noticed and reported 
previously, it is the mean values of these distributions 
that is used to differentiate between the two cell types, 
and potentially grade the malignancy and metastatic 
potential of a particular cell population [14, 22–24]. We 
posit that, the distribution in cell mechanical properties 
across a population of cells comprising a tumor or even a 
normal tissue can provide significant insight into how the 
population will evolve over time and potentially lead to 
malignancy and metastasis (Fig. 1). This position is based 
on the fact that even healthy cell populations have broad 
distributions in cell mechanical properties indicating 
the presence of at least a small number of cells that have 
cancer-type phenotypes at the extremes of these distri-
butions [19, 21–23, 25, 26]. Additionally, recent work 
on micron-scale, in-situ mechanical characterization of 
tumors has shown that tumors are made up of regions of 
soft and stiff cells [27], and the definitions and organiza-
tion of these regions correlates with the aggressiveness of 
tumors [28]. We build on this position with the help of 
computational simulations of cell-cell interactions within 
a 3D tissue environment, observing the evolution of cell 
population with heterogenous mechanical properties 
over time. We focus mainly on the cell stiffness as a key 
mechanical property where individual cells show hetero-
geneity, and specifically look for the growth of cells with 
lower stiffness (softer cells) since this is a cell trait which 
is strongly associated with cancer [21, 22, 29].

Methods
Mechanics-based mathematical and computational mod-
els have been a common tool used to isolate and study 
the sole effect that specific tumor mechanical properties 
have on cancer progression [2]. Many multi-scale models 
exist, all intended to answer specific questions regarding 
cancer mechanics and tumor progression [3, 30–32]. We 
have previously developed one such model to understand 

Fig. 1 (a) Mechanical phenotypic diversity in a healthy tissue, forming a spatially homogeneous tissue (b) Mechanically similar cells are in close proximity 
with one another, forming a spatially heterogeneous tissue, (c) Based on spatial arrangement and mechanical variation within the tissue, some cells are 
able to replicate at a faster rate, overtaking the tissue and migrating through the basement membrane
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how mechanically distinct populations of stiff and soft 
cells can interpenetrate [33, 34] or promote and drive 
tumor growth within stiff environments [3, 34]. The focus 
in these prior works was on the interactions between two 
mechanically distinct phenotypes of cells. Here, we build 
on these models to incorporate a heterogeneous popu-
lation of cells with stiffness values distributed around a 
predetermined mean corresponding to a healthy cell’s 
stiffness.

In the model, cells are described as viscoelastic shells, 
characterized by a dense actin cortex and a liquid core, 
able to compete for space while interacting with other 
cells in the tissue [3] (Fig.  2). The position of each cell 
is defined by a single point while the cell shape and its 
neighbors are obtained by Voronoi Tessellations about 
these individual cell points. The polyhedral cell area, vol-
ume and the interface between neighboring cells are used 
to compute the mechanical energy stored within each cell 
at any given time using Eq. 1 (3,33)-
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The equation consists of three terms which estimate the 
energy of the stretched actin shell, the energy released by 
formation of inter-cellular bonds and the work done by 
the osmotic pressure inside the cell in changing its vol-
ume from V0 in free solution to Vi  inside the tissue. k  is 
the stiffness of the actin cortex, Ai  is the area of the cell, 
and A0 is the area of the cell had it been spherical, n is 
the number of neighbors, and Aj , σi , and γj  are the area 
of the interface, the bond density, and the bond energy 
between the cell and its jth neighbor, respectively. λ is cal-
culated as P0V0, where P0 and V0 are the osmotic pressure 
and volume of a cell free in solution. Cellular rearrange-
ments, obtained by displacing the individual cell points, 
are dependent on the overall mechanical energy of the 
system (sum of mechanical energies of individual cells). 
Rearrangements that lower the total mechanical energy 
of the system (

∑
Ui ) are always accepted, while rear-

rangements that increase the energy of the system are 
accepted based on the probability of acceptance given by 
Eq.  2, following the Monte-Carlo Metropolis algorithm 
[3].

 
Paccept =

[
exp

(
− (Ucurrent − Uprev)

(kBT )eff

)]

 (2)

The term Ucurrent refers to the tissue’s total energy in the 
current configuration, Uprev refers to the total energy 
in the previous configuration and (kbT)eff refers to the 

internal energy of the cells, analogous to the work a cell 
can do via filopodial protrusions [3, 35].

Under physical stretch either via cell-cell interactions 
or external forces, cells show a higher likelihood of enter-
ing the S-phase of the cell division cycle, triggered by 
either stretch activated membrane channels, localization 
of key transcription factors or the restructuring of the 
chromatin within the nucleus [36–38]. Based on these 
observations, cell fate (death or division) in the model 
system is a stochastic function of cell stretch, derived 
empirically based on cell death and division likelihoods 
quantified in [39, 40], and given by Eqs. 3 and 4 (3).
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Ai  is the area of cell i, which is combination of both cell 
shape and size in 3D and provides a good estimate of the 
cell-stretch. Asp  is the area of the cell were it perfectly 
spherical, and Am  is the area of an average cell (mean of 
Ai ) in a homeostatic, healthy tissue. Cell death and divi-
sion events drastically increase the system energy and are 
thus interspersed between a large number (∼ 70,000) of 
cellular rearrangements that drive the tissue back to a 
lower energy state as dictated by (kBT )eff .

All of the parameter values are restricted to biologically 
relevant values based on either experimentally deter-
mined observations or prior theoretical estimations. For 
example, experimentally measured cell elastic modulus 
values (∼ between 100 and 1000  Pa) [21, 41] and actin 
cortex thickness values (∼ 1 μm) [42, 43] are used to esti-
mate the cell cortex stiffness, k. Similarly, cell-cell adhe-
sion strengths are based on the strength of individual 
cadherin bond strengths, γj , and the average density of 
cadherins on cell surfaces, σi . The choice of (kBT )eff , 
accounts for the active motility of cells in tissues and its 
value is based on the average work a cell can do (force x 
displacement) while migrating using cellular protrusions. 
The parameter values used in the above calculations 
are summarized in supplementary table S1 along with 
sources from where they are derived.

The initial tissue/tumor configuration for a homo-
geneous tissue environment is obtained by randomly 
dispersing all the cell defining points into a 3D space 
(Fig. 2e). These location points act as the centers of their 
encapsulating, polyhedral cells. A log-normal distribu-
tion of cell stiffness values with a fixed mean of 500  Pa 
and differing amounts of variance is specified for each 
cell to model mechanical heterogeneity in the tissue 
[22, 29, 41]. Either high, moderate, or low amounts of 
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Fig. 2 (a) Individual cells are modeled as spherical in free solution, (b) cells interact with one another by forming a flat interface with neighboring cells, 
(c) a 2D representation of cells interacting with one another in tissue, where cells are modeled as Voronoi polyhedrons, (d) a 3D representation of a cluster 
of cells modeled as Voronoi polyhedrons, (e) a tissue comprised entirely of cells
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mechanical heterogeneity is considered, modeled by 
changing the mode of the log-normal distribution. The 
primary results presented here use log-normal distribu-
tions for cell stiffness values to relate most closely with 
experimental measurements [22, 26]. The mode of the 
log-normal distributions for the different populations 
are set to either 465 Pa, 455 Pa, 445 Pa, 435 Pa or 425 Pa 
(corresponding to a standard deviation of 115 Pa, 130 Pa, 
145 Pa, 160 or 175 Pa respectively).

In addition to modeling the mechanical variation, 
the effects of the spatial arrangement of cells within the 
healthy tissue are also tested, as cell-to-cell interactions 
may further impact tumor incidence [3] (Fig. 3). To setup 
up the initial conditions for a spatially heterogeneous tis-
sue environment, a small number of cells (8, 27, or 64) 
are first randomly distributed into the 3D space and their 
mechanical properties are randomly chosen from the 
overall population distribution. The rest of the tissue is 

then sequentially seeded by placing cells with randomly 
assigned mechanical stiffness values in proximate loca-
tions to existing mechanically similar cells. This leads to 
clustering of mechanically similar cells while maintaining 
overall population heterogeneity. By altering the num-
ber of seed cells first introduced, we can alter the sizes 
of the clusters in the tissue (Fig. 3). The size of the result-
ing clusters is dependent on the number of initial seed 
cells, where fewer seed cells amount to larger, but fewer 
clusters of cells with similar mechanical properties within 
the healthy tissue environment. For each spatial arrange-
ment and stiffness distribution, a complementary non-
clustered tissue is simulated as a control. A large number 
of cell rearrangements are performed immediately after 
seeding all the cells (∼ 70,000 iterations), without any cell 
death or division, in order to reach an initial low energy 
configuration for the model tissue system.

Fig. 3 Initial healthy cell stiffness distributions applied to tissue with various spatial arrangements (a) Log-normal cell stiffness distribution with a mean 
of 500 Pa and mode 465 Pa (standard deviation of 115 Pa) applied to a spatially homogeneous tissue (b) Log-normal distribution cell stiffness distribu-
tion with a mean of 500 Pa and mode 425 Pa (standard deviation of 175 Pa) applied to a spatially non-homogeneous tissue, where clusters are formed 
between mechanically similar cells (64 seed cells around which other cells are sequentially populated)
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This simulation adequately mimics the environment 
of a dense 3D tissue or tumor where cells are packed 
together in packing fractions close to 1. Cellular rear-
rangements drive the tissue to a steady energetic state. 
When a tissue is in an energetically steady state, cell fate 
decisions are made based on the stochastic Eqs. 3 and 4, 
where cell stretch and area provide a driving signal for 
cell death and division [39]. Empirically, perfectly spheri-
cal cells have a low probability of cell division and a high 
probability of cell death [44], while more stretched out 
cells with larger areas have a low probability of death and 
a high probability of division [45]. By using this proba-
bilistic method of cell death and division, an important 
aspect of cell fate decisions – mechanosensing, is inte-
grated within the model while preserving the homeo-
static nature of the tissue. When the cell divides, the 
resulting two daughter cells will either retain the same 
mechanical stiffness as its parent cell or vary slightly, 
where mechanical phenotype is strongly conserved 
[46–48]. We assume a ± 5% (max) variation in daughter 
cell stiffness compared to the parent cell. After cell fate 
decisions are made, cellular rearrangements again drive 
the tissue to a steady state energy value with the same 
Monte-Carlo Metropolis thermalization process. Cell 
rearrangement takes place over a timescale on the order 
of days, whereas the cell death and division processes 
occur within a couple of hours [49]. This separation of 
timescales allows for the cellular rearrangement and cell 
death and division events to be simulated sequentially.

The model is implemented in MATLAB. We simulate 
an 80 μm x 80 μm x 80 μm cubic space, containing 512 
cells (average cell volume of ∼ 1000 µm3) with periodic 
boundary conditions. Here we assume that healthy cell 
population has an average cell stiffness value of 500  Pa 
(starting mean stiffness of all cells in the tissue). Indi-
vidual cells within this population with a stiffness value 
lower than 400  Pa are considered tumor-like, based on 
experimental results that determine that cancer cells are 
found to be at least 20% softer than healthy cells [19, 24, 
33]. The cell shape and sizes are defined by Voronoi Poly-
hedra generated about the cell points and their nearest 
neighbors. The cell volume, surface area and shape are 
obtained by analyzing the convex polyhedron formed by 
the vertices of the Voronoi polyhedron. A single simula-
tion cycle involves ∼ 70,000 cell rearrangement iterations 
where a few (7 here) randomly selected cells are moved a 
small distance (exponentially distributed around a mean 
of 0.5 μm) in each iteration. The Voronoi Tessellation is 
reperformed and new cell volume and shape parameters 
are obtained. The mechanical energy of each cell affected 
by the move is recalculated based on Eq. 1 and the new 
total energy of the tissue (defined as the sum of mechani-
cal energies of each cell) is obtained. The new arrange-
ment of cells is either accepted or rejected based on the 

Metropolis algorithm as described above (Eq.  2). The 
rearrangement iterations are continued until the aver-
age energy of the tissue (averaged over 1000 iterations) 
reaches a steady state (usually less than ∼ 70,000 itera-
tions, supplementary figure S1). Once the tissue reaches 
a steady state where further cellular arrangements fluctu-
ate the energy around a low value dictated by the effective 
temperature, (kBT )eff , of the system, each cell can either 
divide, die or do neither based on probabilities calculated 
using Eqs. 3 and 4. The probability of doing neither is cal-
culated as (1-(pdiv + pdeath )). Death and division events 
push the tissue systems out of the low energy state steady, 
and the cellular rearrangement iterations are reinitiated 
to drive the tissue back to a new steady state().

The changes in the cell populations are tracked over 
20 cellular rearrangement and death/division cycles, to 
determine if there are any shifts within the population 
and if there is an increase in the tumor-like cell popula-
tion. For analysis purposes, we assume that a drop of 
15  Pa in the mean cell stiffness within the tissue envi-
ronment over the 20 death and division cycles implies 
a malignant transformation of the tissue. This drop in 
mean tissue stiffness can be a result of an increase in 
the softer cell population, a decrease in the stiffer cell 
population, or a combination of both. We can track the 
number of healthy (stiffness > 400  Pa) and cancer cells 
(stiffness < 400 Pa) within the population. The choices of 
tissue size, cell numbers, and simulation cycles are pri-
marily restricted by the computational cost of this model. 
However, we believe the overall insight from this model 
system can be applied to larger collection of cells in 
tissues.

To quantify global vs. local heterogeneity within the tis-
sue environment, we borrow the concept of patchiness 
from environmental ecology [50–53]. The patchiness 
index is calculated as the ratio of global to local heteroge-
neity using Eqs. 5,

 
c =

−ΣPi.lnPi/lnNtotal

mean(−ΣPi.lnPi/lnncluster)
 (5)

where, Pi is the fraction of the population within the 
sample that is similar (in this case has similar cell stiff-
ness) and N (Ntotal or ncluster) is the population size of the 
sample. The numerator is the global heterogeneity cal-
culated for the total population, while the denominator 
is the local heterogeneity calculated for a small region of 
the system. To calculate the Pi, the cell stiffness values 
are combined into 10  Pa increment bins, and Pi is cal-
culated as the ratio of the number of cells in bin i to the 
total number of cells. The same process is used for both 
local and global populations. The local population het-
erogeneity is obtained using a moving window approach, 
where a cubic window of predetermined dimensions is 
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sampled, the heterogeneity of the cell population within 
that window is calculated, and the window is then shifted 
by specified distance to obtain a new local sample popu-
lation. The mean of the local heterogeneities thus calcu-
lated is used in Eq. 5 to obtain the patchiness index. Here 
we use window sizes of 30 μm x 30 μm x 30 μm, 40 μm x 
40 μm x 40 μm, and 50 μm x 50 μm x 50 μm and shift the 
window by ∼ 1 cell length (10 μm) each time, along each 
of the three dimensions.

Results
As mentioned above, we use a decrease in mean cell stiff-
ness by 15 Pa over 20 simulation cycles as the benchmark 
value when considering tumor occurrence and malig-
nant transformation. This value is determined to be sig-
nificant based on the constant drop of the mean value 
of the distribution, as well as the increase of tumor-like 
cells in the tissue after every cell fate decision. If the sim-
ulated tissue were to undergo more cell death and divi-
sion cycles, one would expect larger drops in the mean 
value as well as an increased number of tumor-like cells 
in the tissue (supplementary figure S2). In the instances 
when tumor incidence is observed as defined by a 15 Pa 
drop in mean cell stiffness, it is often accompanied by an 
increase in tumor-like cells and a drop in the number of 
stiffer cells (see supplementary figure S3). However, there 
are also instances when the number of tumor-like cells 
in the tissue remains constant and the number of stiffer 
cells drops, which we believe is due to the inherent sto-
chasticity in our system (see supplementary figure S4). In 
rare cases, the mean value of the distribution increases by 
15 Pa and is accompanied by increases in the number of 

stiffer cells and a drop in the number of tumor-like cells 
(see supplementary figure S5). Although this is infre-
quent, it may be beneficial to understand the interplay 
between the mechanical variation and spatial clustering, 
and how it can sustain the growth of stiffer cells.

Overall, we simulate tissue systems with 5 different ini-
tial cell stiffness distributions (log-normal distributions 
with mean 500 Pa and modes − 465 Pa, 455 Pa, 445 Pa, 
435 Pa or 425 Pa). For each of these 5 tissue systems, we 
further simulate four different levels of clustering within 
the tissue (high – 8 seed cells, medium – 27 seed cells, 
low – 64 seed cells and no clustering). For each of these 
20 scenarios (listed in supplementary table S2), we simu-
late 10–12 unique instances of cell population evolution 
using our model, running each system for 20 cell death/
division and reorganization cycles. For each of the main 
20 scenarios, we count the runs where malignant trans-
formation is observed as defined by a decrease in the 
mean stiffness by 15 Pa and divide it by the total number 
of simulations run for that scenario to find the probabil-
ity of malignant transformation. We observe that both 
the mechanical variance and spatial arrangement collec-
tively play influential roles in increasing the likelihood of 
malignant transformation (Fig. 4). Individually, these fac-
tors are not significant enough in inducing tumorigenesis 
but are instrumental in doing so together. As both the 
mechanical variation and clustering of cells with similar 
mechanical stiffness increases in an initial healthy tis-
sue, the probability for tumor occurrence increases (see 
Fig. 4).

The need for spatial clustering of cells with similar 
mechanical properties for tumorigenesis reveals the 
dependency of interactions between tumor-like cells that 
is needed to promote their increased proliferation. This 
may be due to the enlarged surface area of the tumor-like 
cell clusters within the tissue, which gives them the abil-
ity to resist the force imposed by their surrounding stiff 
cells [3]. This can be related to what has been seen exper-
imentally, where tumor cells are able to withstand their 
stiff environments as they grow and multiply, driven by 
an increased homeostatic pressure for these cells [18, 54].

We combine the effect of overall variance (heteroge-
neity) in cell mechanotype and the local clustering of 
mechanically similar cells using the patchiness index for 
the tissue. We find that independent of the cubic window 
size used to estimate the patchiness index (3 cell lengths, 
4 cell lengths or 5 cell lengths along each dimension), 
there is a significant likelihood for tissues with patchi-
ness index greater than 0.85 to show a decrease in mean 
cell stiffness and thus a transition towards a malignant 
mechanotype (Fig. 5, supplementary figure S6). In these 
figures, the stars denote p < 0.05 on a single population 
ttest, indicating a non-zero change in mean cell stiffness 
for tissues with that patchiness index. We note here that 

Fig. 4 The probability of tumor occurrence is dependent on increases 
in the mechanical variance and the spatial clustering between cells with 
similar mechanical properties
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we are limited in our analysis to these small window sizes 
because of the small size of our simulation domain (8 cell 
lengths along each dimension).

Discussion
Here we have used a purely theoretical setup to study 
the evolution of a mechanically diverse population of 
cancer cells within a densely packed 3D tissue environ-
ment. We have ignored the presence of nutrient gradi-
ents, extracellular matrix, or significantly different cell 
types, concentrating only epithelial or near epithelial 
cell types. Cell-cell interactions are assumed to be purely 
mechanical and cell fate decisions are also driven pri-
marily by mechanosensitive feedback based on empirical 
experimental observations. While all these amount to a 
gross simplification of a complex tissue system, such sim-
plified models have previously been employed to under-
stand and describe processes related to tissue dynamics 
[55, 56], tissue growth [57], tumor incidence [3], tumor 
growth and metastatic invasion [58–60]. Additionally, 
the small length scale of the tissue system simulated in 
this case allows for the assumption of a dense collection 
of tightly packed cells without the inclusion of an extra-
cellular matrix, nutrient gradients, or vasculature. While 
additional complexity can be added to the model, we 
leave these for future extensions of the model.

As mentioned above, this study focuses on mechani-
cal heterogeneity at the individual cell level and patchi-
ness at lengths scales of a few cells (∼ 40  μm). This is 
relevant to the length scales of recent tissue mechano-
type characterization studies [27, 61] as well as tracking 
the effect of stiffness changes on individual cell fates in 
tissue and tumors. The origin of mechanical heteroge-
neity in cell populations at this scale can be attributed 

to random genetic mutations, gene methylation states, 
or phenotypic changes arising from local environmental 
cues such as extra-cellular matrix properties and nutrient 
availability. However, it does not answer questions about 
macroscale heterogeneities in tissues and factors that 
contribute to bulk tissue stiffness measurements such 
as recruitment of various other cell types such as fibro-
blasts, endothelial cells and vasculature, and immune 
cells to the tumor environment, and consequent modifi-
cations to the stromal tissue surrounding tumors.

Within the confines of the limitations described above, 
we use our model to understand how heterogeneity in 
the mechanical properties of tumor cells, specifically, 
cell stiffness, as observed and quantified by experimen-
tal tools, may be used to predict the occurrence of tumor 
growth and a malignant shift in a seemingly healthy 
population of cells. We find that heterogeneity at the cell 
population level, but homogeneity at a local level, quan-
tified by the patchiness of cell distributions within the 
tissue system, predicts an increasing likelihood of tumor 
occurrence and an overall shift towards malignant popu-
lations within an initially health tissue. It is interesting to 
note that overall high heterogeneity, by itself is not detri-
mental to tissue fate, so long as the population remains 
well mixed. However, local clustering of similar popula-
tions, which may occur due to an underlying heterogene-
ity in the extra-cellular environment, nutrient availability, 
stochastic cell division events, or motility-dependent 
segregation of cells, tips the balance to drive malignant 
transformation in highly heterogenous tissue systems 
[33, 34, 62]. These observations are indeed limited to tis-
sue level heterogeneity at the short length scales of 10 to 
100 s of µm and do not consider greater tumor environ-
ment heterogeneity associated with varying cell types 

Fig. 5 Change in mean stiffness of the cells against c value (ratio of local to global diversity). Window size of 4 × 4 × 4 cell lengths (40 μm x 40 μm x 40 μm) 
used to calculate the patchiness index using Eq. 5. Each open red circle represents the change in mean cell stiffness over 20 cell death and division cycles 
for a single simulation, plotted against the patchiness index of the starting initial tissue configuration for that simulation run. The error bars are standard 
errors of the mean. Stars above the bar plots indicate p values < 0.05 for a single population ttest
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accumulating within the tumor stroma as well as degrees 
of vascularization and nutrient perfusion. However, since 
the focus of this discussion is on the transition from a 
healthy or pre-malignant state to a malignant state, we 
posit that the commonly tumor-associated macroscale 
heterogeneities will not have yet accumulated within 
the tissue environment. Instead, the heterogeneity at the 
tissue cell population level, still at homeostasis with its 
environment, holds more significance in driving malig-
nant transformation.

From an ecology of cancer perspective, these results 
augment several ideas proposed before [63, 64]. For 
example, a high diversity in the cell population defined 
by a high Evo-index, or the presence of a suitable envi-
ronmental niche defined by a high Eco-index have been 
proposed as ecological indices predictive of tumor pro-
gression, disease outcome as well as treatment efficiency 
[65]. The model we have presented looks at the contri-
bution of both the overall heterogeneity of the native 
tissue system as well as the formation of favorable local 
niches. Here the local niches are dictated by cell-cell 
interactions, rather than cell-matrix or cell-environment 
interactions, which is along the lines of cell fate control 
in localized ecological niches via cell-cell interactions as 
proposed by Adler and Gordon [66]. However, additional 
control based on extracellular factors such as nutrient 
and oxygen gradients, presence of cytotoxic and geno-
toxic agents, and direct interactions between cell and the 
extra-cellular matrix can be integrated into future model-
ing efforts along with the present cell-cell mechanosen-
sitive interactions [67, 68]. Another key aspect of both 
ecology and tumors, that is homeostatic competition [69, 
70], is also captured in the present model. Homeostatic 
competition implies a steady state population density at 
the global population level driven by resource competi-
tion or cooperation between the various species inhabit-
ing an ecological landscape. Maintenance of homeostasis 
at the tissue level is a key condition built into the healthy 
tissue model described here. The low diversity tissue 
maintains homeostasis through competition between the 
cell types for available space. Even a high diversity, well 
mixed tissue system maintains homeostasis, where the 
extreme cancer-like cell types are kept in check by their 
more normal neighbors. However, when sufficient can-
cer-like cells cluster together, their mutual interactions 
promote cell division and suppress cell death, allowing 
them to outcompete their neighbors for the available 
space and begin to dominate the tissue. These observa-
tions also align with parallels between dormancy, the 
Allee effect and growth lag in ecological and cancer com-
munities [71]. 

Analysis of the spatial heterogeneity of tumor environ-
ments has further highlighted parallels between ecologi-
cal landscapes and tumors. The tumor environment not 

only contains a high diversity in the profile of its native 
tissue cells, but also diversity in the cells of the sur-
rounding stroma, specific immune cells associated with 
the tumor and the overall architecture and organization 
of these cell types within a fibrous extracellular matrix 
[72]. Based on these large-scale tumor observations, a 
few parametric and non-parametric measures of spatial 
heterogeneity have been proposed to provide diagnostic 
and prognostic insights about the tumor [73–75]. These 
measures have shown success, especially when applied to 
advanced tumors, but not as much when predicting the 
likelihood of benign neoplasms turning carcinogenic, or 
low-grade tumors. The question of why and when benign 
neoplasms, which are much more common across all 
forms of life, including mammals, progress to aggressive 
cancers that grow, and spread is an important question 
in oncology [76]. The transition from a homogeneous to 
a heterogeneous population (which is inevitable in most 
biological systems), and a transition from a mixed to a 
segregated population with regions of low heterogeneity 
(which is most likely the rate limiting step), as shown by 
our results, might hold the key to answering this ques-
tion. The patchiness index used here may also help draw 
better parallels between cancer and ecological systems 
with high number of neoplasms but no catastrophic 
events that unbalance the ecosystem.

We have restricted our study to the heterogeneity in 
the cell mechanotype defined by cell stiffness, since this 
is one of the key mechanical properties known to dis-
tinguish cancerous vs. normal cell populations and can 
also help grade cancer cell populations based on their 
aggressiveness [19, 20, 77, 78]. Additionally, there are 
tools being developed that can measure and map cel-
lular mechanical stiffness in situ within tissue samples 
[79, 80]. However, other cellular mechanical properties 
such as cell adhesion strength, cell contractility and cell 
nuclear deformability also show similar heterogeneity 
levels within tissue and tumor cell populations [81–83]. 
Both cell adhesion strength and cell contractility have 
similar effects to that of cell stiffness on cell organiza-
tion, shape, and size within vertex-based cell-cell inter-
action models [84], and we believe will lead to similar 
observations as those presented. There are few mod-
els currently incorporating cell nuclear stiffness when 
considering cell-cell interactions and tissue dynamics, 
and this is something that needs to be worked on in the 
future. Lastly, these mechanical differences between cells 
arise from biochemical differences, likely driven by differ-
ences in gene expression profiles within a cell population. 
Thus, cell phenotypic differences may directly correlate 
to cell mechanotype differences, and the analysis of tis-
sue patchiness may be extended to any spatial character-
ization of cells within a tissue environment. Indeed, with 
invention of accurate single cell gene expression analysis 
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and tracking tools, as well as large scale spatial pheno-
typical and mechanical profiling of cells in-situ [85, 86], 
it might be possible to experimentally characterize tis-
sues based on their patchiness in both mechanical and 
biochemical properties. Based on the results presented 
here, we propose that tissue patchiness can provide key 
diagnostic and prognostic insights for malignant growth 
in health tissues and benign tumors.

Heterogeneity is a norm in biology and cannot be done 
away with. This is true across scales and species. On the 
other hand, limiting population de-mixing and cluster-
ing into local niches may be a potential strategy that can 
be employed to avoid tipping of the scales and allowing 
one sub-species to dominate. Patchiness may be avoided 
by limiting factors that promote proliferation of only 
certain sub-populations, or factors that limit the mobil-
ity of cells within certain regions of the tissue. Biological 
events and biochemical or biomechanical factors that 
potentially increase or decrease patchiness within nor-
mal tissues or tumors, and their relation to actual tumor 
growth and malignancy needs to be further investigated 
and discussed. However, we strongly believe that the 
idea of patchiness might be just as applicable to cancer 
ecology as it is to environmental ecology and population 
dynamics.

Conclusion
Here we present a model that focuses on cell interac-
tions and mechanoreciprocity as drivers of tissue dynam-
ics. We use this model to understand how global and 
local heterogeneity in cellular mechanics across a dense 
population of cells may lead to an incidence of malignant 
tumor growth defined by an increase in the population 
of cancer-like soft cells and decrease in the population of 
normal, stiff cells. Based on our results, we find that tis-
sue patchiness as defined by the ratio of global to local 
heterogeneity may be an excellent metric to predict 
malignant transformation in healthy tissues or benign 
tumors. While limited by the purely theoretical nature of 
this study and a sole focus on cell mechanics, the poten-
tial for such a metric is extremely appealing for early 
diagnosis and intervention in cancer patients as well as 
prognosis in patients with benign tumors. Addition-
ally, the model is not only limited to studying the effects 
of cellular mechanical properties on tumorigenesis in a 
healthy tissue, but it can also serve in studying a broader 
scope of tissue mechanics in processes like wound heal-
ing and aging. Our model also provides a versatile plat-
form that can be built upon, with the ability to study the 
effects other mechanical properties that have been linked 
to cancerous behavior or potential interventional strate-
gies focused on manipulating the ecological landscape of 
tissues and tumors.
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