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Abstract 

Background This study explores the age, growth, and energy storage of Triplophysa rosa, a troglobitic cavefish. 
A total of 102 wild T. rosa specimens were collected in Wulong County, Chongqing, China, between 2018 and 2022, 
with otoliths used for age determination.

Results The earliest mature individuals were determined to be 4.8 years old, while the maximum ages for females 
and males were estimated at 15.8 years and 12.2 years, respectively. The length (L, cm)-weight (W, g) relationship 
was found to be the same for both sexes, following the eq. W = 0.0046 L3.03. Von Bertalanffy growth models were 
applied to the total length-at-age data, resulting in an asymptotic length of 23.4 cm and a K-parameter of 0.060  year−1. 
The body content of protein, ash, and glycogen did not show a significant correlation with the total length of T. rosa. 
However, both lipid and energy content exhibited a significant increase with total length. The lipid content ranged 
from 40.5 to 167.1 mg  g−1, while the energy content ranged from 4.50 to 11.39 kJ  g−1, indicating high storage features 
of T. rosa.

Conclusions The results affirm that T. rosa exhibits life traits conducive to its population dynamics in cave conditions, 
characterized by slow growth, small size, and high lipid energy storage.
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Introduction
Cavefish, which inhabit subterranean river environments, 
encompass three distinct types: troglobites, which are 
exclusive to subterranean habitats; troglophiles, capa-
ble of residing in either hypogean or epigean habitats 

throughout their entire lifespan; and trogloxenes, which 
spend only a part of their life cycle in the subterra-
nean habitat [1]. Among these types, troglobites exhibit 
remarkable adaptations to subterranean life, character-
ized by specialized traits such as degenerated eyes and 
reduced surface pigmentation, making them particularly 
intriguing subjects for the study of evolution in extreme 
environments with limited resources and absence of light 
[1–3]. Extensive research has delved into various aspects 
including population ecology, genetics, development, 
physiology, behavior, and evolution of troglobitic cavefish 
[1, 2, 4–13].
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Age and growth represent critical components of the 
life history of fish, influencing species’ energy acquisition 
and allocation strategies while being intricately linked to 
selective pressure and environmental adaptation [14–17]. 
Environmental variables, particularly food availability, 
play a pivotal role in energy intake and allocation among 
essential processes such as maintenance, growth, stor-
age, and reproduction, ultimately shaping species’ fit-
ness [18–22]. It is well-documented that fish exhibit slow 
growth in environments with limited food resources 
and tend to allocate a significant portion of their energy 
to body fat storage [23]. Moreover, predation pressure, 
in addition to food sources, influences the growth pat-
terns of animals [24, 25]. Higher predation pressure often 
leads to accelerated growth rates of fish as larger body 
sizes serve to minimize the risk of predation [26–29]. 
Therefore, the absence of primary producers and preda-
tors in cave aquatic habitats imposes restrictions on food 
resources and predation pressure, culminating in the 
assumption that troglobitic cavefish display slow growth 
rates and significant body lipid and energy storage [10, 
30]. Notably, the traits of slow growth and small size have 
been observed in several species of troglobitic cavefish, 
including Typhlichthys subterraneus, Amblyopsis spelaea, 
Amblyopsis rosae, Astyanax mexicanus, and Ituglanis 
passensis [11, 31, 32].

The karst habitats of Southwest China harbor a sub-
stantial diversity of cavefish, with 148 identified species 
found in this region across four families (Cyprinidae, 
Cobitidae, Nemacheilidae, and Amblycipitidae), includ-
ing 78 troglomorphic species [33]. Among these, Triplo-
physa rosa stands out as a troglobitic cavefish exclusively 
inhabiting the groundwater accessible from Mengchong-
tang Cave in Huolu Town, Wulong County, Chongqing, 
China [34, 35]. T. rosa is an omnivorous species known 
to feed on Caridina serratirostris and a variety of plants 
[36], and it boasts troglomorphic and cave-specialized 
physiological characteristics, including a colorless body, 
degraded eyes, and notably low metabolic rate [34–38]. 
Recent research has further unveiled its low rate of 
molecular evolution, relaxed purifying selection, and lack 
of a behavioral stress response [12, 13]. However, despite 
the significance of understanding how natural selec-
tion and evolutionary forces shape organisms to adapt 

to environmental challenges [39, 40], investigations into 
fitness-related life history traits in this species have been 
lacking. To glean insights into the life-history strategies 
of cavefish, this study undertook an examination of the 
age, growth, and body energy storage of T. rosa. Data 
regarding the body length and age of T. rosa were lever-
aged to estimate the traditional von Bertalanffy growth 
function (VBGF) [41], offering a comparative analysis 
with various species of epigean fish.

Results
Length‑weight relationship and isometric growth
A total of 102 wild T. rosa specimens were collected in 
Wulong County, Chongqing, China, exhibiting a wide 
range in total length (3.9 to 14.3 cm) and body weight 
(0.15 to 13.12 g) (Fig. 1). The earliest maturing individual 
was observed to be 4.8 years old, thus individuals below 
this age were categorized as juveniles for modeling pur-
poses. Among the samples, 32 were identified as females 
(aged 4.8 to 15.8 years, body weight range: 1.25 to 13.12 g, 
total length range: 6.7 to 14.3 cm), 33 were males (aged 
4.8 to 12.2 years, body weight range: 0.60 to 7.31 g, total 
length range: 5.2 to 12.0 cm), and 37 were juveniles 
(aged 3.3–5.5 years, body weight range: 0.15 to 1.28 g, 
total length range: 3.9 to 6.1 cm). The analysis revealed 
no significant difference in the length-weight relation-
ship between females and males (intercept: t = 0.284, 
P = 0.778; slope: t = 0.081, P = 0.936). Consequently, a 
unified length-weight relationship was established for all 
samples of T. rosa: W = 0.0046 L3.03 (R2 = 0.945, P < 0.001), 
with the exponent not differing significantly from 3 
(t = 0.397, P = 0.692) (Fig. 2).

Precision of age estimation using otoliths
The study found a significant correlation between oto-
liths and vertebrae measurements in T. rosa (verte-
brae = otoliths-0.035, R2 = 0.953, P < 0.001) (Fig.  3). 
Notably, for older individuals, otoliths exhibited superior 
between-reading precision for age estimation compared 
to vertebrae. In the case of the oldest individual, only the 
otolith reading provided clear data. Otoliths displayed 
ACV (Average Coefficient of Variation) values of 5.19% 
and APE (Average Percent Error) values of 3.89%, both 
lower than those of vertebrae (ACV: 6.4%; APE: 4.8%). 

Fig. 1 The photo of an individual of Triplophysa rosa 
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Consequently, the age readings derived from the otoliths 
were utilized to model the growth function of T. rosa.

Slow growth and small body size are shared traits 
of Triplophysa
Among the five data series, only the overall data and the 
data combined by juveniles and females yielded statisti-
cally significant growth parameters for VBGF modeling 

(Table  1, Fig.  4), exhibiting comparable values of both 
L∞ and K. To facilitate comparison with other fish spe-
cies, the growth parameters of VBGF modeled using the 
total data were adopted (Table 2, Fig. 5). The estimates of 
L∞ (23.4 cm), K (0.060  year−1), and Φ’ (1.52) for T. rosa 
fell within the range observed in other species of Triplo-
physa (K: 0.060–0.26; L∞: 9.8–24.7; Φ’: 1.40–1.68). More-
over, the values of K (t = 3.768, P = 0.006), L∞ (t = 5.230, 
P = 0.001), and Φ’ (t = 23.8, P < 0.001) for all Triplophysa 
were notably smaller than those of other fish species. 
Further analysis revealed a negative correlation between 
the L∞ value and K value across the six species of Triplo-
physa, as evidenced by the equation  log10 K = − 1.64*log10 
L∞ + 1.09 (R2 = 0.91, P = 0.003). Controlling for phy-
logenetic effects via phylogenetic generalized linear 
models (PGLS) yielded a very similar correlation: log 
K = − 1.63*log10 L∞ + 1.07 (R2 = 0.91, P = 0.013).

High lipid and energy content of T. rosa
A consistent but moderate decline was observed in the 
contents of protein, ash, and glycogen with increasing 
total length (Fig.  6). However, no significant relation-
ship was identified between these variables and body 
length. In contrast, the lipid content ranged from 40.5 
to 167.1 mg  g−1 and exhibited a significant increase 
with the total length of T. rosa, characterized by a slope 
of 11.3 (R2 = 0.453, P < 0.001), which differed signifi-
cantly from the slopes of protein (t = − 8.461, P < 0.001), 
ash (t = − 10.070, P < 0.001), and glycogen (t = − 15.567, 
P < 0.001). Meanwhile, the energy content ranged from 
4.50 to 11.39 kJ  g−1 and displayed a positive correlation 
with the total length, characterized by a slope of 0.397 
(R2 = 0.341, P < 0.001) (Fig. 7).

Discussion
Our findings demonstrate that the troglobitic fish T. rosa 
exhibits slow growth compared to the majority of epigean 
fish. Previous studies have suggested that the slow growth 
of troglobitic cavefish is likely attributed to the scar-
city of food resources in the cave environment [48, 49]. 

Fig. 2 The length and weight relationships of Triplophysa rosa 

Fig. 3 The correlation of age reads from otoliths and vertebrae 
of Triplophysa rosa 

Table 1 The von Bertalanffy growth parameters of Triplophysa rosa 

Parameters include asymptotic length (L∞, cm), growth rate (K,  year−1), and the theoretical age at a length of zero (t0, year)

Data L∞ K t0

Mean±SE t P Mean±SE t P Mean±SE t P

Total 23.4±6.5 3.604 <0.001 0.060±0.026 2.313 0.023 0.12±0.60 0.196 0.845

female 102.17±754.1 0.135 0.893 0.008±0.065 0.122 0.904 -3.90±5.54 -0.704 0.487

male 271.7±433.9 0.051 0.960 0.003±0.061 0.50 0.961 -2.31±3.19 -0.725 0.474

female&juvenile 21.1±4.99 4.235 <0.001 0.077±0.030 2.533 0.014 0.60±0.54 1.096 0.277

male&juvenile 55.1±86.9 0.634 0.528 0.018±0.033 0.546 0.587 -1.16±1.02 -1.142 0.258
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Additionally, the absence of predators in cave environ-
ments diminishes the advantage of fast growth [25, 50, 
51]. Interspecific analyses have indicated a positive cor-
relation between growth performance and the metabolic 
rate of fish [47, 52]. Consistent with the characteristics of 
troglobites, T. rosa displays a notably low metabolic rate 
(38.3 mg  O2  kg−1  h−1 at 15 °C) compared to the majority 
of epigean fish species [38].

The evolution of life history traits is influenced by envi-
ronmental conditions [47, 52]. The slow growth of T. 
rosa may be a consequence of cave habitat selection or 
a contributing factor to its successful adaptation to the 
cave environment. When comparing the growth rate, 
asymptotic length, and growth performance index of T. 
rosa with the five reported Triplophysa species (all epi-
gean fish, Table 2), we found that the measures of T. rosa 
fell within the range of those closely related epigean fish 
[42–46]. Furthermore, compared to 734 species from 
FishBase (July 2022), Triplophysa species exhibit lower 
growth rates, asymptotic lengths, and growth perfor-
mance indices, as indicated in an auximetric plot [15, 53] 
(Fig.  5). This suggests that, rather than being unique to 
the troglobitic cavefish T. rosa, slow growth and small 
body size are shared traits among all studied Triplophysa. 

Fig. 4 The von Bertalanffy growth curves of Triplophysa rosa 

Table 2 The von Bertalanffy growth parameters comparison among species of Triplophysa 

Parameters include asymptotic length (L∞, cm), growth rate (K,  year−1), the theoretical age at a length of zero (t0, year), growth performance index (Φ’), the 
temperature and altitude of the species’ habits

Species Habitat type L∞
(cm)

K
(year‑1)

t0
(year)

Φ’ Temperature
(oC)

Altitude
(m)

References

T. rosa troglobitic fish 23.4 0.060 0.12 1.52 15 350 The present study

T. anterodorsalis epigean fish 9.8 0.26 -2.09 1.40 17 1600 Wang & Liang 2017 [42]

T. markehenensis epigean fish 17.3 0.16 -0.53 1.68 4 3600 Zhang et al. 2010 [43]

T. stenura epigean fish 24.7 0.06 0.17 1.56 3 4200 Deng et al. 2010 [44]

T. orientalis epigean fish 15.2 0.13 0.02 1.49 7 3500 Li et al. 2016 [45]

T. stewarti epigean fish 13.9 0.17 2.10 1.51 4 4600 Tian et al. 2022 [46]

Fig. 5 Auximetric plot comparing the von Bertalanffy growth 
parameters among fishes

Species other than Triplophysa were extracted from FishBase (July 
2022), and the von Bertalanffy growth parameters of Triplophysa other 
than Triplophysa rosa were quoted from the literature [42–45, 47]. 
Every parameter was transformed by a log10 factor. Triplophysa fish 
are shown by colored circles, whereas other species are represented 
by gray circles. On the link between k and L∞, both linear models 
(dashed line) and phylogenetic generalized linear models (solid line) 
were used. The gray lines show relationships among other species, 
while the red lines show relationships among Triplophysa species. 
The green lines connect the Φ’ values, the direct indication of growth 
performance

Fig. 6 Variations in the body compositions with total length 
of Triplophysa rosa 
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These traits of slow growth and small body size may rep-
resent a form of preadaptation to the cave habitat [1], 
enabling many Triplophysa, species, including T. rosa, 
to thrive in cave environments with minimal structural 
change [54, 55].

As indicated by prior research, the origin and evolution 
of the Triplophysa genus are closely tied to the Tibetan 
Plateau uplift, with only an 18-million-year since the 
divergence of the epigean river-dwelling lineage and the 
karst cave lineage [56–59]. Recent comparative genomic 
studies have revealed that the troglobitic cavefish T. 
rosa and the epigean fish T. tibetana diverged 25.5 mil-
lion years ago [12], suggesting that T. rosa may not have 
specifically evolved for cave adaptation. Instead, its abil-
ity to thrive in cave conditions is likely a result of its pre-
existing life history traits, such as slow growth and small 
body size. Similarly, preadaptation to cave environments 
has been proposed in other fishes, such as the scotophilic 
behaviors observed in surface-living populations of Asty-
anax mexicanus and the cave-dwelling capabilities of epi-
gean-eyed species in the Sinocyclocheilus genus [60, 61].

The youngest mature individuals of the troglobitic 
cavefish T. rosa were found to be 4.8 years old, signifi-
cantly older than the reported maturity ages of epigean 
fish species, such as T. bleekeri, T. yarkandensis, T. stolic-
zkae, and T. stewarti, which typically mature at 1–2 years 
old [46, 62–64]. This suggests that T. rosa is a late-
maturing Triplophysa species. The protracted generation 
period resulting from late maturity leads to a low muta-
tion rate, consequently contributing to a slower evolution 
rate [65–67]. It has been suggested that T. rosa’s genome 
exhibits slower molecular evolution and lower mutation 
rates compared to closely related epigean fish species 
[12].

The exponent values of the length-weight relationships 
of T. rosa (3.03) indicate isometric growth, signifying 

that fish grow at a consistent rate in terms of their bone 
and muscle weights [68]. Both the ash content and the 
protein content of T. rosa demonstrated a concurrent 
pattern with increasing body size. However, the energy 
contents of T. rosa increased with total length (Fig.  7), 
attributed to the increased lipid content, suggesting an 
increase in energy storage as the body grows. The highest 
measured lipid content in T. rosa was 167.1 mg  g−1, sur-
passing the range used to classify high-lipid fish, which 
typically ranges from 85 mg  g−1 to 153 mg  g−1 [69]. Vari-
ations in lipid concentration with growth may reflect 
the energy trade-off between growth and storage during 
the life history of fish [27–29]. In instances of limited 
food resources, animals cannot simultaneously meet the 
energy requirements for growth and storage, leading to 
a trade-off [17, 40]. To overcome the scarcity of environ-
mental food resources, troglobitic cavefish must maxi-
mize energy storage. The findings suggest that high lipid 
and energy content may be a specialization of T. rosa for 
cave settings. According to a recent study, genes involved 
in lipid metabolism in T. rosa underwent relaxed puri-
fying selection [12]. Research on other troglobitic cave-
fish has also observed lipid deposition-related features, 
such as increased visceral adipose tissue, larger visceral 
adipocytes, and high expression of lipogenesis genes in 
cave-dwelling Astyanax mexicanus [70–72], as well as 
the distinctive humpback shape for energy storage in 
Sinocyclocheilus troglobitic cavefishes [73]. This indicates 
that lipid deposition may be a common characteristic of 
troglobitic cavefish.

Conclusions
Our study highlights the slow growth, small size, and 
high lipid energy storage exhibited by T. rosa. These 
traits could be preadaptation that existed before the spe-
cies colonization of caves, rather than adaptations devel-
oped after entering this environment. This insight into 
the evolutionary traits of cave-dwelling species not only 
advances our understanding of their unique characteris-
tics but also has implications for the study of adaptation 
and speciation in diverse ecological niches.

Methods
Sample collection and age identification
This study focused on T. rosa specimens found exclu-
sively in the subterranean waters of Mengchongtang 
Cave [34, 35], located at coordinates N 29.397489, E 
107.915402, Alt 235.2 m in Huolu Town, Wulong County, 
Chongqing. The cave is situated in a region experiencing 
a subtropical monsoon climate, characterized by an aver-
age annual temperature ranging between 14 and 24 °C 
and a vegetation coverage of over 65%. Comprised of car-
bonate rocks, the cave is situated in the well-developed 

Fig. 7 Variations in energy content with total length of Triplophysa 
rosa 
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karst zone of Southwest China [74]. While the geological 
and hydrological characteristics within the cave remain 
poorly understood, only two fish species, T. rosa, and a 
newly recorded species, T. wulongensis, have been identi-
fied within its confines [75].

The collection of fish specimens occurred biannu-
ally in May and October from 2020 to 2021, coinciding 
with the periods when T. rosa is known to be accessible 
in the cave’s water. The total sample size comprised 102 
individuals, with 15 collected in May and 31 in October 
of 2020, and 49 in May and 7 in October of 2021. All 
procedures related to the collection and handling of fish 
samples were conducted following the guidelines and 
regulations stipulated by the Institutional Animal Care 
and Use Committee of Southwest University, Chongqing, 
China (IACUC-20210119-01) and the local fisheries 
management authorities. Following their collection, the 
living fish were transported by vehicle to the fish labora-
tory at Southwest University, situated 245 km from the 
collection site. Subsequently, the fish was anesthetized 
using MS-222 (0.15 g  L−1) for approximately 5 minutes. 
The total length was measured using a caliper at 0.1 cm 
precision, and body weight was 0.01 g using an elec-
tronic scale, respectively, prior to their dissection. The 
gonads were utilized to distinguish between females, 
males, and juveniles, and for each specimen, three por-
tions of the posterior vertebrae and two lapillus otoliths 
were retrieved. These otoliths and vertebrae were care-
fully cleaned, placed into centrifuge tubes, and stored at 
− 20 °C. The entire body of the fish was packed in plastic 
bags and frozen for subsequent analysis of its raw chemi-
cal components. To ensure the accurate age determina-
tion, both the vertebrae and lapillus otoliths of T. rosa 
were utilized. A pair of opaque/hyaline bands, which 
form annually and are described by Marriott et  al. [76], 
was used to determine the age of each fish.

On the micro slide, the lapillus otolith sample was 
embedded in neutral resin and then polished using high 
mesh sandpaper (3000–10,000 mesh) until the otolith 
primordium became visible. Subsequently, xylene was 
employed to render the otolith sample translucent, and 
images were captured using a microscope (EV5680B, 
Aigo Digital Technology CO., Ltd., Beijing, China), while 
adjustments to the transmitted and reflected light were 
made to enhance the visibility of the annual ring.

The vertebrae sample underwent treatment with 1% 
NaOH solution in a boiling water bath to remove any 
connected muscle fibers and other materials. Follow-
ing this, the vertebrae sample was immersed in etha-
nol to remove any residual grease. Each vertebra was 
then carefully cut longitudinally and placed vertically 
on the microslide. The longitudinal section was meticu-
lously polished with 3000 mesh sandpaper to reveal the 

birthmark and edge rings [77]. Subsequently, annual 
rings were observed under a microscope after the appli-
cation of a few drops of xylene.

The annual rings of otoliths (tot, year) and vertebrae (tve, 
year) were independently counted three times by a sin-
gle observer, with readings conducted once monthly. In 
instances where variations in age counts arose from the 
three repeats, the samples were re-evaluated to establish 
a consensus final age. The average ACV and APE were 
used to assess the accuracy of the age readings for the 
vertebrae and otoliths [78].

Growth modeling
The relationship between the total length (L, cm) and 
body weight (W, g) of T. rosa was expressed by the equa-
tion [79]: W = aLb, where a is a coefficient and b is an 
exponent. These parameters were estimated using the 
least square method applied to plots of log (L) versus log 
(W). The growth pattern of T. rosa was assessed using the 
classical VBGF [41]:

where L denotes the total length (cm), L∞ stands for the 
asymptotic length (cm), K represents the rate at which 
L∞ is approached  (year−1) and is commonly known as 
the growth rate, t is the age (year), and t0 signifies the 
theoretical age at a length of zero (year). In line with the 
approach of Pauly and Munro [80], an auximetric plot 
was used to compare the VBGF parameters L∞ and K 
using the index of growth performance Φ’, defined as:

To contextualize the VBGF parameters of T. rosa, data 
from 734 fish species were retrieved from FishBase in 
July 2022 [81], supplemented with information from five 
closely related epigean fish species of the genus Triplo-
physa obtained from published works [42–46].

Body crude chemical composition
To determine the dry weight (g) and water weight (g), 
the stomach contents were removed and the fish body 
was dried to a consistent weight at 70 °C in an electro-
thermostatic blast oven (DHG-9070A, Qixin, Shanghai). 
Subsequently, the dried fish sample was pulverized into 
a powder, and the protein content (mg  g−1) was analyzed 
using the Kjeldahl technique. The lipid content (mg  g−1) 
was determined using the Soxhlet extraction method 
with ether as the extraction solvent, while the glycogen 
content (mg  g−1) was determined using the anthrone 
technique. Additionally, the ash content (mg  g−1) was 
measured through muffle furnace incineration at 550 °C 
for 7 hours. The energy content (E, kJ  g−1) was calculated 

L = L∞ 1− e
−K (t−t0)

Φ ′
= logK + 2 log L∞
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using the values of 23.6 kJ  g−1 for protein, 39.5 kJ  g−1 for 
fat, and 17.2 kJ  g−1 for glycogen [82, 83]. To ensure suffi-
cient sample size for chemical analysis, small individuals 
of comparable size (body length difference within 2 mm) 
were pooled and the mean values of body length, body 
mass, and chemical composition within each pool consti-
tuted a single sample.

Statistical methods
Experimental data were analyzed using Excel 2010 
(Microsoft Corporate, Redmond, WA, USA) and 
R. The values of total length and body weight were 
 log10-transformed to analyze their correlation by fitting 
linear models. The sexual difference of the regression 
slopes was tested using sex as a covariate, and a t-test 
was used to compare the exponent of the length-weight 
relationship with 3, the slope of an isometric growth 
function. Additionally, the correlation between otolith 
readings and vertebra readings was analyzed through fit-
ting linear models. The VBGF was fitted using nonlinear 
least squares with five series of data, including the data 
of all fish, the sex-specific data of females and males, and 
the mixed data of juveniles and females as well as juve-
niles and males. The interspecific relationship between 
the growth coefficient (K) and the asymptotic length (L∞) 
was analyzed using PGLS in the “caper” package, with 
log-transformed K and L∞ before analysis. The fish phy-
logeny was obtained from the “fishtree” package [84], and 
the branch length transformations were optimized using 
the maximum likelihood method [85]. The relationships 
between body composition and total length were fitted 
by linear models. Data were plotted using the ggplot2 
package [86]. Differences were considered significant 
when the P value was less than 0.05.
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