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Abstract 

Background:  Contemporary species distribution, genetic diversity and evolutionary history in many taxa are shaped 
by both historical and current climate as well as topography. The Himalayas show a huge variation in topography and 
climatic conditions across its entire range, and have experienced major climatic fluctuations in the past. However, 
very little is known regarding how this heterogenous landscape has moulded the distribution of Himalayan fauna. A 
recent study examined the effect of these historical events on the genetic diversity of the Himalayan langurs in Nepal 
Himalaya. However, this study did not include the samples from the Indian Himalayan region (IHR). Therefore, here 
we revisit the questions addressed in the previous study with a near complete sampling from the IHR, along with the 
samples from the Nepal Himalaya. We used the mitochondrial Cytochrome-b (Cyt-b, 746 bp) region combined with 
multiple phylogeographic analyses and palaeodistribution modelling.

Results:  Our dataset contained 144 sequences from the IHR as well as the Nepal Himalaya. Phylogenetic analysis 
showed a low divergent western clade nested within high divergent group of eastern lineages and in the network 
analysis we identified 22 haplotypes over the entire distribution range of the Himalayan langurs. Samples from the 
Nepal Himalaya showed geographically structured haplotypes corresponding to different river barriers, whereas 
samples from IHR showed star-like topology with no structure. Our statistical phylogeography analysis using diyABC 
supported the model of east to west colonisation of these langurs with founder event during colonisation. Analysis 
of demographic history showed that the effective population size of the Himalayan langurs decreased at the onset 
of last glacial maximum (LGM) and started increasing post LGM. The palaeodistribution modelling showed that the 
extent of suitable habitat shifted from low elevation central Nepal, and adjoining parts of north India, during LGM to 
the western Himalaya at present.

Conclusion:  The current genetic diversity and distribution of Himalayan langurs in the Nepal Himalaya has been 
shaped by river barriers, whereas the rivers in the IHR had relatively less time to act as a strong genetic barrier after the 
recent colonisation event. Further, the post LGM expansion could have had confounding effect on Himalayan langur 
population structure in both Nepal Himalaya and IHR.
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Background
Accumulation of genetic variation across different pop-
ulations of a species could be attributed to changes in 
geography and climate via a combined effect of genetic 
drift, gene flow and selection [1–3]. Geographical barri-
ers such as mountain ranges and rivers; environmental 
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barriers; and certain behavioural aspects of the taxa such 
as philopatry, dispersal ability, etc. can prevent gene flow, 
and over time create population genetic structures [4, 5].

Rivers are considered as long-term barriers to gene 
flow and therefore plays an important role in speciation 
and divergence [6–8]. Wallace [9] noted that many south 
American primate species are separated by large rivers in 
the Amazon basin, and that different species of primates 
are restricted to opposite banks of the river and never 
cross it. The ability of a river to act as a barrier depends 
on various physical attributes of the river such as the size, 
the amount of discharge and speed of the water flow; 
further the dispersal ability, ecology and body size of the 
organism also plays an important role [10, 11]. The effects 
of rivers as barriers have been studied in many taxa of 
plants, amphibians, reptiles, mammals and birds [12–21]. 
In primates, these studies of riverine barrier effect have 
mostly been confined to Amazonian and African taxa [4, 
10, 11, 22–24], with only a handful of studies in Asian 
primates [25–29]. Apart from the geographical barriers, 
Climatic fluctuations are also known to have an impact 
on the population genetic structure and demography 
[30–33]. Quaternary glaciation periods, such as the last 
glacial maximum (LGM), substantially influenced how 
genetic variation is spatially distributed in many species 
across the globe [31, 34]. Repeated periods of glaciation, 
especially in higher latitudes, resulted in range expan-
sion—in the case of species adapted to cold climate; and 
range contraction—in the species adapted to warm cli-
mate [31, 34–45]. In the latter case, species may undergo 
range expansion and exponential population growth after 
the end of the glacial period [46, 47].

The Himalayan range is a globally recognised biodi-
versity hotspot with high levels of endemism and a com-
plex geography, topography and climate [48]. It extends 
2500 kms in length from west to east and its width varies 
between 350 km in the west and 150 km in the east [49]. 
Given these, there are very few studies testing the effect 
of such a complex topography and climatic fluctuations 
on the distribution and demography of species found in 
the Himalayas [28, 29, 50, 51]. Himalayan langur, (Pri-
mate: Colobinae) is a widely distributed alloprimate 
found in most parts of the Himalayas. It is distributed in 
Nepal and parts of India, Pakistan and Bhutan [52], the 
Black mountain range and the Sunkosh river in Bhutan 
forms the easternmost distribution limit for this species 
[53]. Until recently, there was much ambiguity in the tax-
onomy of these langurs owing to presence of multiple 
classification schemes, however IUCN recognised three 
species—Semnopithecus ajax, Semnopithecus schista-
ceus and Semnopithecus hector, as per the classification 
scheme proposed by Groves [54]. Nevertheless, there 
was no consensus within the scientific community on 

the use of any one classification scheme and the names 
proposed by all the schemes were considered to be valid 
and were used by different studies [28, 55–60]. This use 
of different taxonomic names for the same species can 
create serious issues while interpreting results from 
these studies, therefore, it was important to resolve the 
taxonomy of this group. In this context, a recent system-
atic study resolved the taxonomy of these langurs using 
an integrative approach based on three lines of evidence 
from molecular, morphological and ecological data. The 
authors have now subsumed the three recognised species 
into a single widespread species Semnopithecus schista-
ceus Hodgson, 1840 [52].

Another study investigated the role of Himalayan riv-
ers as well as past climate in shaping the distribution of 
Himalayan langur in Nepal Himalaya [28]. They found 
that Himalayan langur populations (they used the name 
S. entellus in their paper) in the Nepal Himalayas were 
isolated into six major clades by the snow-fed Himala-
yan rivers suggesting the role of these rivers as a barrier 
to gene flow. Further, their demographic analysis showed 
that the Himalayan langur populations in Nepal started 
declining with the onset of the last glacial maximum 
(LGM) i.e., ~ 22,000 years before present (YBP). For their 
study, they used two mitochondrial genes—Cytochrome 
b (Cyt b) and hyper variable region (HVR) I. However, 
this study did not include any samples from the Indian 
Himalayan region (IHR) which constitutes a major part 
of the Himalayan langur distribution zone.

In this study, we revisit the questions addressed by Kha-
nal et  al. [28] with near complete sampling from India. 
Along with the samples from the Nepal Himalaya [28], 
we have expanded the sampling into the Indian Hima-
layan region and included three river valleys from this 
region—Sutlej river valley, Bhagirathi river valley, and 
Mahakali/Sharda (hereafter Mahakali) river valley. Given 
this extensive sampling, covering the entire distribu-
tion range of the Himalayan langur in this study, we first 
investigate the role of major Himalayan rivers in shaping 
the population structure of Himalayan langurs. For this, 
we have included all the river valleys studied by Khanal 
et al. [28] (except the river Trishuli since it did not act as 
barrier for gene flow as per [28]) along with three river 
valleys from the IHR west of Nepal. Additionally, given 
the wider sampling of Himalayan langurs in this study we 
revisit the role of past climate, specifically the last glacial 
maximum (LGM), in shaping the contemporary distribu-
tion of the Himalayan langur. Finally, we investigate the 
purported westward expansion of the Himalayan langur 
from Nepal and Sikkim. In the molecular phylogenetic 
tree of Arekar et  al. [52], a low divergent western clade 
was nested within high divergent eastern lineages sug-
gesting a potentially east to west dispersal. Therefore, we 
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considered the western clade as one population namely 
the western metapopulation (WMP) and the high diver-
gent eastern lineages as another population i.e., the 
eastern metapopulation (EMP). To test the east to west 
dispersal hypothesis, we used a model-based hypoth-
esis testing in a Bayesian framework using Approximate 
Bayesian computation (ABC) analysis implemented in 
DIY ABC v2.1.0 [61].

Results
Phylogenetic analysis
The final dataset contained 746 bp of 145 Himalayan lan-
gur sequences, out of these 51 were sequenced in this 
study; 25 sequences were downloaded from Arekar et al. 
[52]; 67 sequences from Khanal et  al. [28]; 1 sequence 
from Karanth et al. [62] and one S. entellus sequence was 
used as an outgroup (Additional file 4: Table S1) [28, 52, 
62]. HKY + G substitution model was selected for this 
analysis. In both the Bayesian (Fig. 1) and ML tree (Addi-
tional file 1: Fig. S1), we found a well-supported clade—
the western clade, consisting of haplotypes from the 
western Himalayas (west of the river KaliGandaki), which 
was nested within samples from eastern Himalayas (east 
of the river KaliGandaki) i.e., the eastern lineages. Both 
the trees showed similar topology wherein all the major 
clades were retrieved. The only exception was in the 
Bayesian tree (Fig.  1), the MH271128 and MH271129 
sequences were placed within the clade containing sam-
ples from the Indian Himalayan region (IHR), whereas in 
the ML tree (Additional file  1), these two lineages were 
sister to the IHR clade. The position of the MH271121 
clade was also different in the Bayesian and ML trees. 
Our divergence dating analysis showed that the western 
clade (i.e. WMP) diverged from the eastern lineages (i.e. 
EMP) at around 0.52 mya (CI 0.28–0.78). Further, the 
population in IHR diverged from the rest of the Himala-
yan langurs at 0.29 mya (CI 0.16–0.44) (Additional file 2).

Phylogeographic analyses
For these analyses, we removed the outgroup sequence 
from our dataset and the sequence length was short-
ened to 645 bp due to removal of sites with missing data. 
So, the final dataset for these analyses contained 144 
sequences.

Network analysis, genetic diversity, and population genetic 
structure
The network analysis of 144 sequences yielded 22 hap-
lotypes across the distribution zone of the Himalayan 
langurs (Fig. 2). Two clusters can be observed in the net-
work, one consisting of the WMP (H1–H13) i.e., all the 
sequences from the western Himalayan region (west of 
the river KaliGandaki), and the other consisting of the 

EMP (H14–H22) i.e., all the sequences from the eastern 
Himalayan region (east of the river KaliGandaki). These 
two clusters are spatially delineated by the river Kali Gan-
daki. Within the western population, one high frequency 
haplotype (H7, n = 29) was observed which consisted 
majority of the individuals from the western region. The 
haplotypes H10 and H11 were separated from the rest of 
the samples of the IHR by river Mahakali; (these two hap-
lotypes correspond to the WB clade as labelled in Kha-
nal et  al. [28]). The haplotypes H12 and H13 were also 
seen forming a separate cluster separated from the rest 
by river Karnali, these two haplotypes correspond to the 
clade WA in Khanal et al. Other than these, the samples 
from the IHR showed very little structure across the river 
valleys. On the contrary, the eastern population showed 
highly structured haplotypes separated by the river val-
leys in the Nepal Himalayas as shown in Fig. 3. The river 
Marsyagandi separated the haplotype H18 (which corre-
sponds to clade CC in Khanal et al. [28]) from the hap-
lotypes H19 and H20 (these haplotypes correspond to 
clade CB in Khanal et al. [28]). And the river Budhi Gan-
daki separated the haplotypes H19 and H20 from the 
haplotypes H21 and H22 (these haplotypes correspond 
to clade CA in Khanal et  al. [28]). Further, the rivers 
Arun and Tamor separated the haplotypes H16 and H17, 
respectively. Here the haplotype H16 corresponds to the 
clade EA in Khanal et al. [28]. In this study, the haplotype 
H14 is placed in the population Marsyagandi_Budhi-
Gandaki (My–Bg) based on the geographical proximity 
however, in the haplotype network it can be seen as an 
outlier; and it corresponds to the haplotype H19 in Kha-
nal et al. [28]. This pattern seen in the haplotype network 
analysis is similar to the results from our phylogenetic 
analysis (Fig. 1).

The nucleotide diversity (π) of the My–Bg popula-
tion was highest (0.015), in fact it was equivalent to all 
the populations combined together; the haplotype diver-
sity (H) was also high (0.8) (Table  1). The populations 
to the west and to the east of the My–Bg has low π and 
H values. The genetic diversity data for three popula-
tions; KaliGandaki_Marsyagandi (Kg–My), Arun_Tamor 
(A–T) and EastTamor (E-T) was not obtained due to the 
absence of polymorphic sites in the nucleotide sequences.

The pairwise FST values between populations across 
WMP and EMP were higher than between populations 
within WMP or EMP (Table  2). Further, the FST val-
ues were low among populations that were geographi-
cally closer whereas they were higher in spatially distant 
populations.

Demographic history
Our mismatch distribution analyses for populations 
in the WMP and the EMP, each produced different 
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patterns (Fig. 4). The EMP yielded a multimodal distri-
bution of the observed data (Fig. 4I). Within the EMP, 
the population My–Bg showed a multimodal distribu-
tion (Fig. 4F); all the other population either showed a 
unimodal distribution, or a bimodal distribution closer 
to y-axis.

The test of neutrality to check for excess of rare muta-
tions as evidence for population expansion was not sig-
nificant, except for the population BudhiGandaki_Arun 
(Bg–A) which showed a significantly negative Tajima’s 
D value (− 1.844, p < 0.05) (Table  1). The Bayesian sky-
line plot analysis for the overall dataset showed that the 

Fig. 1  Bayesian phylogeny of Himalayan langur for mitochondrial cytochrome b (Cyt-b) gene. Numbers at the node indicate Bayesian posterior 
probability (BPP) values. Node support values > 0.75 are shown. Node support values are shown only for major clades. The colours for the tip taxa 
correspond to the colours of the 10 populations in the haplotype network in Fig. 2
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Fig. 2  Haplotype network for the Himalayan langurs using Cyt-b sequence. The coloured circles represent extant haplotypes while the black circles 
are inferred intermediate haplotypes not sampled in this study. The sizes of the haplotypes are proportional to their frequency i.e., the number 
of individuals that constitute those haplotypes. The bars on the link between the circles stand for the number of substitutions between those 
haplotypes. The dotted red and green lines indicate the two larger groups—WMP and EMP, respectively

Fig. 3  Diagram showing the 10 populations of Himalayan langurs separated by the nine river valleys; 1—River Sutlej, 2—River Bhagirathi, 3—River 
Mahakali, 4—River Karnali, 5—River KaliGandaki, 6—River Marsyagandi, 7—River BudhiGandaki, 8—River Arun, 9—River Tamor. The colours of these 
populations correspond with the haplotype colours in Fig. 2. The yellow borderline demarcates the country of Nepal, its extent is also shown in the 
map using a square bracket
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effective population size (Ne) of the Himalayan langurs 
decreased during the LGM, and it started increasing 
post LGM ultimately reaching its current population size 
(Fig. 5). The separate Bayesian skyline plots for WMP and 
EMP were not informative.

Statistical phylogeography
For the ABC analysis we tested three scenarios (Fig.  6), 
Scenario 1 hypothesised that WMP originates from EMP 
with no change in the effective population size; Scenario 
2 hypothesised a founder event in WMP; and Scenario 3 

assumed bottleneck in the ancestral population of WMP 
and EMP. Further details are explained in “Methods” sec-
tion. Here, the second scenario was selected as the sce-
nario of choice with highest posterior probabilities in all 
the summary statistics used. In this scenario, we hypoth-
esised a founder event where few individuals from the 
EMP colonised the western Himalayas and the popula-
tion size eventually increased to the current state (Fig. 6, 
scenario 2). Model checking too supported scenario 2, 
since among the three scenarios the simulated dataset 
under scenario 2 were closest to the observed values.

Table 1  DNA polymorphism and genetic diversity of different populations of the Himalayan langurs

Values in bold shows significance at P < 0.05

S polymorphic sites, π nucleotide diversity, H no. of haplotypes, Hd haplotype diversity, n no. of individuals, R2 Ramos-Onsin’s and Rozas’s R2 statistic

Population S π H Hd Tajima’s D Fu’s F R2

WestSutlej (n = 19) 2 0.0008 3 0.526 − 0.045 − 0.032 0.1596

Sutlej_Bhagirathi (n = 26) 5 0.002 6 0.788 0.147 − 0.903 0.1357

Bhagirathi_Mahakali (n = 28) 3 0.002 4 0.722 0.886 0.471 0.1759

Mahakali_Karnali (n = 20) 4 0.002 2 0.395 1.159 4.399 0.1974

Karnali_KaliGandaki (n = 5) 3 0.003 2 0.6 1.572 2.429 0.3000

KaliGandaki_Marsyagandi (n = 13) 0 – – – – – –

Marsyagandi_BudhiGandaki (n = 5) 16 0.015 3 0.8 1.832 3.709 0.3000

BudhiGandaki_Arun (n = 18) 9 0.002 3 0.451 − 1.844 1.664 0.2046

Arun_Tamor (n = 7) 0 – – – – – –

EastTamor (n = 3) 0 – – – – – –

All individuals (n = 144) 60 0.015 22 0.915 − 0.396 2.340 0.0796

WMP (n = 98) 27 0.005 13 0.855 − 1.021 − 0.224 0.0638

EMP (n = 46) 30 0.009 9 0.818 − 0.591 3.229 0.0961

Table 2  Comparisons of pairs of population samples—population pairwise Fst (below diagonal), average number of pairwise 
difference between populations (above diagonal) and average number of pairwise differences within populations (diagonal elements 
in bold) among the different populations of Himalayan langurs calculated by distance method

W-S: WestSutlej; S–B: Sutlej_Bhagirathi; B–M: Bhagirathi_Mahakali; M–Kr: Mahakali_Karnal; Kr–Kg: Karnali_KaliGandaki; Kg–My: KaliGandaki_Marsyagandi; My–Bg: 
Marsyagandi_BudhiGandak; Bg–A: Budhigandaki_Arun; A–T: Arun_Tamor; E-T: EastTamor

WMP EMP

W–S S–B B–M M–Kr Kr–Kg Kg–My My–Bg Bg–A A–T E-T

WMP

 W–S 0.561 1.421 1.118 3.868 13.768 13.368 19.968 15.702 18.368 18.368

 S–B 0.300 1.378 1.374 4.577 14.477 14.077 20.677 16.410 19.077 19.077

 B–M 0.263 0.115 1.056 4.250 14.150 13.750 20.350 16.083 18.750 18.750

 M–Kr 0.721 0.679 0.698 1.579 14.900 15.000 20.700 16.000 21.500 21.500

 Kr–Kg 0.942 0.900 0.917 0.891 1.800 19.200 24.600 21.533 23.200 24.200

EMP

 Kg–My 0.975 0.935 0.948 0.936 0.976 0.000 10.600 2.444 7.000 7.000

 My–Bg 0.876 0.863 0.879 0.841 0.768 0.728 9.600 10.889 16.200 16.800

 Bg–A 0.943 0.919 0.929 0.911 0.937 0.710 0.682 1.255 9.333 9.333

 A–T 0.977 0.943 0.955 0.945 0.969 1.000 0.753 0.903 0.000 4.000

 E-T 0.973 0.934 0.948 0.935 0.951 1.000 0.637 0.884 1.000 0.000
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Niche modelling using past climate layers
The AUC values for the training and test data for the 
Himalayan langur dataset were 0.9772 and 0.9702, 
respectively, indicating that the potential distribution of 
the Himalayan langurs fits well with our data. Precipita-
tion of the driest quarter (Bio 17) had the highest con-
tribution to the model (45.1%) followed by annual mean 
temperature (Bio1; 26.2%) and precipitation seasonal-
ity (Bio15; 8.4%). The response curves reveal that Bio17 
value of above 200, Bio 1 value between 80 and 120 and 
Bio 15 value in the range of 115–121 seem to be an ideal 
habitat for Himalayan langurs (Additional file 3). Accord-
ing to the palaeodistribution model the distribution of 
Himalayan langurs in the LGM was more towards south 
especially in the lowland Terai region of central Nepal 
and adjoining parts of northern India; however, the 

probability of distribution was moderate. Further, the 
probability of distribution of these langurs in the western 
Himalaya was higher for current time than during LGM 
(Fig. 7).

Discussion
After decades of taxonomic confusion, the Himalayan 
langurs were recently assigned to a single species Sem-
nopethicus schistaceus [52]. These langurs have a wide 
distribution in the Himalayas and therefore are a perfect 
model system to study the effect of landscape heteroge-
neity on genetic diversity and population genetic struc-
ture. The Himalayan langurs are threatened by habitat 
destruction—a result of human mediated climate change 
and human population expansion [64]. A recent study, 
using species distribution modelling, predicted range 

Fig. 4  Results of mismatch distribution carried out on Cyt-b data obtained from the Himalayan langurs. The graphs show pairwise differences 
between sequences (X-axes) plotted against the frequency of those differences to generate the distributions. The blue dotted line indicates 
expected distribution under a population growth-decline model. WMP western metapopulation, EMP eastern metapopulation. The panels A–I 
represent individual mismatch graphs for different populations, the population names are mentioned on the top right corner of each graph
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Fig. 5  Bayesian skyline plot reconstructed using Cyt-b gene for the Himalayan langur (S. schistaceus). This plot shows the changes in effective 
population size (Ne) through time. X-axis is time in years before present and Y-axis is the estimated effective population size. The solid line indicates 
the median Ne; the grey shaded area shows the 95% highest posterior density (HPD) intervals; vertical red dotted lines denotes the range of LGM 
from 26.5 to 19 ka as per [63]

Fig. 6  Alternative scenarios of demographic history of the Himalayan langur (S. schistaceus) tested using ABC analysis in DIYABC. Detailed 
explanation is mentioned in “Demographic history” in “Methods” section. Time has been measured in generations before present. The table 
alongside this figure contains details of the model specified, prior distributions for the demographic parameters and the mutation model 
parameters. WMP western metapopulation, EMP eastern metapopulation
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contraction of ~ 64% by 2050 under the GCMs RCP 4.5 
and 8.5 [65]. Here, we investigated the drivers of popula-
tion demography and genetic structure of the Himalayan 
langurs. Results from this study can inform the future 
management and conservation actions for this species.

Genetic diversity and population structure
The study found that all the Himalayan langur samples, 
when pooled together, have a high haplotype diversity 
(Hd = 0.915) when compared to another temperate 
colobine Rhinopithecus brelichi (Hd = 0.457), and a low 
nucleotide diversity (π = 0.015) which is comparable to 
R. brelichi (π = 0.014) [66]. This combination of high 
haplotype diversity and low nucleotide diversity could 
be the result of population expansion after a recent bot-
tleneck event or population expansion after a recent 
colonisation event [30]. To test for the riverine barrier 

hypothesis, we divided the Himalayan langur individu-
als into different populations demarcated by river val-
leys, here we found that the population My–Bg showed 
a high haplotype diversity (Hd = 0.8) and its nucleo-
tide diversity was highest among all other populations 
(π = 0.015). This suggests that the My–Bg population 
which is demarcated by the river Marsyagandi and 
the river Budhi Gandaki in central Nepal, could either 
be a long-term stable population or it could also sug-
gest that this population contains distinct haplotypes, 
probably originating from different sources. Rest of the 
populations showed a low π and Hd values, indicative 
of population expansion either after a recent bottleneck 
event or a recent colonisation event. Results from our 
pairwise FST analysis indicates that the WMP and EMP 
have been separated from each other longer than popu-
lations within WMP and EMP.

Fig. 7  Ecological niche modelling projections of the Himalayan langur (Semnopithecus schistaceus). Top panel shows current distribution and the 
bottom panel shows potential distribution during LGM
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Do himalayan rivers act as barriers?
Our phylogenetic tree with wider sampling is very similar 
to the tree in Arekar et al. [52] wherein a western clade 
with low divergence (corresponding to WMP) was nested 
within a larger phylogeny consisting of highly divergent 
sequences from eastern region (corresponding to EMP). 
The network analysis (Fig. 2), generated two major clus-
ters separated by the river Kali Gandaki—the western 
cluster and the eastern cluster which corresponds to 
WMP and EMP, respectively (as seen in Fig. 1). The west-
ern cluster showed a star-like phylogeny which suggests 
shallow genetic structure and recent demographic expan-
sion [67]. Whereas, the eastern cluster showed higher 
divergence among different haplotypes. The rivers in 
the IHR did not cause any structuring among different 
populations, in that haplotypes are shared across rivers. 
However, the rivers in the Nepal Himalaya i.e., Mahakali, 
Karnali, Kali Gandaki, Marsyagandi, Budhi Gandaki, 
Arun and Tamor, shaped the high genetic structure 
among different populations. Two populations within the 
WMP falls in the Nepal Himalaya i.e. Mahakali_Karnali 
(M–Kr) and Karnali–KaliGandaki (Kr–Kg), these two 
populations shows structured haplotypes across the river 
Karnali. Given that WMP are younger than the popula-
tions in the east i.e., EMP, it is plausible that the rivers in 
the IHR did not have enough time to act as barriers. Riv-
ers have been shown to act as barriers to gene flow across 
different taxa [22, 31, 68], however the ability of river to 
act as barrier depends on various factors such as its size, 
speed of the flow of water, body size of the organism, and 
the dispersal ability of the organism [22]. The Kali Gan-
daki river is characterised by its strong water currents 
and it forms the deepest gorge in the world, therefore not 
surprising it forms a barrier against geneflow between the 
two populations—WMP and EMP, of Himalayan langurs.

Effects of past glaciation events on demographic history
The effects of past climatic events, such as Pleistocene 
glaciation, on the distribution and demography of a spe-
cies includes range contraction, range fragmentation, 
local extinction and resultant bottleneck [69, 70]. After 
the glaciation ends, species may undergo range expan-
sion and exponential population growth [46, 47]. On 
the contrary, the habitats of taxa adapted to cold and 
dry conditions expands/persists during glaciation events 
[35–37, 44, 45].

In our analysis, the Tajima’s D, Fu’s F, and Ramos-
Onsins and Rozas’s R2 statistic were not informative since 
the values for these indices were not significant in any of 
the population, except for the population Bg–A. How-
ever, it should be noted that these statistics by itself may 
not be very reliable for investigating the demographic 
history of a population and may depend on additional 

factors. So, for reliable predictions of demographic his-
tory, a combination of different indicators should be used 
[71]. In our mismatch distribution analysis, the EMP 
shows multimodal graph (Fig.  4I) which could either 
suggest that it is a long-term stable population or this 
population consists of haplotypes originating from more 
than one source. It should be noted that the mismatch 
distribution pattern is significantly affected by popula-
tion structure [72, 73] and since haplotypes within EMP 
are highly structured (Fig. 2), we think that the mismatch 
analysis result here indicates the later. WMP also shows 
a multimodal graph but most likely it might be a result 
of population structure within WMP (Fig. 4H). We also 
performed mismatch analysis for individual populations 
(Fig. 4A–F); the three populations in the WMP which are 
distributed in the IHR showed a unimodal distribution 
which indicates population expansion (Fig.  4A–C). The 
populations M–Kr and Kr–Kg show a bimodal pattern 
which generally is an indicator of population under bot-
tleneck, the data here is insufficient to support this result. 
And for the individual populations within the EMP, the 
populations My–Bg and Bg–A (Fig.  4F, G) showed a 
multimodal graph indicating that either these are long-
term stable populations or the haplotypes they contain 
have originated from multiple source populations. Other 
populations within EMP did not show signatures of long-
term stable population.

The Bayesian skyline plot indicated that the Himalayan 
langur population size was constant for a long period of 
time and started decreasing about ~ 25,000 years before 
present (YBP) i.e., after the onset of the last glacial maxi-
mum (LGM). After the LGM ended, the effective popula-
tion size started increasing and reached the present-day 
estimate (Fig.  5). Our ABC analysis also supported the 
demographic expansion scenario in the WMP after it 
diverged from the EMP i.e., Scenario 2 (Fig. 6), which was 
supported by higher posterior probability. This suggests a 
founder effect during colonisation where a few individu-
als dispersed from Nepal Himalaya into IHR and later 
expanded to the current population size. However, our 
divergence dating analysis suggest that this demographic 
expansion event occurred before LGM.

Palaeodistribution modelling results suggested that 
during LGM, the Himalayan langur distribution was 
spread to lower elevation central Nepal and adjoin-
ing parts of India, although the probability of distribu-
tion was less. Precipitation of the driest quarter, annual 
mean temperature, and precipitation seasonality were the 
main contributing factors in defining the suitable habitat 
for the Himalayan langurs. Given the cold and dry con-
ditions during LGM at high altitudes in the Himalayas 
and in contrast, warmer conditions with high precipita-
tion [74, 75] at the lower elevations (a combined effect of 
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south west monsoon and mid-latitude westerlies), sug-
gests that the low elevation central Nepal and adjoining 
parts of India could have potentially acted as refugia for 
these langurs. After LGM ended, the Himalayan lan-
gur distribution moved northwards; it also facilitated 
the movement of these langurs from central Nepal into 
western Himalaya where a high probability for the distri-
bution of these langurs can be seen in the current SDM 
(Fig. 7). However, in our SDM for the LGM layers, we can 
see that there were small pockets of high probability of 
distribution in the western region. The asynchronous gla-
cial advances during the LGM in the Himalayas [75, 76], 
could explain these pockets of high probability of distri-
bution in the western region, however, the phylogenetic 
and phylogeographic analysis of the Himalayan langurs 
do not show signatures of refugia in the western region.

Conclusion
We used multiple complementary methods to assess the 
genetic diversity, population structure and demographic 
history of the Himalayan langurs. In the network analy-
sis, two distinct population clusters within the Himalayan 
langur were retrieved—WMP and EMP corresponding to 
the western clade and eastern lineages, respectively as 
described by Arekar et al. [52]. Interestingly, Himalayan 
river valleys in the IHR does not appear to affect the pop-
ulation subdivisions and distribution of genetic variation 
in the WMP, except for the populations M–Kr and Kr–
Kg which showed structure across the river Karnali. The 
rivers in the Nepal Himalaya do act as a barrier to gen-
eflow in the EMP. Our phylogenetic and statistical phylo-
geography analysis suggest a recent east to west dispersal 
of the Himalayan langurs. Given, the WMP is younger 
than EMP, it is likely that not enough time has elapsed for 
rivers in IHR to shape their genetic structure. Further-
more, post LGM population expansion of WMP might 
have also confounded their population structure. In this 
study, we have used only one mitochondrial Cyt-b gene; 
there might be a possibility that this gene did not capture 
enough variation, especially within the western popula-
tion given the recent colonisation. Therefore, using mark-
ers with high substitution rates such as microsatellites 
and SNPs, could help us better understand the role of 
these river valleys in population subdivision within the 
Himalayan langurs.

Methods
Sample collection
We collected 176 fecal samples from 46 different loca-
tions in the Himalayas covering the Union Territory of 
Jammu and Kashmir (J&K), and the states of Himachal 
Pradesh (HP), Uttarakhand and Sikkim (Table S1 in [52]). 
Multiple samples were collected from each location. 

We successfully amplified a 775  bp (amplicon length) 
of mitochondrial Cytochrome b (Cyt-b) gene using the 
primer pairs Cytb_278F and Cytb_1052R. For details on 
DNA extraction, PCR amplification and sequencing see 
Arekar et al. [52].

Phylogenetic analysis and divergence dating
The sequence files obtained were viewed and edited 
manually in ChromasLite v2.01 (Technelysium Pty. Ltd.). 
Sequences generated in this study were combined with 
those generated by Khanal et  al. [28] and aligned using 
MUSCLE algorithm [77] incorporated in MEGA v7 [78]. 
We used jModelTest 2.1.3 [79] to pick the best model of 
sequence evolution. Phylogenetic reconstruction was 
performed using Maximum Likelihood (ML) and Bayes-
ian methods. ML analysis was performed in RAxML7.4.2 
incorporated in raxmlGUI v1.3 [80]. 1000 replicates 
were performed to assess support for different nodes. 
We used MrBayes 3.2.2 [81] to perform the Bayesian 
analysis. Two parallel runs, with four chains each, were 
run for 5  million generations with sampling frequency 
set to every 1000 generations. Convergence between the 
two runs was determined based on standard deviation of 
split frequencies. The program Tracer v1.6 [82] was used 
to determine stationarity, an effective sample size (ESS) 
value of > 200 for each parameter was used as a cut-off 
for run length. The first 25% of trees were discarded as 
burn-in.

For divergence time estimation we used BEAST v2.6 
[83]. The sequences used for this analysis and their acces-
sion numbers are shown in Additional file  4: Table  S2. 
The input file was prepared using BEAUti v2.6 [83]. 
The data was partitioned into three codon-based parti-
tions—codon position 1 with site model K80 + G, codon 
position 2 with site model HKY + I and codon position 3 
with site model TN93 + I. The best substitution scheme 
and the model of sequence evolution was selected using 
PartitionFinder 1.1.0 [84]. Clock model was set to uncor-
related relaxed clock lognormal. For setting the clock rate 
parameter, we used the rate of substitution as estimated 
for Human mtDNA protein coding genes [85]. The first 
and second codon position rate was set to 8.8 × 10−9 sub-
stitutions per nucleotide per year and for the third codon 
position, rate was set to 1.9 × 10−8 substitutions per 
nucleotide per year. The analysis was run for 100 million 
generations with sampling frequency of 10,000.

Phylogeographic analyses
Network analysis, genetic diversity and population genetic 
structure
To explore the role of rivers in shaping the popula-
tion genetic structure of Himalayan langurs sampling 
locations were divided into 10 different populations, 
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corresponding to 10 regions in the Himalayas, demar-
cated by different river valleys—WestSutlej (W-S): sam-
ple locations west of the river Sutlej; Sutlej_Bhagirathi 
(S–B): sample locations between the rivers Sutlej and 
Bhagirathi; Bhagirathi_Mahakali (B–M): sample loca-
tions between the rivers Bhagirathi and Mahakali; 
Mahakali_Karnali (M–Kr): sample locations between 
the rivers Mahakali and Karnali; Karnali_KaliGandaki 
(Kr–Kg): sample locations between the rivers Karnali 
and Kali Gandaki; KaliGandaki_Marsyagandi (Kg–My): 
sample locations between the rivers Kali Gandaki and 
Marsyagandi; Marsyagandi_BudhiGandaki (My–Bg): 
sample locations between the rivers Marsyagandi and 
Budhi Gandaki; BudhiGandaki_Arun (Bg–A): sample 
locations between the rivers Budhi Gandaki and Arun; 
Arun_Tamor (A–T): sample locations between the rivers 
Arun and Tamor; EastTamor (E-T): sample locations east 
of the river Tamor (Fig. 3).

Genetic diversity indices including number of polymor-
phic sites (s), haplotype number (H), haplotype diversity 
(Hd) and nucleotide diversity (π) were calculated using 
DnaSP v6 [86] for each of these populations. Further, 
we used the median-joining (MJ) network [87] incorpo-
rated in PopART http://​popart.​otago.​ac.​nz/ [88] to build 
a haplotype network which graphically represents the 
relationship of each sample from different geographical 
locations. Population pairwise FST was calculated using 
Arlequin v3.5.2.2 and the statistical significance was 
tested by performing 10,000 permutations.

Demographic history
To infer the demographic history, we used multiple, com-
plimentary methods. We calculated three summary sta-
tistics: Tajima’s D, Fu’s F, and Ramos-Onsins and Rozas’s 
R2 statistic for all the populations to understand the evo-
lutionary history under different demographic scenarios 
using DnaSp v6 [86]. We also performed mismatch dis-
tribution analysis using the population growth-decline 
model to estimate the trends of population growth using 
DnaSp v6 [86]. We used the Bayesian Skyline Plot (BSP) 
analysis to estimate population size changes through time 
using BEAST v2.6 [83]. The best substitution model was 
selected using the BIC criterion in Modeltest v2.1.3 [79]. 
The clock model was set to strict clock and the muta-
tion rate was set to 0.0178 mutations per site per million 
years [70]. The tree prior was set to BirthDeath Skyline 
Contemporary; and the Origin_BDSKY_Contemp.t prior 
was set as lognormal with mean of 2.7 and SD of 0.5. This 
prior sets the date of the root node, in this case the diver-
gence between S. entellus and S. schistaceus. The analysis 
was run for 750 million generations with sampling every 
1000 generations. We used Tracer v1.6 to check for sta-
tionarity by ensuring that the effective sample size (ESS) 

for each parameter was > 200. The BDSKY plot was visu-
alised using a R script [89].

Statistical phylogeography
To understand the westward expansion of these langurs, 
we carried out a model based hypothesis testing in a 
Bayesian framework using Approximate Bayesian com-
putation (ABC) analysis implemented in DIY ABC v2.1.0 
[61]. ABC approximates posterior probabilities which it 
then uses to rank the different scenarios being consid-
ered. It first creates a prior distribution of parameter val-
ues by simulating large number of datasets under each 
scenario and then it uses a logistic regression method to 
estimate the posterior probability by picking scenarios, 
which are from among the simulated datasets, that are 
closest to the observed data [90]. For this analysis we 
tested three scenarios (Fig.  6), Scenario 1 hypothesised 
that WMP originates from EMP with no change in the 
effective population size; In Scenario 2 we hypothesise 
a founder event where few individuals from EMP colo-
nised the western region, and the population eventually 
increased to the current size. and Scenario 3 assumed 
bottleneck in the ancestral population of WMP and EMP 
with increase in effective population size immediately 
after the divergence of the two populations. In the first 
two scenarios, EMP is considered as ancestral population 
because the phylogeny (Fig. 1) shows that WMP is nested 
within the EMP. The prior settings for the demographic 
model and the mutation model are shown in the table 
alongside Fig. 6. We estimated four one sample and four 
two sampled summary statistics. One million datasets 
were simulated for each scenario.

Niche modelling using past climate layers
For our second hypothesis, we implemented the Eco-
logical niche modelling (ENM) approach. Here we 
used 217 occurrence records of the Himalayan lan-
gurs. Out of these, 104 records were from the field sur-
veys conducted for this study, 58 occurrence records 
were obtained from previous studies [28, 91, 92] and 
55 occurrence records were downloaded from GBIF 
(Global Biodiversity Information Facility) database 
(www.​gbif.​org). The occurrence records will be made 
available upon request. We used the MaxEnt algo-
rithm [93] and 19 bioclimatic variables (www.​world​
clim.​org) for the current (~ 1960–2000) and last gla-
cial maximum (LGM) (~ 22,000 years before present, 
YBP) layers. Spatial resolution of LGM was resampled 
to 30 arcsec to match the current layers. These biocli-
matic variables were clipped to the region from 68 °E 
to 97.4 °E and from 6.7 °N to 37 °N using ArcGIS 10.2.1. 
These clipped layers were then exported to ASCII for-
mat using QGIS 2.18.12. The 19 bioclimatic layers were 

http://popart.otago.ac.nz/
http://www.gbif.org
http://www.worldclim.org
http://www.worldclim.org
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tested for multicollinearity by calculating Pearson’s cor-
relation coefficient (r). The layers with r ≤ |0.8| were 
selected for further analysis. Performance of Max-
ent depends on the choice of features and regularisa-
tion multiplier (RM) [93]. We tested 48 models, for the 
Himalayan langur dataset by employing different com-
binations of features and RM values (Additional file 3: 
Table S3) in MaxEnt v3.4.1 [93]. The model (a combina-
tion of features and RM) with the highest AUC value 
was selected as the best model.

ENM analysis was performed in Maxent v3.4.1 with 
the following modifications; Random test percentage was 
set to 30%, maximum number of background points was 
set to 10,000 and the replicates were set to 10 with rep-
licated run type changed to Subsample. 5000 iterations 
were performed with the convergence threshold set to 
1 × 10−5. Jackknife test was used to estimate the contri-
bution of each environmental variable. The feature type 
was selected LQPTH with RM value 1. To overcome 
sampling bias, a bias file was created in R (v4.0.1) using 
the package ENMeval v0.3.0 [94]. The output format was 
chosen as Cloglog [95]. AUC values were examined to 
check for the predictive ability of the model.
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