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Direct evidence for increased disease 
resistance in polyandrous broods exists 
only in eusocial Hymenoptera
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Abstract 

Background:  The ‘genetic diversity’ hypothesis posits that polyandry evolved as a mechanism to increase genetic 
diversity within broods. One extension of this hypothesis is the ‘genetic diversity for disease resistance’ hypothesis 
(GDDRH). Originally designed for eusocial Hymenoptera, GDDRH states that polyandry will evolve as an effect of 
lower parasite prevalence in genetically variable broods. However, this hypothesis has been broadly applied to sev-
eral other taxa. It is unclear how much empirical evidence supports GDDRH specifically, especially outside eusocial 
Hymenoptera.

Results:  This question was addressed by conducting a literature review and posteriorly conducting meta-analyses on 
the data available using Hedges’s g. The literature review found 10 direct and 32 indirect studies with both having a 
strong publication bias towards Hymenoptera. Two meta-analyses were conducted and both found increased polyan-
dry (direct tests; n = 8, g = 0.2283, p =  < 0.0001) and genetic diversity generated by other mechanisms (indirect tests; 
n = 10, g = 0.21, p =  < 0.0001) reduced parasite load. A subsequent moderator analysis revealed that there were no 
differences among Orders, indicating there may be applicability outside of Hymenoptera. However, due to publica-
tion bias and low sample size we must exercise caution with these results.

Conclusion:  Despite the fact that the GDDRH was developed for Hymenoptera, it is frequently applied to other taxa. 
This study highlights the low amount of direct evidence supporting GDDRH, particularly outside of eusocial Hyme-
noptera. It calls for future research to address species that have high dispersal rates and contain mixes of solitary and 
communal nesting.
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Background
Polyandry is common among a wide variety of animal 
taxa [3, 21, 22, 65, 71], and is an evolutionary conun-
drum: Why mate with more than one male when females 
can typically fertilize all eggs with a single mating? Over 
the last few decades, the impact of polyandry and its con-
sequences have been investigated in a diverse number of 

evolutionary phenomena. Polyandry influences (and is 
affected by) mechanisms such as cryptic female choice, 
sexual conflict, parental care, and ecological param-
eters such as resource accumulation and competition 
(e.g., reviewed in [37, 53, 71]. However, the evolution-
ary causes (and maintenance) of polyandry are still being 
explored.

Hymenopterans are particularly useful to better under-
stand why polyandry might evolve. Unlike insects in 
general, polyandry is much rarer among social insects 
[68], the prominence of polyandry in certain eusocial 
taxa, when cooperation implicates genetic relatedness, 
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remains an open question [74]. Hymenoptera display a 
wide diversity of mating systems including both sexual 
and asexual modes of reproduction [36]. Sexual mat-
ing strategies include monogamy, polygyny (multiple 
queens), polyandry (multiple mating by a single queen), 
and hyperpolyandry (> 5 males) [12].

The hypotheses put forth to explain the evolution of 
polyandry in Hymenopterans are varied. Page [50] argued 
that multiple mating by honeybee queens is the result of 
their genic sex determination. This idea was countered 
by Hamilton [23] and Sherman et al. [61] where they laid 
out the ‘genetic diversity for disease resistance’ hypoth-
esis (from here on GDDRH). The GDDRH assumes that 
increased genetic diversity via polyandry will reduce the 
likelihood of parasitic infection, given that nests (colo-
nies) provide prime conditions for parasite transfer (see 
review Wilson-Rich et al. [78] for further hypotheses on 
defense against disease in social insects). Some empiri-
cal support for the GDDRH has been found within the 
eusocial Hymenopteran (e.g., [5, 69], but the GDDRH 
has been extended to non-Hymenopteran taxa (e.g. [10, 
80], lending to its prominence as an explanatory mecha-
nism for the evolution of polyandry beyond the Hyme-
nopterans. Kraus and Page [35] expressed doubt that 
the GDDRH is a sufficient explanation and rejected its 
application to honeybees. Sherman et al. [62] countered 
their argument by pointing out that genic sex determi-
nation is present in both monandrous and polyandrous 
Hympenopteran species. Palmer and Oldryod [51] later 
regard a suite of ‘genetic variation’ (GV) hypotheses 
(reviewed in [33] as the only likely explanation for the 
evolution of polyandry in the genus Apis. The discussion 
is far from resolved with several factors potentially con-
tributing to the selection for increased genetic diversity 
via polyandry in the group [71], including the haplo-dip-
loid sex-determination system [48].

One of the outcomes of polyandry is the genera-
tion of higher levels of genetic diversity within broods 
compared to that of a monandrous pair [81]. Increased 
genetic diversity within a population has multiple ben-
efits. Genetically diverse populations are more efficient 
at adapting to biotic and abiotic environmental changes 
compared to populations with low genetic diversity (e.g. 
[27, 28, 67]. High levels of genetic diversity can result in 
increased population homeostasis [49], and can reduce 
competition for optimal sex ratios [45, 55]. In addition, 
research in the field of the evolution of sexual reproduc-
tion highlighted the importance of high levels of genetic 
diversity in outweighing the costs of male production 
relative to asexuality. The Red Queen hypothesis states 
that sexual reproduction (male production) evolves and 
is maintained under host/parasite coevolution. Males 
contribute by increasing the level of genetic diversity of 

female broods. Evidence exists in a few species to support 
the Red Queen hypothesis (e.g. [15, 32, 40, 46]), but this 
is a theme beyond the scope of the present paper.

In the present work we question how much direct evi-
dence supports the maintenance of polyandry in the con-
ditions presented by GDDRH. Moreover, the validity of 
the hypothesis beyond the original study group remains 
questionable. For this purpose, we conducted a literature 
survey to determine the number of studies that directly 
test GDDRH within eusocial Hymenopteran and non-
Hymenopteran taxa. Next, we performed meta-analyses 
to test if polyandry (direct studies) or genetic diversity 
generated by other mechanisms (indirect studies) elicits 
lower parasite prevalence across taxa.

Results
Of the 2106 studies found, 10 met the criteria of directly 
testing GDDRH and 32 were classified as indirect 
(Table 1).

Of the 10 direct studies identified, only two tested non-
hymenopteran taxa. Of the eight publications that tested 
hymenopteran species, five found evidence that disease 
prevalence and promiscuity were negatively correlated 
(Table  1). One study found mixed results [16], while 
Tarpy [69] reported lower variance in parasite infection 
amongst colonies compared to single fathered broods, 
arguing these results support GDDRH as a bet-hedging 
strategy. Only one publication did not find evidence sup-
porting GDDRH (Table  1). The two non-hymenopteran 
species in the direct studies data set utilized the house 
mouse (Mus musculus) and the western tent caterpil-
lar (Malacosoma californicum pluviale [19, 72]; neither 
found evidence for decreased disease resistance in poly-
androus relative to monandrous broods (Table 1).

In total we extracted 14 effect sizes from 8 studies 
directly testing for GDDRH in our meta-analysis (Addi-
tional file  1: Table  S1). When directly tested, polyan-
dry increases parasite resistance (g = 0.2283, p < 0.0001, 
Fig.  1A). When separating host species by Order, we 
find that Hymenoptera (g = 0.3078) and Rodentia 
(g = -−  0.6314) did not significantly differ from each 
other (Q = 0.5401, p = 4624, Fig. 3A), suggesting that the 
GDDRH holds outside Hymenoptera. However, as this 
comparison is limited to two categories, where Rodentia 
consisted of 1 effect size, and with publication bias pre-
sent (Fig. 2A), we cannot accept this result. Considering 
our meta-analysis results, based on a small data set, we 
conclude that the current available direct empirical evi-
dence is insufficient in providing support for GDDRH 
outside of Hymenoptera.

In the second meta-analysis, we extracted 28 effect 
sizes from 10 studies indirectly testing GDDRH. Here, 
we also find that increased host population genetic 
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Table 1  Direct and indirect tests of the ‘genetic diversity for disease resistance’ hypothesis based on the literature search terms 
“Polyandry” + “genetic diversity” + “disease resistance”

*Support for the hypothesis following a “bet-hedging” strategy hypothesis

Author(s) Year Direct or Indirect Species Evidence 
for 
GDDRH

Shykoff and Schmid-Hempela [63] 1991 Indirect Bumblebee (Bombus terrestris) Yes

Shykoff and Schmid-Hempelb [64] 1991 Indirect Bumblebee (Bombus terrestris) Yes

Liersch and Schmid-Hempel [39] 1998 Indirect Bumblebee (Bombus terrestris) Yes

Baer and Schmid-Hempel [5] 1999 Direct Bumblebee (Bombus terrestris) Yes

Coltman et al. [13] 1999 Indirect Soay Sheep (Ovis aries) Yes

Meagher [42] 1999 Indirect Deer Mouse (Peromyscus maniculatus) Yes

Schmid-Hempel & Crozier [59] 1999 Indirect Phylogenetic Comparison Mixed

Neumann and Moritz [47] 2000 Direct Honeybee (Apis mellifera) No

Baer and Schmid-Hempel [6] 2001 Direct Bumblebee (Bombus terrestris) Yes

Baer and Schmid-Hempel [7] 2003 Direct Bumblebee (Bombus terrestris) Yes

Carr et al. [11] 2003 Indirect Monkey Flower (Mimulus guttatus) Yes

Tarpy [69] 2003 Direct Honeybee (Apis mellifera) Yes*

Hughes and Boomsma [25] 2004 Indirect Leaf Cutter Ant (Acromyrmex echinatior) Mixed

Puurtinen et al. [54] 2004 Indirect Freshwater Snail (Lymnaea stagnalis) Yes

Pearman and Garner [52] 2005 Indirect Frog (Rana latastei) Yes

Calleri et al. [9] 2006 Indirect Termite (Zootermopsis angusticollis) Yes

Hughes and Boomsma [26] 2006 Indirect Leaf Cutter Ant (Acromyrmex echinatior) Yes

Tarpy and Seeley [70] 2006 Direct Honeybee (Apis mellifera) Yes

Field et al. [18] 2007 Indirect Earthworm (Lumbricus terrestris) No

Ross-Gillepsie et al. [57] 2007 Indirect Naked Mole Rat (Heterocephalus glaber) Yes

Seeley and Tarpy [60] 2007 Direct Honeybee (Apis mellifera) Yes

Altermatt and Ebert [2] 2008 Indirect Freshwater Planktonic Crustacean (Daphnia magna) Yes

Hughes et al. [25] 2008 Indirect Meta analysis of eusocial Hymenoptera Yes

Reber et al. [56] 2008 Indirect Ant (Formica selysi) Yes

Invernizzi et al. [29] 2009 Indirect Honeybee (Apis mellifera Yes

Jensen et al. [31] 2009 Indirect Honeybees (A. mellifera, A. mellifera carnica, A. m. ligustica, and 
A. m. mellifera)

Yes

Lively [41] 2010 Indirect Mathematical Model Yes

Ugelvig et al. [73] 2010 Indirect Ant (Cardiocondyla obscurior) Yes

Ganz and Ebert [20] 2010 Indirect Freshwater Planktonic Crustacean (Daphnia magna) Yes

Allen et al. [1] 2011 Indirect Fire Ant (Solenopsis invicta) No

Vojvodic et al. [75] 2011 Indirect Honeybee (Apis mellifera) Yes

Whitehorn et al. [76] 2011 Indirect Bumblebee (Bombus muscorum) Yes

Bourgeois et al. [8] 2012 Indirect Honeybee (Apis mellifera) Yes

Franklin et al. [19] 2012 Direct Western Tent Caterpillar (Malacosoma californicum pluviale) No

Wilson-Rich et al. [79] 2012 Indirect Honeybee (Apis mellifera) No

Lee et al. [38] 2013 Indirect Honeybee (Apis mellifera) Yes

Whitehorn et al. [77] 2014 Indirect Bumblebees (Bombus muscorum and Bombus jonellus) Mixed

Desai and Currie [16] 2015 Direct Honeybee (Apis mellifera) Mixed

Simone-Finstrom et al. [66] 2016 Indirect Honeybee (Apis mellifera) Yes

Thonhauser et al. [72] 2016 Direct House Mouse (Mus musculus) No

Andras [4] 2017 Indirect Sea Fan (Gorgonia ventalaina) Yes

Saga et al. [58] 2020 Indirect Wasp (Vespula shidai) Yes
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diversity reduces parasite host harm (g = 0.21, p < 0.0001, 
Fig.  1B). Moderator analysis shows that host Orders 
Cladocera (g = 0.0076), Hymenoptera (g = 0.2345), Isop-
tera (g = 0.2991), and Basommatophora (g = 0.0563) 
do not significantly differ from each other (Q = 0.1183, 
p = 0.9896, Fig. 3A). However, we again find publication 
bias in this second data set, with effect sizes not falling 
symmetrically around the overall effect size (Fig.  2B), 
indicating that more studies are needed to properly test 
for GDDRH.

Discussion
From our literature survey two patterns emerge: i) the 
number of empirical studies directly testing ‘genetic 
diversity for disease resistance’ hypothesis is surprisingly 
low and ii) eusocial Hymenoptera are the preferred study 
model in the direct studies data set.

The prevalence of eusocial Hymenoptera in direct stud-
ies is likely because of the characteristics that make the 
system very tractable in this type of research. The group 
is colonial and infections can be performed in the field 
or in the laboratory with the possibility of coinfection 
by multiple parasites. Moreover, artificial insemination 
is achievable, which allows the manipulation of mated 
males per female; this practice was carried out in some of 
the studies reported here imposing a mating system that 
does not naturally occur. For example, honeybees are not 
monandrous in nature, but two studies that were labeled 
as direct tests forced monandry through artificial insemi-
nation [60, 70].

Based on our first meta-analysis, we found no clear 
direct empirical evidence supporting GDDRH outside 
eusocial Hymenoptera. However, the outcome mostly 
reflects the very low number of studies directly testing 
the hypothesis outside the group (1 out of the 8 studies). 
On the other hand, the indirect studies encompassed a 
wider taxa diversity and the meta-analysis found support 
for reduced parasite load in genetically more diverse host 
populations. However, a funnel plot analysis confirms 
publication bias. Together our analyses stress the need 
for more studies testing the ‘genetic diversity’ hypoth-
esis, and in particular its extension hypothesis GDDRH, 
namely outside eusocial Hymenoptera.

There could be ecological reasons why direct studies in 
eusocial Hymenoptera showed support for the GDDRH. 
Two aspects that could be important for disease trans-
mission are dispersal and eusociality. Eusociality involves 

the formation of distinct behavioral castes. Typically, one 
to a few females reproduce with the rest of the colony 
members being made up by non-reproductive individu-
als [14]. When a female forms a colony, all offspring in 
the group have high levels of relatedness. Consequently, 
the colony could be quickly overtaken by a parasite that 
has efficiently evolved to overcome any resistance geno-
type of the group. In this scenario, there may be strong 
selection for the queen to mate multiply, increasing the 
level of genetic diversity within her colony. Conversely, 
when individuals of a population disperse, reducing con-
tact with siblings (and often their own species), chances 
for parasite transmission are lower. Evolutionarily this 
could reduce pressure on the host species to evolve 
mechanisms that increase genetic diversity, including via 
polyandry. Although the vast majority of Hymenoptera 
are solitary, the species where direct evidence has been 
found for GDDRH are eusocial.

Future work should address this question specifically, 
i.e., if eusociality and density might be increasing the 
selection for polyandry. Namely, these studies should 
test if disease reduction also occurs within polyandrous 
broods from non-eusocial species with higher dispersal 
rates or with solitary lives. In these conditions disease 
transmission chances are lower and may result in relaxed 
selection for parasite resistance [43]. Utilization of a spe-
cies that exhibits a mix of sociality may be particularly 
insightful. For example, Ageniella (Lissagenia) flavipen-
nis is a spider wasp that exhibits both solitary nesting and 
colonies of cohabiting individuals [17].

Tarpy [69] observed a reduction in the variance of par-
asite load in polyandrous colonies compared to monan-
drous colonies. The authors argue that the results are 
consistent with polyandry as a ‘bet-hedging’ reproduc-
tive strategy [82]. Simply put, multiple paternity reduces 
the likelihood of severe population reduction by parasite 
load because distinct patrilines can show differences in 
susceptibility to parasite infection [61]. Long-term, i.e., 
between generations, polyandrous females reduce vari-
ance in offspring fitness relative to that of monandrous 
females [30]. Variation in disease resistance amongst 
patrilines of A. mellifera has been confirmed [8, 29], 
and argues in favor of this reasoning. However, our lit-
erature review of direct studies highlighted the lack of 
empirical evidence specifically addressing this topic. All 
studies in Table  1 have examined infection in one gen-
eration. Future multigenerational experimental evolution 

(See figure on next page.)
Fig. 1  Forest plots of direct A and indirect B studies on the effects of host genetic diversity on parasite host harm effect size (g). Positive effect 
sizes show studies where parasite host harm is greater in low polyandrous groups whereas negative effect sizes show cases of greater host harm 
in high polyandrous host groups. The dotted line shows an effect size of zero (no relationship between diversity and parasite harm). The first y-axis 
shows the study the effect size was calculated from and the second y-axis shows the standard mean difference (SMD) calculation with confidence 
intervals. The size of the dot represents sample size
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Fig. 1  (See legend on previous page.)
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work could be used to invoke host-parasite coevolution 
under monandry and polyandry. This approach may also 
help to elucidate whether a threshold level of virulence is 
required for polyandry to be advantageous under host/
parasite coevolution.

Conclusions
Polyandry is ubiquitous throughout the animal taxa. Sev-
eral hypotheses explaining the high levels of polyandry 
observed in some species of eusocial insects have been 

put forth and are reviewed in Oldroyd and Fewell [49]. 
While there could be many reasons for its prevalence 
in nature, parasites may be one strong selective force 
operating in the maintenance of polyandry. However, 
our analyses indicate that to better understand the exact 
conditions favoring polyandry in the terms proposed 
by GDDRH more direct studies are mandatory. The 
relationship between polyandry and the exact levels of 
genetic diversity in host populations required to increase 
infection resistance must be further teased apart [34]. 

Fig. 2  Funnel plots of direct A and indirect studies B data sets. Points on the graphs show the relationship between effect size and experiment 
sample size for each study. The vertical lines represent the effect size predicted by each meta-analysis model

Fig. 3  Parasite host harm effect size (g) for hosts grouped by “order” for direct A and indirect B studies. The size of the dot represents sample size
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Likewise, to understand if the GDDRH only applies to 
the Hymenoptera, greater research efforts directly test-
ing GDDRH in non-Hymenoptera are necessary. Moreo-
ver, examining infection rates and polyandry in different 
social environments might shed some light on the inter-
action between different social structures, the evolution 
of polyandry, and disease resistance.

Continuing to investigate the ‘genetic diversity for dis-
ease resistance’ hypothesis would assist in understanding 
how, and in what taxa parasitic selection influences the 
evolution of polyandry. On the other hand, the general-
ized acceptation of the GDDRH may reflect the inflated 
influence of a few direct tests with strong positive find-
ings in eusocial Hymenoptera. Also, probably contrib-
uting to the generalized acceptance of the theory is the 
high support found in the literature indirectly testing the 
hypothesis despite not reporting polyandry per se.

Methods
For definition purposes, ‘parasites’ will be used to mean 
all infecting agents, which include microbial pathogens. 
We used the guidelines Preferred Reporting Items for 
Systematic reviews and Meta-Analysis (PRISMA) out-
lined in Moher et al. [44] to undergo a literature search 
to glean studies that test the GDDRH both directly and 
indirectly (see Additional file  2: Fig. S1). To determine 
how much direct evidence supporting the GDDRH 
exists, a literature search was conducted using both 
Google Scholar and Web of Science. Combinations of the 
keywords; “Polyandry”,”Genetic Diversity”, “Multiple Mat-
ing”, and”Disease Resistance” were used for each database 
in May 2020. Next, citations were removed if replicates 
were found between searches and databases, as well as 
non-peer reviewed sources (i.e. books, dissertations). 
This resulted in 2106 citations being left. Titles were then 
evaluated for relevance and 2018 papers were removed. 
Of the articles remaining we assessed the following 
parameters: (1) disease or infection evaluation (2) genetic 
diversity alterations and (3) determination of study type 
(reviews were eliminated). Those studies that assessed 
infection, and altered genetic diversity were further eval-
uated and parsed into direct and indirect studies.

This process resulted in 42 studies that were grouped 
into direct or indirect tests of the GDDRH (Table 1). For 
the purposes of this paper, a direct study testing GDDRH 
is defined as one that i) directly measures parasitic infec-
tion of offspring, with infection performed either in the 
field or direct infection in the laboratory, and ii) incor-
porated correlation with high vs. low genetically diverse 
host populations through mating strategy differences, 
i.e. monandry vs. polyandry. Comparing monandrous 
broods to polyandrous broods are valuable treatments 
when genetic relatedness is not available: monandry 

should have lower levels of genetic diversity providing the 
best alternative to polyandry for comparison. However, 
one study does not use monandrous broods, but rather 
compares the relationship between parasite load and var-
ying levels of promiscuity (i.e., 10 to 28 mated males per 
queen in Neumann & Moritz, 2000, with genetic related-
ness reported). Another study manipulated male genetic 
diversity that led to the effective mating rate being 1.3 
versus 4 males [5]. Both studies were classified as direct 
tests of the GDDRH. Indirect studies examine para-
sitic infection in groups that may have different levels of 
genetic diversity generated through other mechanisms. 
For example, genetic diversity was manipulated through 
groups founded by one (monogyne) or more than one 
female (polygyne). Although that is a mechanism for 
increasing genetic diversity, it does not address polyan-
drous behavior, and as a result those studies were classi-
fied as indirect as long as infection was also assessed.

We then assessed the studies to determine if they 
could be included in the meta-analysis based on the fol-
lowing parameters: (i) a comparison between high and 
low genetic diversity groups and (ii) assess parasite suc-
cess (i.e., mortality). We excluded studies that used het-
erogeneity as a measure for genetic diversity as we were 
interested in the benefits of polyandry at the population 
level and not individual level on parasite success. We 
also excluded studies that were mathematical models 
and meta-analyses. This left 8 direct studies and 10 indi-
rect studies that we gleaned data from to conduct our 
meta-analysis.

We conducted a meta-analysis following the methods 
described in Hedges [24], using Hedges’s g to estimate 
effect sizes. Standard mean difference was calculated 
using the escalc function in the package metafor in R v. 
1.3.1056 (R Development Core Team). The web-based 
tool WebPlotDigitizer (https://​autom​eris.​io/​WebPl​otDig​
itizer/​userM​anual.​pdf ) was used to extract data from 
publication plots when raw data was not available.

The terms of the GDDRH posit that polyandry is 
favored when it results in increased genetic diversity, 
gambling in the likelihood that half-siblings will vary 
in resilience to parasites. In the direct studies dataset, 
standard mean difference effect sizes were calculated by 
extracting parasite harm mean measurements and their 
standard deviations in two groups: monandry or low 
polyandry and high polyandry. In one study [70], t-values 
and degrees of freedom were extracted due to the lack 
of means and standard deviations. As most direct stud-
ies looked at the effects of GDDRH in Hymenoptera, we 
first performed a nested random mixed effects model 
using the rma.mv function to account for phylogenetic 
non-independence. The same method to obtain standard 
mean difference was applied on studies indirectly testing 

https://automeris.io/WebPlotDigitizer/userManual.pdf
https://automeris.io/WebPlotDigitizer/userManual.pdf
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GDDRH; however, here, groups were categorized into 
low genetic diversity and high genetic diversity.

Additionally, we tested whether the magnitude of the 
relationship was dependent on eusocial Hymenoptera for 
both datasets by performing a third analysis using “host 
Order” as a moderator variable.

Last, we tested for a potential publication bias by plot-
ting a funnel plot for both datasets, i.e., direct and indi-
rect studies.

Abbreviation
GDDRH: Genetic Diversity for Disease Resistance Hypothesis.
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