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Abstract 

Background:  Natural selection can act on multiple genes in the same pathway, leading to polygenic adaptation. For 
example, adaptive changes were found to down-regulate six genes involved in ergosterol biosynthesis—an essential 
pathway targeted by many antifungal drugs—in some strains of the yeast Saccharomyces cerevisiae. However, the 
impact of this polygenic adaptation on metabolite levels was unknown. Here, we performed targeted mass spectrom-
etry to measure the levels of eight metabolites in this pathway in 74 yeast strains from a genetic cross.

Results:  Through quantitative trait locus (QTL) mapping we identified 19 loci affecting ergosterol pathway metabo-
lite levels, many of which overlap loci that also impact gene expression within the pathway. We then used the recently 
developed v-test, which identified selection acting upon three metabolite levels within the pathway, none of which 
were predictable from the gene expression adaptation.

Conclusions:  These data showed that effects of selection on metabolite levels were complex and not predictable 
from gene expression data. This suggests that a deeper understanding of metabolism is necessary before we can 
understand the impacts of even relatively straightforward gene expression adaptations on metabolic pathways.
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Background
Natural selection acting on diverse traits and genomic 
loci has been identified in many organisms and char-
acterized at molecular, genetic, and phenotypic levels 
[1–3]. Although several clear examples of single-locus 
adaptations of large effect have been identified [1, 3, 4], 
there is mounting evidence that most adaptation occurs 
through many variants of small effect, resulting in highly 
polygenic trait architectures [5–7]. Understanding these 
complex adaptations is of key importance in evolution-
ary biology, but remains difficult because small effect loci 

are challenging to detect via traditional methods such as 
quantitative trait locus (QTL) mapping.

One alternative approach is the sign test, which aims to 
identify groups of genes where selection has led to up- or 
down-regulation via independent mutations. First, the 
cis-regulatory divergence between two species is quan-
tified genome-wide, typically via allele-specific expres-
sion (ASE) analysis in an F1 hybrid [8–10]. This results 
in directionality information for every gene (e.g., the 
species A allele is up-regulated compared to the B allele, 
meaning it produces more copies of mRNA). Any group 
of genes not under directional selection should have a 
frequency of A allele up-regulation similar to that of the 
entire genome. By contrast, if 50% of genes genome-wide 
have A allele up-regulation, but a significant majority of 
genes in a particular pathway have their A alleles up-reg-
ulated, this indicates the action of lineage-specific natural 
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selection [9]. The sign test is most powerful when many 
genes are involved, making it uniquely well-suited for 
studying polygenic adaptations.

The first application of the sign test to gene expression 
data identified the ergosterol biosynthesis pathway as a 
target of recent adaptation in the budding yeast Saccha-
romyces cerevisiae [11]. Specifically, six genes clustered 
in the late steps of the pathway all showed down-regu-
lation in a laboratory strain (BY) as compared to a wild 
isolate (RM). Further characterization of this adaptation 
revealed several key details: (1) down-regulation was 
due to a combination of cis-acting effects specific to each 
gene as well as trans-acting effects from a transposon 
insertion in the transcription factor HAP1, (2) a deficit of 
genetic polymorphisms specifically at the 5’ ends of these 
six genes supported the sign test’s evidence of selective 
sweeps; (3) these selective sweeps occurred quite recently 
(e.g., in the last few decades for HAP1); (4) Most sweeps 
involved standing variation that is common in many 
strains of S. cerevisiae; (5) At one target gene, ERG28, the 
causal mutation was found to be a 2-bp deletion in the 
promoter that disrupted binding of two transcription fac-
tors [12], (6) this mutation is only advantageous in cer-
tain environments (i.e., condition-specific).

However, even in this relatively well-studied example, 
we know nothing about the effects of this coordinated 
down-regulation beyond the mRNA level. A critical 
question is how these effects propagate to affect metab-
olite levels. Since enzymes and metabolites within this 
pathway are targeted by many widely used antifungal 
drugs [13], the late ergosterol biosynthesis pathway has 
been exceptionally well-studied, making it an ideal test 
case for understanding adaptation. For instance, there is 
extensive regulation at the levels of protein degradation 
and localization in S. cerevisiae [14]. Proteasomal degra-
dation of these enzymes has been observed in response 
to the levels of other metabolites [15], mislocalization 
[16], or unknown causes [17]. Numerous other regulatory 
mechanisms act upon this pathway as well. Taking ERG1 
as an example, its activity is regulated by its subcellular 
localization between lipid particles and the endoplas-
mic reticulum [18], by lanosterol levels through protea-
somal degradation [15], and by iron, oxygen, and sterol 
levels through transcriptional regulation from UPC2 and 
ECM22, which are in turn regulated by HAP1 and MOT3 
[19–21]. In addition, sterol levels are regulated directly 
through export, esterification, and acetylation to prevent 
toxic build-up [22]. Notably, many of these regulatory 
mechanisms occur post-transcriptionally, and serve to 
tune metabolite levels to the environment. The complex-
ity of this multi-layered regulation highlights the impor-
tance of directly measuring metabolite levels to more 
fully characterize selection acting upon the pathway.

Previous studies have sought to link genetic variation 
at the gene expression level to variation at the metabolite 
level (e.g. [23–27]. For instance, a study using an Arabi-
dopsis Bay × Sha cross was used to map metabolite and 
eQTL for the aliphatic and indolic glucosinolate path-
ways, and determined that all eQTL for the pathway over-
lapped metabolite QTL, but the reciprocal was not true 
[28]. This study also identified epistasis and transgressive 
segregation in which some segregants had metabolite lev-
els higher or lower than both of the parents within these 
pathways [28]. There have been several studies examin-
ing this link in the S. cerevisiae BY x RM cross used in 
this study as well [29, 30]. These studies examined sev-
eral metabolite levels, none of which were in the ergos-
terol biosynthesis pathway, and identified overlapping 
hotspots between eQTL and metabolite QTL includ-
ing at IRA2 and HAP1, and also observed transgressive 
segregation for several metabolites. These studies and 
others have been invaluable in linking genetic variation 
in metabolite levels and gene expression, but none have 
examined the effect of a polygenic gene expression adap-
tation within a pathway on metabolite levels, which may 
be expected to have a profound effect.

In this work, we sought to ask what the effects of poly-
genic gene expression adaptation are in a well-studied, 
linear metabolic pathway. The six down-regulated genes 
are localized to a section of the pathway removed from 
any known branch points where selection on branch 
point enzymes can redirect flux through productive alter-
native branches [31]. Though predicting metabolic path-
way activity through metabolite QTL or eQTL has been 
shown to be difficult [32], this polygenic downregulation 
may be expected to have a more predictable and wide-
spread affect, akin to a strong gene knockdown. There-
fore, a reasonable and parsimonious expectation could 
be that the adaptation would yield lower flux through the 
down-regulated section of the pathway (akin to a traffic 
jam), leading to build-up of precursors and lower levels 
of downstream products including ergosterol. However, 
our results show that the divergence in metabolite levels 
is more complex, and presently unpredictable from pat-
terns of gene expression.

Results
To characterize how selection at the level of gene expres-
sion has impacted metabolite levels in the late ergosterol 
biosynthesis pathway, we utilized segregants from a well-
characterized cross between two strains of yeast: BY, a 
laboratory strain, and RM, a wine strain. F2 haploid seg-
regants from this cross have been profiled for genome-
wide gene expression [33], protein expression [34], 
cellular morphology [35], and growth on dozens of dif-
ferent substrates [36]. We used ultra-high-performance 
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liquid chromatography-tandem mass spectrometry 
(UHPLC-MS) to profile eight metabolites (Additional 
file 6: Table S1) in the late ergosterol biosynthesis path-
way for the BY and RM strains, as well as 74 of their seg-
regants (Fig. 1A). Metabolite levels showed generally high 
correlations between technical replicates where samples 
from the same culture were measured twice, with a few 
outliers (Fig.  1B, Additional file  1: Fig. S1). Metabolite 
levels for the same strains were well correlated within the 
first two steps of the pathway, but further downstream 
the order of the metabolites within the linear pathway 
did not predict the correlation between the metabolite 
levels, reflecting the complex regulation of the pathway 
(Fig. 1C).

The metabolite data from BY and RM parental strains 
immediately disproved some simple predictions from 
the gene expression differences. Based on the poly-
genic down-regulation of the enzyme-encoding genes 
from ERG7 to ERG6 in the BY strain, one might expect 
a “traffic jam” caused by this bottleneck in the pathway 
(Fig.  1D). More specifically, this model would predict 
lower metabolite levels in BY starting at the product of 
the first enzyme affected by the down-regulation, and 
higher substrate levels earlier in the pathway, due to the 
lower flux through the bottleneck caused by a series of 
down-regulated enzymes. However, we did not observe 
this pattern: the levels of zymosterol are extremely 
similar between BY and RM, and the squalene levels 
upstream of the polygenic downregulation are much 
higher in RM—the opposite of the traffic jam model’s 
prediction (Fig.  1E). While our data are not consistent 
with the traffic jam model, we also note that our data do 
not allow us to infer pathway flux, since we are relying on 
static metabolite measurements rather than direct meas-
urements of flux. For example, RM could produce more 
ergosterol, but also export it much more quickly, leading 
to lower steady-state levels.

To determine the segregating genetic loci affecting the 
late ergosterol pathway metabolite levels, we mapped 
quantitative trait loci (QTL) using both absolute metab-
olite levels and their pairwise log ratios as quantitative 
traits (Fig. 2A, Additional files 2, 9: Fig. S2). We utilized 
a previously published forward-stepwise regression 

approach to map QTL [37, 38]. Briefly, each segregant’s 
genotypes at loci differing between the two strains were 
regressed on metabolite levels and ratios. We then use 
forward stepwise regression, where QTL from previous 
rounds of regression were added to the linear model to 
remove their effects and increase power to map addi-
tional QTL (Fig.  2A). Although our QTL did not have 
sufficient resolution to pinpoint individual genes (the 
median 1.5-LOD interval contained 26 genes), we did 
observe many of the genes involved in the ergosterol 
pathway polygenic adaptation within QTL intervals. For 
example, we identified QTL containing ERG11, ERG28, 
and HAP1 (Fig. 2B). Overall we identified 8 unique QTL 
for metabolite ratios alone, 6 QTL for both metabolite 
levels and ratios, and 2 for metabolite levels alone (LOD 
score cutoffs were identified for each metabolite and 
ratio via permutation (LOD cutoff range = 2.52–3.19, 
GWER1 = 0.10). Several of the QTL were significant for 
multiple ratios and metabolite levels.

Having mapped metabolite level QTL, we then asked 
whether they were consistent with expectations based on 
previously mapped eQTL mapped using a larger panel of 
the same cross and similar methodology [33]. Notably, 
8/16 QTL mapped for metabolite levels and ratios over-
lapped with previously mapped eQTL for genes within 
the ergosterol biosynthesis pathway, compared to ~ 4 
expected by chance (permutation p-value = 0.0443, Addi-
tional file 3: Fig S3). Due to the difference in the number 
of strains used for QTL mapping for the metabolite traits 
versus the eQTL (74 vs. 1012), there is a substantial dif-
ference in power, and so with additional power more 
metabolite QTL overlapping eQTL may be revealed. For 
example, lanosterol levels were most strongly affected 
by two loci on chromosomes 12 and 8, containing HAP1 
and ERG11 (Fig. 2B). This makes sense considering that 
lanosterol is the substrate for Erg11p, and the two strong-
est eQTL for ERG11 are its local (likely cis-acting) geno-
type and the trans-acting HAP1 genotype [33]. However, 
although the RM alleles at both of these eQTL increase 
ERG11 mRNA levels, they had opposite effects on lanos-
terol levels, with the RM allele increasing lanosterol 
at HAP1 but decreasing lanosterol at ERG11 (Fig.  2B). 
Naively one would expect increasing levels of an enzyme 

Fig. 1  Metabolic Profiling of F2 haploid segregants from a cross between BY and RM. A Eight metabolites produced in the late ergosterol 
biosynthesis pathway were profiled using targeted metabolomics with UHPLC-MS in 74 haploid F2 segregants from a cross between the BY 
(laboratory) and RM (wine) strains (genes previously shown to be under selection in [11] for gene expression in red). Structures shown for 
metabolites measured. B Between technical replicate pearson correlation of ergosterol level for 73 F2 segregants with technical replicates, 
metabolite levels scaled by the mean normalized peak area for the segregants. C Correlations between the different measured metabolite levels for 
the segregants (mean of technical replicates). D Diagram depicting the traffic jam model in which a reduction in enzyme levels along a section of a 
linear pathway leads to build up of precursor metabolites and reduction in pathway end products, as well as an unobstructed metabolic pathway. E 
Metabolite levels for the three biological replicates of BY and RM scaled to the mean of the three RM biological replicates

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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to decrease levels of its substrate, yet the HAP1 QTL 
contradicts this expectation. This is less puzzling when 
considering that the HAP1 QTL affects the levels of many 
enzymes in this pathway in addition to ERG11, illustrat-
ing one aspect of the difficulty in extrapolating from 
expression levels to metabolite levels.

We next asked if the patterns of selection acting on 
metabolite levels may be predictable from those previ-
ously reported on expression levels. One approach to 
this would be to detect selection acting on metabolite 
levels using the QTL sign test. Unfortunately, even if 
all of the QTL affect the trait in the same direction, this 
test requires 8 QTL to achieve a probability less than 
0.01 (p = (½)8–1). Since we were not able to identify that 
number of QTL for any of the metabolite levels or ratios 
individually, we were underpowered to test for selection 
using this approach.

We recently developed an alternative selection test 
(the v-test) that can be more powerful than the sign test 
when insufficient numbers of QTLs are mapped [39]. 
In this test the F2 segregant phenotypic distribution is 
treated as a null model for potential parental phenotypes 
expected under neutral evolution. While the parents, as 
extant strains, have been subject to selection over many 
generations, the segregants have not (with the exception 
of selection for viability in rich media), and thus repre-
sent the distribution of possible phenotypic states given 
the genetic variation present in the two parents. In short, 
the F2 phenotypic distribution represents a randomiza-
tion of the genetic variants affecting a trait. If the true 
phenotypic difference between the parental strains is 
much larger than expected from this null distribution, it 
indicates that the genetic variants affecting this trait are 
distributed non-randomly in the parents to make them 
more divergent than expected by chance (i.e., diversifying 
selection). If the parental difference is smaller (i.e., trans-
gressive segregation), it suggests stabilizing selection has 
acted on that trait in the parents, since the genetic vari-
ants affecting this trait are distributed non-randomly so 
that the two parental trait values are more similar than 
expected.

Our application of the v-test framework to late ergos-
terol biosynthesis pathway metabolite levels identified 

two metabolites (epoxysqualene and DCD) with a pheno-
typic pattern suggestive of directional selection and one 
(zymosterol) with evidence of stabilizing selection. How-
ever, we noticed that the data for the F2 trait distributions 
violated a requirement of the v-test for normally distrib-
uted trait values (see “Methods”).

We therefore developed a non-parametric version of 
the test based on comparing trait dispersions in parents 
vs F2. We determined the segregant’s dispersions by com-
paring their metabolite levels to the mean level, and the 
parental dispersions by comparing each of the three BY 
biological replicates’ metabolite levels to the mean of it 
and one of the RM replicates, giving us three independ-
ent measurements of the parental metabolite dispersions. 
We then compared the segregant and parental distribu-
tions for each metabolite to see whether the parental 
dispersions were significantly higher or lower than the 
segregant dispersions using the Kruskal–Wallis test. 
To assess significance of this test, we used 20,000 per-
mutations to determine the empirical p-value distribu-
tion of the test statistic (see “Methods”). The results of 
this test implicate the same three steps of the pathway 
with significant differences between the parent and seg-
regant distributions. Specifically, epoxysqualene (all sets 
p ≤ 0.0192 after Bonferroni correction) and DCD levels 
(all sets p ≤ 0.0944 after Bonferroni correction) showed 
evidence of directional selection (Fig. 3A and B). In con-
trast, zymosterol (all sets p ≤ 0.0272 after Bonferroni 
correction; Fig. 3C) showed evidence of stabilizing selec-
tion, where the parental levels were more similar than 
expected. Thus, different metabolites in the ergosterol 
pathway are evolving under different types of selection 
(Fig. 3D).

In addition to the differences in dispersion between 
parental and segregant metabolite levels, several of the 
metabolite levels also showed differences in mean, which is 
indicative of epistasis. We calculated the Δ- statistic [40] and 
tested for epistasis using it via a permutation approach [41]. 
This test identified epoxysqualene, DCT, DCD, and zymos-
terol as showing significant evidence of epistasis at a Bon-
ferroni-corrected p-value threshold of 0.05. Interestingly, all 
of the metabolites identified as being under selection by the 
v-test also showed evidence of epistasis.

(See figure on next page.)
Fig. 2  Metabolite QTL Mapping. A The QTL mapping process for this study: 1) Histograms showing the lanosterol and log(DCD/Squalene levels) 
for the F2 segregants. 2) lanosterol levels for F2 segregants, split based on their allele (BY or RM) at the peak marker variant for the Chr 12/HAP1 QTL. 
Pearson r2 for the marker correlation with lanosterol level scaled to the mean of the segregant levels shown. 3) LOD score plot for the first round of 
QTL mapping for lanosterol levels. 4) LOD score plot for the second round of QTL mapping after regressing out the QTL mapped in the first round. 
B Pearson correlations between the peak marker for each QTL and metabolite levels and ratios. Separate heatmaps are shown for QTL mapped 
using metabolite levels and metabolite ratios. Red indicates segregants with the BY allele have higher levels of the metabolite or ratio, and blue 
indicates segregants with the RM allele have higher levels of the metabolite or ratio. QTLs which are significant for a given metabolite level or ratio 
are marked with * in the cell matching the row of the QTL and the column of the metabolite or ratio which it affects
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Fig. 2  (See legend on previous page.)
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Discussion
In this paper, we examined selection acting on metab-
olite levels in the ergosterol biosynthesis pathway 
between two well-studied strains of baker’s yeast. We 
found several QTL affecting metabolite levels and 
ratios, half of which have been previously identified 

as eQTL affecting genes in the pathway. Increasing 
the number of segregants measured could potentially 
identify additional metabolite QTL, which may over-
lap a greater fraction of the eQTL, but it is less likely 
that the metabolite QTL not overlapping eQTL would 

Fig. 3  Phenotypic distributions of parents and segregants show selection acting in different directions at multiple steps in the pathway. A 
Histogram of F2 segregants’ distribution of epoxysqualene levels, with three biological replicate measurements of each of the parental strains (BY 
red, RM blue). B Histogram of segregants’ distribution of DCD levels, with three biological replicate measurements of each of the parental strains 
(BY red, RM blue). C Histogram of segregants’ distribution of zymosterol levels, with three biological replicate measurements of each of the parental 
strains (BY red, RM blue). D Line graph showing segregant and parental replicate trajectories along the ergosterol pathway. Arrows indicate the type 
of selection acting on the parents at steps where selection was detected
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be covered, due to the much higher power for the eQTL 
mapping [33].

We also identified three metabolite levels under selec-
tion: epoxysqualene, DCD, and zymosterol. Interestingly, 
selection appeared to be affecting these steps differently: 
diversifying selection is likely acting on epoxysqualene 
and DCD levels, whereas stabilizing selection is likely act-
ing on zymosterol. As shown by the correlation between 
metabolite levels and the many shared QTL for this path-
way, ergosterol pathway metabolite levels show high lev-
els of genetic correlation. Thus, though the phenotypic 
patterns of selection on  epoxysqualene and zymosterol 
show that they have been affected by selection, this does 
not imply that they are the direct targets of selection; it 
is possible that selection is acting on only one of these 
traits or another unmeasured trait. Nonetheless, this was 
surprising given previous work showing polygenic down-
regulation of six genes in this pathway in the BY strain 
relative to RM. Thus, we have presented evidence against 
the simple expectation from the gene expression results 
that the pathway may have been selected for lower activ-
ity in BY.

There are many possible reasons for why the models 
from the polygenic downregulation and the metabo-
lite levels do not seem to match up. One reason could 
be due to protein sequence changes within these 
genes between BY and RM. There are eight total cod-
ing changes between BY and RM within all of the 
genes shown in Fig.  1; eight out of fourteen of these 
genes had no coding differences, including six out of 
the eight genes within the polygenic downregulation 
(highlighted in red). Another possible mechanism for 
this unexpected result could be that other genes in the 
pathway are upregulated or have differences in their 
expression which could compensate for the polygenic 
downregulation. However, there was no clear compen-
satory upregulation of other genes within the ergosterol 
biosynthesis pathway within BY, as all genes within 
the ergosterol biosynthetic pathway besides NCP1 and 
ERG3 were more highly expressed in RM than in BY 
[33]. Another possibility could be changes in transla-
tional efficiency or post-translational modifications 
to the enzymes in this pathway between BY and RM, 
which is an exciting question for future study. Substan-
tial changes in esterification, sequestration, import, and 
export of metabolites from this pathway could also con-
tribute to these results and would also be a good topic 
for future study. One striking example of this possibil-
ity is that partitioning of Hmg1p to nucleus-vacuole 
junctions, even without any change in protein level, 
increases flux through the mevalonate and ergosterol 
biosynthesis pathways [42]. The epistasis identified for 
several of the metabolite levels may also contribute to 

this complexity. In concert with these processes, there 
is extensive feedback regulation of the ergosterol path-
way at both transcriptional and post-transcriptional 
levels that likely contributes to the complexity of pre-
dicting metabolite levels, though feedback at the tran-
scriptional level should be visible in the gene expression 
levels analyzed. Study of metabolic flux, which we can 
not determine from steady state metabolite levels, may 
elucidate some of these factors. These results highlight 
the value of measuring metabolite level data, as our 
naive expectations from gene expression were inaccu-
rate, and the patterns of selection we identified would 
have been difficult to predict from gene expression data 
alone.

While it is difficult to connect selection acting on 
ergosterol pathway metabolite levels to organismal phe-
notypes such as response to certain environments or to 
fitness, previous work on this pathway helps to point to 
some connections. Zymosterol is the first metabolite 
in the pathway that can functionally replace ergosterol 
and maintain cell viability [43], which makes our obser-
vation of stabilizing selection on zymosterol (Fig.  3C 
and D) particularly interesting. By maintaining nearly 
constant levels of zymosterol while reducing the poten-
tially toxic levels of upstream metabolites such as epox-
ysqualene and DCD [22], the BY strain’s adaptation 
may be an effective means to maintain pathway output 
while reducing toxicity. In addition, previous study of 
the causal variant underlying the cis-regulatory expres-
sion differences between BY and RM in ERG28 found 
that the variant increased resistance to the antifungal 
Amphotericin B [12]. Allowing for increased antifungal 
resistance while maintaining the production of func-
tional sterols could be beneficial for fitness in varying 
environments. This balancing act is in contrast to non-
essential metabolic pathways, which have been shown 
to evolve between species largely through reductive 
evolution in budding yeasts [44].

Although selection on ergosterol biosynthesis 
between these two strains may have occurred in the BY 
lineage after its introduction to the laboratory, there 
has been no deliberate selection on this trait (to the 
best of our knowledge). Thus, this pathway may serve 
as a useful model for natural selection acting on meta-
bolic pathways more generally.

Conclusions
Overall, our results suggest that patterns of selection 
on metabolite levels are not easily predictable from 
selection on gene expression. Even a seemingly simple 
polygenic downregulation, in which several adjacent 
genes in a pathway are downregulated in one strain 
relative to another, did not allow for simple prediction 
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of the effects of the selection on metabolite levels. This 
underscores the importance of studying selection at 
multiple levels of molecular phenotypes, and particu-
larly those more directly affecting phenotypes contrib-
uting to fitness. Further studies of this type will help to 
shed light on how changes in the transcriptome impact 
the metabolome, and contribute to our understanding 
of the evolution and genetic basis of complex traits.

Materials and methods
Yeast strains
We used 74 meiotic segregants previously generated in 
[37] from a cross between the prototrophic yeast labo-
ratory strain BY (MATa, derived from a cross between 
BY4716 and BY4700) and the prototrophic vine-
yard strain RM (MATα hoΔ::hphMX4 flo8Δ::natMX4 
AMN1-BY; derived from RM11-1a), as well as the 
parental strains BY and RM.

Yeast growth and preparation for metabolite extraction
All segregants and parental strains were inoculated from 
glycerol stocks into 2 mL of standard synthetic complete 
media (SCM) (Yeast Nitrogen Base with Ammonium 
Sulfate (Fisher Cat. #50-489-163), Dropout Mix Com-
plete (US Biological Cat. #D9515), and 2% glucose) in 
14  mL Falcon™ round-bottom culture tubes (Falcon™ 
352059) and grown overnight, shaking at 30 °C.

All overnight cultures were measured for their opti-
cal density (OD) and recorded. These measurements 
were used to determine the volume of overnight culture 
needed to inoculate a 30 ml flask of SCM to a starting 
OD of approximately 0.3. Flasks were then incubated, 
shaking, at 30  °C for 3–4  h until their OD reached 
approximately 0.6–0.65.

Flasks were then removed, and their OD was meas-
ured and recorded. 21  mL of culture from each flask 
was transferred to 50 mL Falcon® conical tubes (Corn-
ing 352070), and centrifuged at 3000  rpm at 4  °C. 
Supernatant was discarded and pellet was resuspended 
in 2 mL of MS-grade H2O, mixed by gentle pipetting, 
and 1  mL was distributed to each of two screw-cap 
tubes (Bio Plas 4202SLS). Tubes were then centrifuged 
at 3000 rpm at 4 °C to pellet yeast.

Supernatant was discarded, and pellet was left as dry 
as possible. Pellets were immediately frozen at −80  °C 
in preparation for metabolite extraction. Information 
on strain growth was recorded (Additional file 11).

Metabolite extraction
Chilled Lysing Matrix C beads (MP Biomedicals) were 
added to frozen cell pellets on dry ice. Chilled metha-
nol was then added to the tube containing beads and 

pellets. Samples were disrupted on FastPrep-24™ Benchtop 
Homogenizer (MP Biomedicals) and centrifuged at maxi-
mum speed for 10  min. Supernatant was transferred into 
an Eppendorf® Protein LoBind Tube and dried using a Tur-
boVap® Evaporator (Biotage). The evaporated samples were 
reconstituted in methanol, vortexed briefly, centrifuged, and 
the supernatant was collected in an amber screw-top vial 
(Waters). The metabolite extract was analyzed immediately 
on LC–MS or stored temporarily at −20 °C prior to analysis.

LC–MS analytical methods
Targeted metabolite quantification was performed on 
a 1260 Infinity UHPLC coupled with a G6538A UHD 
Accurate Mass Q-TOF Mass Spectrometer (Agilent). 
UHPLC-MS conditions were optimized in terms of peak 
shape, reproducibility and retention times of different 
metabolites analyzed.

Chromatography was performed using an Acquity 
UPLC BEH Phenyl Column (Waters, 130  Å, 1.7  µm, 
2.1  mm × 50  mm) kept at 60  °C. Separation was per-
formed using gradient elution with 0.05% (v/v) acetic 
acid in 50%/50% methanol/water (A) and 0.05% (v/v) ace-
tic acid in 100%/0% methanol/water (B) at a flow rate of 
0.5 mL/min. Starting conditions were 100% A and 0% B 
for 1 min, changing non-linearly to 95% B over the next 
15  min, followed by re-equilibration for 4  min prior to 
the next injection. Mass spectrometry analysis was per-
formed in positive atmospheric pressure chemical ioni-
zation (APCI+) mode. Gas temperature was 350  °C, 
vaporizer temperature was 450  °C, capillary voltage was 
set at 3.5 kV, and drying gas flow rate was 9 L/min.

For each yeast strain, two biological replicates were 
analyzed. QC samples were also analyzed per 15 injec-
tions. For each injection, 5 µL of sample was injected 
into LC–MS. Data was collected in centroid mode with 
a scan range of 50–1000  m/z and acquisition rate of 
1.5 spectra/s. Reference Mass Solution (Agilent) was 
injected at a flow rate of 0.4 mL/min and reference mass 
correction was enabled to perform mass correction.

LC–MS data processing
LC–MS data was converted into the mzXML format 
and was processed using MZmine 2.33 [45], employ-
ing targeted peak picking and aligning. The ion inten-
sities for each targeted peak were then normalized 
within each sample to the sum of all the peak inten-
sities in that sample. The generated peak tables were 
exported for further analysis (Additional files 8, 9, 12).

QTL mapping
QTL were mapped using normalized peak intensities 
for each segregant. Segregating genetic markers coded 
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as −1 and 1 between the set of segregants used in this 
study were determined using genetic marker data on 
these strains from Albert et al. [33]  (Additional file 7). 
Normalized metabolite peak levels for the segregants 
were regressed on each segregating genetic marker, and 
their log-odds (LOD) score was determined using the 
formula -number of segregants*log(1−r2)/(2*log(10)), 
where r is the Pearson correlation between the marker 
and the metabolite level. In addition, all unique pair-
wise ratios of metabolites were determined, and the 
log2ratio values were regressed upon segregating 
genetic markers, and LOD scores were determined 
as described above. To determine significance, each 
metabolite level or ratio was permuted 2000 times with 
respect to the genetic markers, and LOD scores were 
calculated on this permuted data. For genome-wide 
error rate control, the second highest LOD score among 
each permutation was taken, and the 90th percentile of 
these values was taken to provide a cutoff LOD score 
for a GWER1 < 0.10 [36, 38]. In each round of QTL map-
ping, only the maximum LOD score marker was taken, 
and kept as a QTL if it passed the LOD threshold, to 
prevent the possibility of shadow QTL [46]. To map 
additional QTL, the significant QTL from the previous 
round of regression was regressed out of the metabo-
lite levels, and the residuals were used for mapping 
using the same protocol as described above. This was 
repeated, regressing out all QTL from previous rounds, 
until no additional QTL were mapped in a given round 
for a given metabolite. Boundaries of QTL were defined 
by a 1.5 LOD drop from the peak LOD, and expanded 
to all perfectly linked markers with these boundaries. 
For one segregant, one technical replicate had values 
far outside of the range of the rest of the strains for 
squalene and epoxysqualene (Additional file 1: Fig S1). 
For this segregant, the technical replicate whose values 
fell within the range of the rest of the segregants was 
used for QTL mapping for these metabolites. In addi-
tion, there were three segregants (including the one 
mentioned above) whose CDO levels were off diagonal 
on the technical replicate correlation plots. For each of 
these segregants, one replicate was chosen to use for 
the QTL mapping, based on having higher average cor-
relation between metabolites.

Permutation test for metabolite QTL and eQTL overlap
Metabolite QTL were collapsed such that any overlap-
ping QTL were treated as a single QTL, with the nar-
rowest possible QTL boundaries, due to the assumption 
that they represented the same causal locus (maximum 
lower confidence interval position, minimum higher 
confidence interval position). This yielded sixteen total 
metabolite QTL. Metabolite QTL lengths were kept 

constant, and their positions along the genome were 
permuted 10,000 times, ensuring that none of the per-
muted QTL spanned multiple chromosomes, and none 
of the permuted QTL overlapped. All eQTL from [33] 
for the 24 genes within the GO term GO:0006696: 
ergosterol biosynthetic process [47, 48] were obtained. 
If the peak marker for any of these eQTL was within 
the boundaries of a permuted metabolite QTL range, 
this was treated as an overlap. The number of permuted 
metabolite QTL containing a peak marker for any 
eQTL was recorded for each permutation. The permu-
tation p-value was obtained by calculating the fraction 
of permutations with as many or more metabolite QTL 
overlaps than in the unpermuted data.

V‑test
The v-test was performed as described in Eq. 2 of Fraser 
[39] for all of the traits. The heritability (H2) of the seg-
regants was calculated as the difference between the 
variance of the F2 segregants and the variance of the par-
ents, scaled by the variance F2 segregants. Notably, the 
technical and environmental variation in the parental 
zymosterol measurements was larger than the biological 
variation, making it impossible to correct for the paren-
tal heritability, and so only the heritability within the F2 
segregants was corrected for, which makes the test more 
conservative in the case of stabilizing selection. The 
DCD and epoxysqualene metabolite level F2 distribu-
tions were tested for normality using the Shapiro-Wilks 
test, and both deviated significantly from normality 
(DCD p = 3.73 × 10–5, epoxysqualene p = 0.025). Due to 
these violations of the v-test assumptions, we developed 
a non-parametric version of the test. For one segregant, 
one technical replicate had values far outside of the range 
of the rest of the strains for squalene and epoxysqualene 
(Additional file 1: Fig S1). For this segregant, the techni-
cal replicate whose values fell within the range of the rest 
of the segregants was used for the v-test for these metab-
olites. In addition, there were three segregants (including 
the one mentioned above) whose CDO levels were off 
diagonal on the technical replicate correlation plots. For 
each of these segregants, one replicate was chosen to use 
for the v-test, based on having higher average correlation 
between metabolites.

Non‑parametric metabolite level selection test
We first calculated the absolute difference between each 
segregant’s metabolite level and the mean level of the F2 
segregants for each trait to determine the F2 segregants’ 
spread. Next, to determine the parental dispersion for 
each metabolite, we calculated the absolute difference in 
metabolite level between each BY biological replicate and 
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the mean of that BY replicate and an RM replicate, using 
the mean of the two technical replicates for each of these 
measurements as we did for the segregants. This led to 
three independent measurements of dispersion for the par-
ents from the three biological replicates each of BY and RM 
with no replicate being used in more than one comparison. 
Since there were multiple ways to pair the three BY and RM 
replicates, we repeated this procedure with three possible 
pairings of BY and RM biological replicates with no pair-
ings repeated in separate tests (set 1: BY1/RM1, BY2/RM2, 
BY3/RM3; set 2: BY1/RM2, BY2/RM3, BY3/RM1; set3: 
BY1/RM3, BY2/RM1, BY3/RM2—numbering arbitrary) to 
ensure the results were consistent regardless of the choice 
of replicate pairings. We then compared the segregant 
and parental distributions for each metabolite using the 
Kruskal–Wallis test, a non-parametric test which allows 
us to determine whether parental spread values are sig-
nificantly higher or lower than the segregant spread values 
(Additional file 5: Fig S5). The p-values from the Kruskal–
Wallis test were not well-calibrated for many of the metab-
olites based on permutations (Additional files 4, 5: Fig S4, 
S5), possibly due to the unequal sample sizes of the par-
ent sets (three) and the segregants (74). Thus, to assess the 
significance of this test, we used a permutation approach, 
wherein we randomly selected 6 strains’ metabolite lev-
els from the combined set of parents and segregants, split 
them into two groups of three to represent the three paren-
tal replicates, and then obtained the Kruskal–Wallis test 
statistic as described above, using the six randomly chosen 
strains instead of the true parental strains. We repeated this 
procedure 20,000 times to get a permutation test statistic 
distribution. We then calculated the adjusted permutation 
p-values for each trait by counting the number of permu-
tation test statistics greater than or equal to the actual test 
statisic for the parent-segregant comparison, dividing by 
20,000, and multiplying by eight to perform Bonferroni 
multiple-test correction for tests on the eight metabo-
lites. The highest corrected p-value is reported in the text, 
and for all three traits identified as being under selection, 
all of the parent sets showed significant corrected p-val-
ues at alpha = 0.10 (zymosterol p = 0.0048, 0.0272, 0.006; 
DCD p = 0.082, 0.0684, 0.096; epoxysqualene p = 0.0124, 
0.0048, 0.0048). For one segregant, one technical repli-
cate had values far outside of the range of the rest of the 
strains for squalene and epoxysqualene (Additional file  1: 
Fig S1). For this segregant, the technical replicate whose 
values fell within the range of the rest of the segregants was 
used for selection tests for these metabolites. In addition, 
there were three segregants (including the one mentioned 
above) whose CDO levels were off diagonal on the techni-
cal replicate correlation plots. For each of these segregants, 
one replicate was chosen to use for selection tests, based on 
having higher average correlation between metabolites.

Epistasis test
The epistasis test was performed as described 
in [41]. Briefly, the Δ- statistic was calculated as 
� = µF2 −

µBY+µRM

2
 , where μF2 is the mean of the F2 

segregants, μBY is the mean of the BY replicates, and μRM 
is the mean of the RM replicates. The squared standard 
error of the mean (SSEM) for this statistic was calcu-

lated as SSEM =
var(F2)
nF2

+

var(BY )
nBY

+
var(RM)
nRM

4
 , where var(F2) 

is the variance of the F2 segregants’ metabolite levels, 
var(BY) is the variance of the BY replicates, var(RM) is 
the variance of the RM replicates, nF2 is the number of 
F2 segregants, and nBY and nRM are the number of repli-
cates for the respective parents. Dividing the Δ- statistic 
by the square root of the SSEM yielded t-values for each 
of the metabolites. To assess significance, the parental 
and segregant levels were appended, the choice of “par-
ent” measurements was randomized 1000 times, and the 
t-value was calculated. The Bonferroni-corrected thresh-
old for significance was 0.05/8 due to the 8 metabolites 
tested, and so real t-values greater than the 99.375% of 
the absolute values of the permuted t-values were called 
significant.
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Additional file 1: Fig. S1. Technical Replicate Correlations for Remaining 
Metabolites, Scaled By All Segregants’ Mean Metabolite Levels. A Between 
technical replicate pearson correlation of squalene level for 73 F2 seg-
regants with technical replicates. B: Between technical replicate pearson 
correlation of epoxysqualene level for 73 F2 segregants with technical 
replicates. C: Between technical replicate pearson correlation of lanosterol 
level for 73 F2 segregants with technical replicates. D: Between technical 
replicate pearson correlation of DCT level for 73 F2 segregants with tech-
nical replicates. E: Between technical replicate pearson correlation of DCD 
level for 73 F2 segregants with technical replicates. F: Between technical 
replicate pearson correlation of CDO level for 73 F2 segregants with 
technical replicates. G: Between technical replicate pearson correlation of 
Zymosterol level for 73 F2 segregants with technical replicates.

Additional file 2: Fig. S2. Metabolite Ratio Correlations. A: Correlations 
between the logarithm base two of metabolite ratios.

Additional file 3: Fig. S3. Overlap Between eQTLs and metabolite QTLs. 
A: Venn Diagram showing the overlap between eQTLs mapped for genes 
within the ergosterol bionsynthesis pathway and metabolite QTLs. B: 
Distribution of the number of permuted metabolite QTLs out of nineteen 
possible, overlapping ergosterol pathway eQTLs from 1000 permuta-
tions. Values greater than or equal to the true overlap from the data are in 
orange.

Additional file 4: Fig. S4. Permutation p-value distributions from the 
Kruskal–Wallis Test comparing Segregant and Parental Distributions of 
Metabolite Levels. A: Histogram of p-values from the Kruskal–Wallis test 
for permutations of Squalene levels. B: Histogram of p-values from the 
Kruskal–Wallis test for permutations of Epoxysqualene levels. C: Histogram 
of p-values from the Kruskal–Wallis test for permutations of Lanosterol lev-
els. D: Histogram of p-values from the Kruskal–Wallis test for permutations 
of DCT levels. E: Histogram of p-values from the Kruskal–Wallis test for per-
mutations of DCD levels. F: Histogram of p-values from the Kruskal–Wallis 
test for permutations of CDO levels. G: Histogram of p-values from the 
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Kruskal–Wallis test for permutations of Zymosterol levels. H: Histogram of 
p-values from the Kruskal–Wallis test for permutations of Ergosterol levels.

Additional file 5: Fig. S5. Remaining F2 and Parental Distributions of 
Metabolite Levels. All Metabolite Levels Scaled by the Mean of the RM 
metabolite levels. A: Histogram of F2 segregants’ distribution of Squalene 
levels, with three biological replicate measurements of each of the paren-
tal strains (BY red, RM blue). B: Histogram of F2 segregants’ distribution of 
Lanosterol levels, with three biological replicate measurements of each 
of the parental strains (BY red, RM blue). C: Histogram of F2 segregants’ 
distribution of DCT levels, with three biological replicate measurements 
of each of the parental strains (BY red, RM blue). D: Histogram of F2 seg-
regants’ distribution of CDO levels, with three biological replicate measure-
ments of each of the parental strains (BY red, RM blue). E: Histogram of F2 
segregants’ distribution of Ergosterol levels, with three biological replicate 
measurements of each of the parental strains (BY red, RM blue).

Additional file 6: Ergosterol Pathway Metabolite Names and Chemical 
Structures.

Additional file 7: Segregant Genotypes at Genomic Markers used in the 
study, from Albert et al (2018).

Additional file 8: Normalized Peak Metabolite Levels for F2 Segregants.

Additional file 9: All Metabolite QTL Mapped.

Additional file 10: Normalized Peak Metabolite Levels for Parental Strain 
Replicates.

Additional file 11: Strain Growth and Metabolite Extraction Information.

Additional file 12: Normalized and Unnormalized Peak Areas for Metabo-
lite Levels.
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