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Abstract 

Background:  For specialised pollinators, the synchrony of plant and pollinator life history is critical to the persistence 
of pollinator populations. This is even more critical in nursery pollination, where pollinators are obligately dependant 
on female host plant flowers for oviposition sites. Epicephala moths (Gracillariidae) form highly specialised nursery 
pollination mutualisms with Phyllanthaceae plants. Several hundred Phyllanthaceae are estimated to be exclusively 
pollinated by highly specific Epicephala moths, making these mutualisms an outstanding example of plant–insect 
coevolution. However, there have been no studies of how Epicephala moths synchronise their activity with host plant 
flowering or persist through periods when flowers are absent. Such knowledge is critical to understanding the ecol-
ogy and evolutionary stability of these mutualisms. We surveyed multiple populations of both Breynia oblongifolia 
(Phyllanthaceae) and it’s Epicephala pollinators for over two years to determine their phenology and modelled the 
environmental factors that underpin their interactions.

Results:  The abundance of flowers and fruits was highly variable and strongly linked to local rainfall and photo-
period. Unlike male flowers and fruits, female flowers were present throughout the entire year, including winter. Fruit 
abundance was a significant predictor of adult Epicephala activity, suggesting that eggs or early instar larvae diapause 
within dormant female flowers and emerge as fruits mature. Searches of overwintering female flowers confirmed that 
many contained pollen and diapausing pollinators. We also observed diapause in Epicephala prior to pupation, find-
ing that 12% (9/78) of larvae emerging from fruits in the autumn entered an extended diapause for 38–48 weeks. The 
remaining autumn emerging larvae pupated directly without diapause, suggesting a possible bet-hedging strategy.

Conclusions:  Epicephala appear to use diapause at multiple stages in their lifecycle to survive variable host plant 
phenology. Furthermore, moth abundance was predicted by the same environmental variables as male flowers, sug-
gesting that moths track flowering through temperature. These adaptations may thereby mitigate against unpredict-
ability in the timing of fruiting and flowering because of variable rainfall. It remains to be seen how widespread egg 
diapause and pre-pupal diapause may be within Epicephala moths, and, furthermore, to what degree these traits may 
have facilitated the evolution of these highly diverse mutualisms.
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Background
In nature, resources are often ephemeral and unpre-
dictable. How species use ephemeral resources, such as 
prey, fruits or flowers, is an important question in ecol-
ogy [1–3]. Flowering can be influenced by a variety of 
environmental factors including temperature, rainfall 
and photoperiod [4–6]. The timing and intensity of some 
environmental events, however, can be highly variable 
among years, making the distribution and occurrence 
of flowering resources unpredictable. Pollinating insects 
that rely on a small number of flowering species, so-
called specialists or oligotrophs, may be at greater risk of 
extinction due to a lack of available flowers [7].

Nursery pollination mutualisms are perhaps the most 
specialised interactions known to occur between plants 
and insect pollinators [8, 9]. In nursery pollination, insect 
pollinators transport pollen between the male and female 
flowers of a single host plant species. Along with pol-
len, female pollinators also deposit their eggs into female 
flowers. The ovules of the developing fruit then become 
the nursery and primary food source for the pollinator’s 
offspring. As pollinator larvae can only usually develop 
within the fruits of a single host plant, adult pollinators 
are obligately dependant on flowers to complete their life 
cycles.

Many forms of nursery pollination are currently known, 
the most widely studied being those occurring in figs 
[10], Yucca [11], globeflowers [12] and some members 
of the Phyllanthaceae family [13]. The nursery pollina-
tion mutualisms occurring within the Phyllanthaceae or 
“leaf flowers” are the most recently discovered (~ 20 ya) 
of the major mutualisms [14], and it is now believed that 
up to 700 species of the genera Breynia, Glochidion and 
Phyllanthus are pollinated exclusively by Epicephala 
moths (Gracillariidae), also known as leaf flower moths 
[15–17]. The nursery mutualisms occurring between Epi-
cephala moths and the leaf flowers are believed to have 
evolved once in Asia around 23 mya before rapidly diver-
sifying and spreading across Asia, Oceania and the Neo-
tropics [15, 16]. As such, these interactions are perhaps 
one of our most outstanding examples of plant–insect 
coevolution.

In nursery pollination, the synchrony of plant and pol-
linator life history is critical to the persistence of pollina-
tor populations and the stability of the mutualism [18]. 
Within plants that use nursery pollination, there is a 
broad spectrum of flowering activity. Plants in the trop-
ics can flower continuously or near continuously [18–20], 
whilst those in the sub-tropics and temperate regions 
may flower as little as once per year [21, 22]. Meanwhile, 
desert-dwelling Yucca species may not flower for several 
years at a time [11]. In many tropical fig species, indi-
vidual trees flower asynchronously throughout the year, 

resulting in continuous year round flowering at the popu-
lation level [18, 23–25]. Indeed, the continuous flower-
ing of tropical fig trees is critical to prevent local fig wasp 
extinction, as a constant supply of syconia is required 
to maintain stable pollinator populations [18, 23, 26]. In 
temperate fig trees, where flowering only occurs during 
the spring and summer, fig wasps overwinter in “dor-
mant” figs and emerge the following spring [22]. As such, 
an important question is how are pollinator populations 
maintained in leaf flower nursery mutualisms, where 
flowering often occurs in discrete episodes and not con-
tinuously throughout the year?

Populations of pollinators in nursery mutualisms 
have rarely been surveyed [18]. From the few available 
observations, it would seem that Epicephala abundance 
peaks following periods of host plant fruiting [19–21]. 
This makes intuitive sense, given that Epicephala larvae 
develop by feeding on growing fruits. However, moths 
that pollinate plants with discrete and seasonal flowering 
and fruiting times cannot rely on a continuous supply of 
receptive female flowers to maintain their population. It 
is therefore likely that they have evolved mechanisms to 
cope with large gaps in time between fruiting and flower-
ing. Many moths, including at least one species of Epi-
cephala, are known to undergo diapause at the egg or 
pre-pupal stages as a mechanism for bridging the time 
between fruiting and flowering [21, 27–29]. In the Yucca-
yucca moth mutualisms, moths can remain in pre-pupal 
diapause for up to 4 years [11]. It seems likely, therefore, 
that Epicephala moths may use some form of diapause 
during these flowering-fruiting gaps.

If diapause does occur in Epicephala moths, then we 
should expect that it is induced and broken by the same 
environmental factors that influence flowering. This is 
because many species of Lepidoptera are known to be 
phenologically synchronised with their host plants via 
climate cues, such as temperature [30–34]. To date there 
have been no studies of how Epicephala moths synchro-
nise their lifecycle with those of their host plants, or the 
environmental factors that influence these interactions.

We set out to determine the annual activity of Epi-
cephala moth pollinators on their obligate host plant, 
Breynia oblongifolia [35, 36]. Breynia oblongifolia is gen-
erally regarded to flower and fruit throughout the aus-
tral spring, summer, and autumn (September to May), 
meaning that Epicephala moths are likely to experience a 
lack of available flowers during the winter months. How-
ever, it is unknown how these Epicephala moth popula-
tions persist through periods of time in which flowers 
are absent. We surveyed both pollinators and host plants 
for more than two years to determine their phenology. 
We hypothesized that because of the obligate depend-
ence of Epicephala moths on B. oblongifolia fruits and 
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flowers, moth abundance would closely track flowering 
phenology.

Rainfall in Australia can be highly variable between 
years [37–39]. As such, many species of Australian plant 
are known to fruit and flower in response to variation in 
rainfall and photoperiod [4, 5]. We modelled the environ-
mental factors that drive plant and pollinator phenology, 
predicting that the abundance of adult moths and flow-
ers would be best predicted by rainfall and photoperiod. 
Then, using our newly gained knowledge of moth and 
host plant phenology, we looked for evidence of diapause 
at both the egg and pre-pupal stages. In undertaking this 
study, we sought to understand how highly host-specific 
pollinators track host plant phenology and maintain their 
populations over time.

Methods
Study species
Breynia oblongifolia occurs along the east coast of Aus-
tralia from southern New South Wales to northern 
Queensland [40]. Mature plants are generally 1–3 m tall 
and bear unisexual male and female flowers that emerge 
from the leaf axils (Fig. 1). In male flowers, the stamens 
are almost entirely enclosed by fused sepals, with only a 
narrow aperture at the apex allowing access to pollina-
tors. B. oblongifolia is known to be pollinated by at least 
two closely related species of Epicephala moth [35, 36]. 
Many species of Epicephala have been described from 

Australia. However, the original species descriptions 
often lack information on genital morphology, which is 
now considered essential for their identification [41, 42]. 
As such, the taxonomic identity of the two Epicephala 
species present on B. oblongifolia is currently unknown 
and they are referred to as Epicephala sp. A and Epi-
cephala sp. B. At the time of pollination, female moths 
oviposit eggs into female flowers. Epicephala larvae feed 
on the developing ovules with a single larva consuming 
around half the seeds in each fruit [35, 36]. Epicephala 
moths emerge from mature fruits as larvae and pupate on 
the foliage or leaf litter. However, lifecycle details of these 
highly specific pollinators are largely unknown.

Breynia oblongifolia is a non-protected plant species in 
New South Wales under the Biodiversity Conservation 
act of 2016. The identification and collection of all plant 
material was made by JF on land owned and managed by 
Western Sydney University. No specific collection per-
missions were required.

Flowering and fruiting phenology
To determine the occurrence and environmental drivers 
of fruiting and flowering, we recorded the reproductive 
phenology of four populations of B. oblongifolia at two 
coastal and two inland sites in NSW, Australia: Rich-
mond, Shellharbour, Shoal Bay and Millfield (Table  1). 
To ensure the independence of environmental effects 
between sites, we chose four populations that were at 

Fig. 1  Breynia oblongifolia. Mature plants A female flowers, B female flowers, C male flowers, D mature and developing fruits. All photographs by JF
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least 90 km apart. All four populations were situated in 
Eucalyptus-dominated woodlands, where B. oblongifo-
lia occurs as a component of the understory and had at 
least 50 flowering plants. Populations at Richmond were 
surveyed every 2–4 weeks between September 2015 and 
April 2018. Other populations were surveyed at intervals 
of approximately 30  days between November 2016 and 
November 2017. At each site 20 plants were chosen by 
walking along a pre-determined transect line, either a 
road or footpath, and choosing the nearest plant > 1 m in 
height every 10 m. Four branches, approximately 30 cm 
in length, were selected on each plant and marked for 
monitoring by repeat surveys. On each subsequent visit, 
the number of male flowers, female flowers, develop-
ing fruits (< 5 mm diameter) and mature fruits (> 5 mm 
diameter) were counted on each branch (Fig. 1). In total 
we conducted 70 surveys of flowering phenology across 
the four sites: 34 at Richmond and 12 at each of the other 
three sites. We assessed a total of 100,038 female flow-
ers, 32,473 male flowers, 13,889 developing flowers and 
12,098 mature fruits.

All statistical analyses were conducted in R Studio 
(v1.0.153) [43], using R (V. 1.1.414) [44]. Significance was 
set at α < 0.05. We obtained all temperature and rainfall 
data from the Australian Bureau of Meteorology (Bureau 
of Meteorology, 2018) using the closest available weather 
station (< 7  km) at each sampling location (Table  1) to 
test for associations with flowering and fruiting.. Envi-
ronmental variables included the sum of precipitation in 
the previous 14, 15–28 and 28–42  days and the sum of 
all rainfall across 42 days prior to each phenology obser-
vation. In addition, we calculated the average daily mini-
mum and maximum temperatures over the 14 days prior 
to each phenology observation. Photoperiod is an impor-
tant factor for the phenology of many Australian plants 
[4, 5, 46]. This was therefore included in our analysis as 
the duration of daylight hours on the day of observation, 
to the nearest minute, which we obtained from www.​
timea​nddate.​com for Sydney, NSW.

We used negative binomial generalised linear mixed 
models (GLMM) to determine the degree to which envi-
ronmental (climate, daylength) variables influence flow-
ering phenology, whilst controlling for the effects of site 

and plant. Negative binomial models are useful for mod-
elling count data, such as ours, where a large proportion 
of “true” zero values results in high variance and over-
dispersion [47]. We constructed separate negative bino-
mial GLMMs for the number of male, female, developing 
and mature fruits using the "glmer.nb" function in Lme4 
library (v1.1–15) [48], specifying a random intercept and 
slope for each site and plant. To determine the most par-
simonious combinations of environmental variables on 
the number of male flowers, female flowers, developing 
fruits and mature fruits we used the "dredge" function 
in the MuMIn library [49] to perform model selection. 
For each reproductive structure (i.e., fruits and flowers), 
we created a negative binomial model containing all the 
independent environmental variables. Models were fitted 
using maximum likelihood. Where the most parsimoni-
ous model identified by dredge included environmen-
tal variables that were likely to be highly correlated (i.e., 
maximum, and minimum average daily temperature), 
we created separate models for each variable and com-
pared them using likelihood ratio tests [50, 51], prefer-
ring the model with the lowest AICc score. To check our 
assumption of over-dispersion we created an alternative 
GLMM using Poisson regression that does not have an 
extra parameter for modelling over-dispersion and com-
pared the two models using a likelihood ratio test. For 
each reproductive structure, negative binomial regres-
sion models performed significantly better than poison 
regression models (p < 0.0001) supporting our assump-
tion of over-dispersion in the data.

Pollinator phenology
We conducted surveys of Epicephala moths between 
one and four times per week at the Richmond field site 
only from 13/11/2017 to 01/04/2018. Multiple sur-
veys per week were conducted during periods of high 
Epicephala activity (> 4 individuals observed on the 
first night of observation), otherwise surveys occurred 
once per week. Epicephala moth activity was observed 
shortly after sunset when the moths became active. 
Surveys were conducted by continuously walking along 
two perpendicular boardwalks forming an “X” shaped 
transect approximately 100 m in total length within the 

Table 1  Sampling locations and Australian Bureau of Meteorology (BOM) weather stations used for data analysis

Grid reference BOM Weather Station Distance to 
station (km)

Millfield (MF) − 32.8996, 151.2467 Pokolbin (061327) 6.2

Richmond (RC) − 33.6194, 150.7378 Richmond (067021) 1.8

Shoal Bay (SB) − 32.7176, 152.1673 Nelson Bay (061054) 1.3

Shellharbour (SH) − 34.5945, 150.8984 Albion Park (068241) 3.1

http://www.timeanddate.com
http://www.timeanddate.com
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woodland. During surveys we counted the number of 
Epicephala moths observed on all plants in the tran-
sect over a period of 1 h using a white LED head torch. 
Although white lights were found to disturb pollination 
behaviours [35], using them gave a larger field of view 
and better chances of detecting Epicephala than red 
lights. No attempt was made to determine which Epi-
cephala species were present, as this requires destruc-
tive abdominal dissections [35].

We used negative binomial regression to model the 
abundance of Epicephala moth species at the Rich-
mond site over time. To do this, we calculated the mean 
number of Epicephala observed per night for each 
week by averaging counts of Epicephala across all the 
observations for each week (1–4 observations) from 
13/11/2017 to 01/04/2018. For each week, we esti-
mated the sum of male flowers, female flowers, devel-
oping fruits and mature fruits at the time of Epicephala 
moth observations using our phenological data. Pear-
son’s correlation coefficient tests showed that the mean 
abundance of Epicephala moths was significantly cor-
related with the sum of the number of male flowers, 
female flowers, developing fruits and mature fruits at 
the time of each pollinator observation (all |p|< 0.05). 
As such, we initially modelled Epicephala abundance 
as a function of the sum of male flowers, female flow-
ers, developing and mature fruits using negative bino-
mial regression in MASS package [52]. Although all 
four phenological variables correlated with Epicephala 
abundance, only the number of mature fruits was found 
to have a significant relationship (p < 0.05) with the 
mean number of pollinators observed. The sum of male 
flowers, female flowers and developing fruits was there-
after excluded from our model.

We then extended our model of Epicephala abundance 
by adding the variables that drive fruit production, spe-
cifically rainfall, temperature, and photoperiod. To do 
this we constructed a range of environmental variables 
to include in our extended model for each weekly aver-
age count of Epicephala moths. For rainfall we calculated 
the total rainfall (mm) in cumulative weekly intervals 
(0–7, 7–14, 14–21, 21–28 and 0–28  days) prior to each 
week of observations. For temperature, we calculated the 
sum of the minimum and maximum daily temperatures, 
over the same intervals as rainfall, prior to each week 
of observations. As photoperiod was found to be a sig-
nificant predictor of the number of female flowers and 
developing and mature fruits, we also looked for associa-
tions between photoperiod and Epicephala abundance. 
To determine the most appropriate timescale for the 
environmental variables (i.e., 0–7, 7–14  days) we again 

used the "dredge" function in the MuMIn library [49] to 
perform model selection. We chose the model with the 
lowest AICc run for inclusion in our final model. The log 
likelihood of the alternative Poisson regression model 
was significantly lower than the negative binomial regres-
sion model (χ2 = 392.80, p = 0.007), again supporting our 
assumption of over-dispersion in the moth abundance 
data.

Winter flower surveys
The results of our phenology surveys showed that 
female flowers were retained over the winter period 
and began developing into fruits before the appearance 
of male flowers or moth pollinators (Fig.  3). We there-
fore assessed whether the female flowers present on B. 
oblongifolia over the winter period had previously been 
pollinated. In the late winter of 2017, we collected ten 
female flowers from each of 15 B. oblongifolia bushes at 
Richmond. Flowers were selected haphazardly from sep-
arate branches on each plant. Flowers were taken back 
to the laboratory and dissected under a Leica EZ4 Stereo 
Microscope (Leica Microsystems, Wetzlar, Germany) 
to determine the number of pollen grains per flower 
and if any insects were present in the flowers. We used 
a Welch’s t-test to determine if there was a difference in 
the number of pollen grains in flowers with and without 
larval feeding damage. We tested for a difference among 
plants in the number of pollen grains per flower using a 
one-way ANOVA using the R stats package.

Pre‑pupal diapause
The results of our winter flower surveys suggested that 
Epicephala likely diapause as small eggs or young lar-
vae in female B. oblongifolia flowers. However, we were 
also interested in determining if Epicephala moths may 
also diapause between the final larval instar and adult 
life history stages, as seen in Yucca moths. We collected 
263 fruits from two successive crops at the Richmond 
site in the spring (November) (n = 115) and autumn 
of 2019 (April) (n = 148). One to ten fruits were col-
lected haphazardly from ~ 15 adult B. oblongifolia plants. 
Fruits were placed individually in plastic emergence pots 
[36]. The pots were left outside in a shaded position to 
mimic ambient environmental conditions and checked 
at 1–2  week intervals. The type of insect, date of larval 
emergence and date of adult eclosion were recorded for 
all insects that emerged from the collected fruits. Where 
no insects emerged within ten weeks of collection, fruits 
were dissected and checked to see if they had previously 
contained insects. Collected Epicephala moths were 
identified by genital dissection [35].
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Results
Flowering and fruiting phenology
Female flowers were generally present throughout the 
year, peaking in abundance during the spring or late sum-
mer and declining during winter to low but stable levels 
(Fig. 2). Interestingly, female flowers were retained on the 
plants even under periods of drought. For example, in 
the late winter and early spring of 2017 (July–September) 
Breynia oblongifolia plants at the Richmond site experi-
enced a prolonged spell of unusually dry weather (Addi-
tional file  1). During this period, the whole population 
showed signs of water stress including leaf rolling and leaf 
abscission. However, many of the plants retained a large 
proportion of their female flowers, even when they were 
heavily defoliated. Both the sum of precipitation over the 

past 42  days (p < 0.0001) and photoperiod (p < 0.0001) 
were significant predictors of the number of female flow-
ers in our best performing model (Table 2). 

Male flowers were most abundant during the spring 
and summer but declined rapidly in periods of particu-
larly hot and dry weather (Jan-Feb) and were entirely 
absent during the winter months (May–August) (Figs. 2, 
3). As with female flowers, the sum of precipitation over 
the past 42 days was a strong predictor of the number of 
male flowers (p < 0.0001). However, in contrast to female 
flowers, the average minimum temperature (p < 0.0001) 
was the best predictor of the number of male flowers 
across the four sites (Table 3). 

Breynia oblongifolia plants usually produced 1–2 fruit 
crops per year and each crop lasted for 1–3  months. 

Fig. 2  Breynia oblongifolia phenology by site. Mean number of male flowers, female flowers, developing fruits (Dev) and mature fruits per plant at 
Shoal Bay (SB), Shellharbour (SH), Millfield (MF) and Richmond (RC). Error bars show the standard deviation of the mean
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When combining across all sites, developing and mature 
fruits were present on plants throughout most of the year 
(July to May: Fig. 2) but there was considerable variation 
in fruit production among sites, even at the same time 
of year (Fig. 2). This is most likely because of differences 
in rainfall that varied among the four sites (Additional 
file 1). Fruit production did not usually occur during the 
hottest (Jan–Feb) and coldest parts of year (June and 
July), although there was some fruiting recorded in early 
July (mid-winter) at the Richmond site (Fig.  3). Inter-
estingly, at this time Epicephala moths were not active 
(Fig.  3) and male flowers were also absent. Like female 
flowers, the number of developing fruits was best pre-
dicted by the sum of precipitation over the past 42 days 
(p < 0.0001) and photoperiod (p < 0.0001) (Table 2). Simi-
larly, the abundance of mature fruits was best predicted 
by the sum of the precipitation over the past 42  days 
(p < 0.0001) and photoperiod (p = 0.0136) (Table 2).

Pollinator phenology
Epicephala moth activity at the Richmond site varied 
widely over our 75-week observation period. Adults were 
active at the site for periods of 1–2  months in spring-
early summer and then again in late summer-autumn 
period but were absent or undetected during the win-
ter months (Fig.  3). In both 2017 and 2018, Epicephala 

were scarcely recorded for up to 3  months during mid-
summer but quickly became very abundant again in late 
summer, with up to 42 individuals being recorded in a 
single hour-long observation period. Both the total num-
ber of mature fruits (p < 0.01) and the sum of minimum 
daily temperatures 14–21 days prior to each observation 
(p < 0.01) were significantly related to the abundance of 
Epicephala adults (Table  3). Rainfall was, however, not 
related to moth abundance (p > 0.05).

Winter flower surveys
Many overwintering female flowers contained pollen 
and evidence of overwintering pollinator eggs or small 
larvae (Fig.  4). Of 150 inspected flowers, 118 had pol-
len grains on the surface of the stigma with an average 
of 10.9 (SD = 5.68) grains per flower. There was no sig-
nificant difference among plants in the number of pollen 
grains per flower (F1,148 = 3.75, p > 0.05). Of the 150 flow-
ers collected, 86 showed scars in the tissue of the ovary 
wall consistent with boring damage by Epicephala [36] 
and 47 contained at least one Epicephala egg or egg case 
(Fig. 4). These scarred flowers had between 1 and 4 scars 
(mean = 1.54, SD = 0.78) visible per flower. It was not 
possible to determine if these marks were attributable to 
multiple individuals or multiple boring attempts by the 
same individual. There was no difference in the number 
of pollen grains present in flowers with or without larval 
scarring (t = − 0.64, df = 130.9, p < 0.520).

Pre‑pupal diapause
Of the 263 collected fruits, 129 contained no insects, 52 
contained evidence of feeding damage but no insects 
(i.e., insects emerged before fruit collection), 4 contained 
non-Epicephala insects and 78 contained Epicephala 
larvae. Of the 78 Epicephala larvae that emerged from 
fruits in the spring and autumn crops, 69 (88%) pupated 
and eclosed as adults within 5  weeks with a mean time 
of emergence to adult eclosion of 3.6  weeks. Nine Epi-
cephala (9/78) remained as larvae for between 37 and 
48  weeks, successfully pupating and eclosing to adults 
from 9 months to nearly one full year after they emerged 
from fruits (Fig. 5). All long diapausing moths were from 
the autumn crop. Five were male Epicephala sp. B and 
the remaining four were an equal proportion of male and 
female Epicephala sp. A. Only 13 Epicephala were col-
lected from the spring crop, all of which pupated within 
5 weeks of emergence.

Discussion
Epicephala moths appear to use diapause at multi-
ple stages in their lifecycle in order to deal with vari-
able flowering phenology (Fig. 6). The close association 

Table 2  GLMM coefficients for relationships between 
environmental variables and flowering and fruiting phenology in 
Breynia oblongifolia at the Richmond, Shellharbour, Shoal Bay and 
Millfield sampling sites.

a Sum of precipitation over the past 42 days
b Photoperiod day on the day of observation
c Sum of daily minimum temperature over the 14–21 days prior to each 
phenology observation

β SE z p

Female flowers

 Intercept 3.7 0.182 20.47  < 0.0001

 Rainfalla 0.23 0.029 7.97  < 0.0001

 Daylight hoursb 0.58 0.027 21.22  < 0.0001

Male Flowers

 Intercept 2.06 0.242 8.52  < 0.0001

 Rainfalla 0.70 0.071 9.88  < 0.0001

 Minimum Tempc 1.27 0.061 20.58  < 0.0001

Developing Fruits

 Intercept 1.65 0.33 4.88  < 0.0001

 Rainfalla 0.50 0.050 10.08  < 0.0001

 Daylight hoursb 0.60 0.045 13.41  < 0.0001

Mature fruits

 Intercept 1.73 0.289 5.99  < 0.0001

 Rainfalla 0.65 0.08 7.33  < 0.0001

 Daylight hoursb 0.16 0.067 2.46 0.0136
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between the abundances of fruits and moths suggested 
that moths may diapause as eggs or young larvae within 
pollinated flowers, appearing as adults as fruits mature. 
We confirmed this by showing that many overwinter-
ing flowers contained pollen and evidence of diapaus-
ing pollinators. Our observations suggest egg diapause 
within dormant flowers serves a critical function of 

Fig. 3  Mean weekly counts of Epicephala per night (bars) alongside the mean number of A male flowers, B female flowers, C developing fruits, D 
mature fruits per Breynia oblongifolia plant (lines ± SEM) at the Richmond site

Table 3  Coefficients for relationships between the number of 
mature fruits and temperature on Epicephala moth activity at the 
Richmond site

a Total mature fruits at the time of observation
b The sum of minimum daily temperatures 14–21 days prior to each observation

β SE z p

Intercept − 1.3870 0.6177 − 2.245 0.02475

Total mature fruitsa 0.0013 0.0004 3.231 0.00123

Minimum daily tempb 0.01962 0.0064 3.067 0.00216

Fig. 4  Frequency distributions of A pollen grains and B eggs or larval 
scaring in the overwintering female flowers of Breynia oblongifolia 
collected during in winter at the Richmond site (July 2017) (n = 150)
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physically linking the pollinator lifecycle to host plant 
flowering phenology, ensuring that pollinator emer-
gence coincides with flowering. In addition, our study 
of adult eclosion times also indicate that 12% of the 
autumn generation of Epicephala enter a pre-pupal dia-
pause, emerging up to one year later. As such, Epiceph-
ala moths appear to use diapause at multiple stages in 
their lifecycle in order to track host plant phenology 
and mitigate against environmental unpredictability. 

Host plant phenology
Inter-annual rainfall can be highly variable within Aus-
tralia, even when compared to environmentally similar 
areas elsewhere in the world [37, 53]. Indeed, many spe-
cies of Australian plant are known to fruit and flower in 
response to variation in both rainfall and photoperiod 
[4, 5]. In B. oblongifolia, female flowers were present all 
year round, but their abundance varied widely and was 
best predicted by rainfall and photoperiod. In this way, 
B. oblongifolia seems typical of many Australian plants 
in that its reproductive phenology is adapted to environ-
mental unpredictability. The effect of rainfall on a plant’s 
phenology is likely to be dependent on characteristics of 
the soil and surrounding landscape, as well as the fre-
quency and intensity of previous rainfall events [6, 54, 
55]. Given that soil moisture more accurately reflects the 
total water available to each individual plant, we believe 
that it is likely that soil moisture would also be a sig-
nificant predictor of flowering and fruiting phenology if 
included in our model.

Interestingly, our winter flower surveys show that B. 
oblongifolia frequently retains pollinated flowers over 
winter. Our phenological model found that B. oblongifo-
lia sets fruit in response to rainfall. Together, these two 
results suggest that B. oblongifolia can delay fruit matu-
ration in pollinated flowers over the winter period and 
potentially also through the spring and summer depend-
ing on the prevailing environmental conditions. This 
likely explains why only female flowers are present during 
the winter, as well as how some fruits began to develop in 
the late winter of 2017, when both Epicephala moths and 
male flowers were absent (Fig. 3). Indeed, our own flower 
bagging experiments support this explanation, with many 
bagged (i.e., pollinator-excluded) branches developing 
fruits [56]. Retaining previously pollinated flowers that 
can develop to fruits in response to largely unpredictable 
rainfall is likely to make B. oblongifolia less vulnerable to 
environmental variability, thereby reducing the risk of 
fruits developing during periods of drought and potential 
reproductive failure.

The exact mechanism that allows B. oblongifolia to 
retain pollinated flowers and then develop them to fruits 
months later remains unclear. Pollen can remain viable 
for several hours to several months depending on the 
species and environmental conditions [57–60]. It may 
be the that the pollen on the overwintering flowers of B. 
oblongifolia have yet to germinate and does so shortly 
before fruit development. Currently, it is not known 
how long the pollen of B. oblongifolia can remain viable 
under natural environmental conditions. The fruits of 
several important crop plants are known to arrest their 

Fig. 5  Frequency distribution of the number of weeks between the 
emergence of Epicephala larvae and their eclosion to adults (n = 78) 
from Breynia oblongifolia fruits collected at the Richmond site.

Fig. 6  Diagram of the proposed lifecycle of Epicephala moths on 
Breynia oblongifolia over three successive generations (F1–3). The 
black cycle denotes the life history for the majority of individuals, in 
which moths go through two generations per year with the winter 
months spent as eggs or small larvae in overwintering female flowers. 
Egg diapause may also occur during the summer months in periods 
with insufficient rainfall to initiate fruiting. The grey cycle denotes the 
alternative strategy taken by 12% of individuals in the autumn crops, 
in which pre-pupal larvae emerge from fruits and enter diapause for 
38–48 weeks, re-joining the general population 1–2 generations later. 
The number of generations skipped depends on the duration of the 
diapause. Here, a pre-pupal diapause of 52 weeks is depicted
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development in response to climatic conditions, with 
fruit growth initiating again following pollen fertilisa-
tion [61, 62]. As such, an alternative explanation could be 
that the retained pollinated flowers are already fertilised 
but remain in a developmental pause over winter until 
released by an environmental cue, such as lengthening 
photoperiod or increased soil moisture following rain-
fall. Further experimentation is required to answer these 
questions.

Pollinator phenology
Epicephala abundance at the Richmond field site in both 
the spring and summer of 2016–2017 and 2017–2018 
occurred in two discrete peaks of high abundance, cor-
responding with similar peaks in fruit abundance (Fig. 3). 
Our analysis showed that the number of mature fruits 
was a significant predictor of Epicephala abundance. This 
is most likely because Epicephala moths emerge from 
mature fruits as larvae and then pupate to adults [14, 20]. 
The appearance of fruits is therefore an important pre-
dictor of adult moth abundance, as observed in some 
other leaf flower species [19–21]. Although we found 
no statistical evidence for a relationship between rain-
fall and moth abundance, there is an indirect relation-
ship between the abundance of moths and rainfall via the 
abundance of fruits, which is rainfall dependent. Thus, 
rainfall and photoperiod are critical factors in the phe-
nology of the B. oblongifolia host plant and, by extension, 
its Epicephala pollinators.

Consistent with our prediction, the abundance of 
both male flowers and Epicephala moths were best pre-
dicted by the mean minimum temperature 14–21  days 
prior to each plant and pollinator survey. Lepidoptera 
are often phenologically synchronised with their host 
plant’s growth stages through temperature [30–34]. As 
male flowers are a source of essential pollen and poten-
tially nectar [19, 20], female Epicephala moths are likely 
to be under selection to synchronise their adult eclosion 
with the occurrence of male flowers. The fact that both 
male flowers and moths respond to the mean minimum 
temperature three weeks prior to each observation prob-
ably reflects the developmental time between the envi-
ronmental trigger and appearance of mature fruits and 
moths. Indeed, the average time between the emergence 
of larvae from fruits and adult eclosion in our eclosion 
study was 3 to 4 weeks, strongly suggesting that tempera-
ture plays a critical role in synchronising moth and pol-
linator life histories.

The absence of adult moths during the winter months 
(June–August) and hottest summer months indi-
cates that moths probably diapause during this stage in 
their lifecycle (Fig.  4). Furthermore, the close associa-
tion between fruits and the abundance of adult moths 

suggests that these insects diapause as eggs, or possibly 
young larvae, within flowers that then develop to fruit. In 
line with our expectations, when we examined overwin-
tering flowers, many showed scarring and boring damage 
consistent with Epicephala moths and their larvae [35, 
36]. Although we did not survey flowers during the hot-
test summer months, we believe that it is very likely that 
moths also diapause as eggs in female flowers during this 
time. This is because all spring emerging larvae pupated 
directly to adulthood and did not enter a pre-pupal dia-
pause. As such, spring emerging Epicephala presumably 
eclose, mate and lay diapausing eggs in female flowers 
that are present through the summer when adults are 
absent. Periods of egg dormancy are known in other 
Epicephala species [21] and many Australian Lepidop-
tera are also known to exhibit extended periods of egg 
diapause [27–29]. The larvae of some fig wasps are also 
known to overwinter within dormant fig flowers in tem-
perate climates [22]. Our analysis of the phenological 
data has demonstrated that in B. oblongifolia, fruiting 
and flowering are phenologically synchronised with both 
fruits and new flowers appearing together. As such, egg 
or young larval diapause likely ensures that overwinter-
ing larvae develop and emerge at, or near, the time of 
flowering, creating a physical link between plant and pol-
linator lifecycles.

In moths, diapause can occur at both the egg and 
pre-pupal life history stages. Our study of the interval 
between larval emergence and eclosion found that 12% 
of the Epicephala larvae that emerged in the autumn 
entered a pre-pupal diapause for periods of up to 
48  weeks. These long diapausing Epicephala included 
both species known to pollinate B. oblongifolia [35]. The 
majority of moths that emerged in the autumn pupated 
directly to adulthood, eclosing 3 to 4 weeks after leav-
ing the fruits. Spring emerging Epicephala were not 
observed to enter an extended pre-pupal diapause, but 
this may reflect the lower sample size (n = 13). The vary-
ing lengths of pre-pupal diapause documented here may 
constitute a bet-hedging or risk-spreading strategy [63]. 
Bet-hedging strategies involve a loss of individual fitness 
to reduce variance in fitness over time, thereby increasing 
the long term (geometric) mean fitness of the genotype 
or lineage [64, 65]. Such strategies are adaptive in unpre-
dictable environments, where variance in fitness between 
generations is high. In our example, moths that pupate 
directly to adults after emerging from fruits late in the 
growing season may experience shortages of flowers. A 
bet-hedging genotype that produces multiple phenotypes 
(e.g., differing diapause durations) may thereby achieve 
greater geometric fitness over time by reducing variance 
in fitness between flowering seasons. Bet-hedging strate-
gies are commonly inferred in insects, but rarely shown 
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definitively [63]. This is because such strategies must be 
correctly distinguished from genotypic polymorphism 
within populations [63]. Furthermore, demonstrating 
that bet-hedging strategies occur requires demonstrat-
ing greater geometric fitness in bet-hedging genotypes 
compared to none bet-hedging genotypes. Alternatively, 
it is also possible to demonstrate bet-hedging by showing 
variation in the trait in question (e.g., diapause duration) 
in relation to environmental uncertainty. Bet-hedging is, 
therefore, challenging to demonstrate experimentally. 
Regardless, our work is the first to suggest the possibil-
ity of a bet-hedging strategy in a nursery pollination 
mutualism.

Implications for the mutualism
Since they represent independent evolutionary ori-
gins of pollination mutualism, it is interesting to com-
pare the phenology of plants and pollinators in the fig, 
Yucca, and leaf flower mutualisms. Based on avail-
able data, it would seem that, at the population level, 
the flowers of both fig trees and leaf flowers are gen-
erally present throughout the year [18–21, 24, 25]. 
However, as this study and others have demonstrated 
[21], flowers may be present but dormant for part of 
that time. In at least one temperate fig species, over-
wintering flowers act as refuges for fig wasp pollina-
tors through the winter months [22]. In B. oblongifolia, 
and possibly other leaf flower plants, the majority of 
plants bear female flowers year-round, with low num-
bers also present during the winter. Year round flow-
ering may thereby promote stable populations of 
Epicephala moths by providing a refuge for pollinators 
during periods when plants are not growing fruits or 
new flowers. This could explain why some B. oblongi-
folia plants maintained female flowers during periods 
of obvious drought stress in the unusually dry winter 
of 2017. Indeed, our observation that these pollinated 
and pollinator-containing flowers were maintained at 
the expense of leaf tissues suggests a high fitness value 
to the host plants. In the Yucca-yucca moth OPM, pol-
linators diapause as pre-pupal larvae in the soil around 
their host plants and may wait several years between 
the appearance of flowers [11]. The ability of yucca 
moths to diapause for multiple years between flower-
ing events probably also promotes the stability of pol-
linator populations. Our study has found that both 
year-round flower provision and pre-pupal diapause 
occur in at least some leaf flower plants, showing simi-
larities with both the Yucca and fig mutualisms.

Egg diapause in Epicephala may have other impor-
tant implications for the mutualism. Overwinter-
ing larvae or eggs are likely to suffer moderate levels 
of mortality during diapause [66, 67]. This increased 

mortality may benefit the plant by reducing the num-
ber of seeds that are consumed by pollinators. Over-
wintering mortality could help to explain the large 
proportion of B. oblongifolia fruits (10–30%) that 
do not contain Epicephala larvae [36]. Fruits that do 
not contain pollinators are generally more frequent 
in crops collected in the spring and contribute a high 
proportion of the intact seeds produced across B. 
oblongifolia populations [36]. As such, egg diapause 
mortality may be an important factor in reducing seed 
destruction by pollinating seed herbivores, thereby 
helping to maintain the mutualism in the face of com-
peting interests between mutualists.

Conclusions
Epicephala moths appear to use diapause at multi-
ple stages in their lifecycle in order to survive through 
periods of variable plant phenology. Furthermore, moth 
abundance is predicted by the same environmental 
variables as male flowers, suggesting that moths track 
flowering through temperature. These adaptations may 
thereby mitigate against unpredictability in the tim-
ing of fruiting and flowering because of variable rain-
fall. This is the first study of how Epicephala moths 
track host plant phenology and avoid potentially disas-
trous phenological mismatches. How widespread egg 
and pre-pupal diapause are within Epicephala moths 
remains to be seen. Such traits may have important 
implications for both the evolutionary stability of these 
mutualisms and their rapid diversification.
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