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Abstract 

Background: Cultivated tea is one of the most important economic and ecological trees distributed worldwide. Cul-
tivated tea suffer from long-term targeted selection of traits and overexploitation of habitats by human beings, which 
may have changed its genetic structure. The chloroplast is an organelle with a conserved cyclic genomic structure, 
and it can help us better understand the evolutionary relationship of Camellia plants.

Results: We conducted comparative and evolutionary analyses on cultivated tea and wild tea, and we detected the 
evolutionary characteristics of cultivated tea. The chloroplast genome sizes of cultivated tea were slightly different, 
ranging from 157,025 to 157,100 bp. In addition, the cultivated species were more conserved than the wild species, 
in terms of the genome length, gene number, gene arrangement and GC content. However, comparing Camellia 
sinensis var. sinensis and Camellia sinensis var. assamica with their cultivars, the IR length variation was approximately 
20 bp and 30 bp, respectively. The nucleotide diversity of 14 sequences in cultivated tea was higher than that in wild 
tea. Detailed analysis on the genomic variation and evolution of Camellia sinensis var. sinensis cultivars revealed 67 
single nucleotide polymorphisms (SNPs), 46 insertions/deletions (indels), and 16 protein coding genes with nucleo-
tide substitutions, while Camellia sinensis var. assamica cultivars revealed 4 indels. In cultivated tea, the most variable 
gene was ycf1. The largest number of nucleotide substitutions, five amino acids exhibited site-specific selection, and 
a 9 bp sequence insertion were found in the Camellia sinensis var. sinensis cultivars. In addition, phylogenetic relation-
ship in the ycf1 tree suggested that the ycf1 gene has diverged in cultivated tea. Because C. sinensis var. sinensis and its 
cultivated species were not tightly clustered.

Conclusions: The cultivated species were more conserved than the wild species in terms of architecture and linear 
sequence order. The variation of the chloroplast genome in cultivated tea was mainly manifested in the nucleotide 
polymorphisms and sequence insertions. These results provided evidence regarding the influence of human activities 
on tea.
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Background
From ancient times, numerous plant species have been 
taken from their habitats and introduced into cultiva-
tion—that is, into various human-made systems [1]. 
The cultivation process has played an important role in 
human history and cultivated environments often pre-
sent strong ecological contrasts with wild environments 
[2]. Wild species are exposed to natural selection that 
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operates to promote survival under abiotic and biotic 
stresses, while cultivated species are subjected to artifi-
cial selection that emphasizes a steady supply, improved 
quality and increased yield. The criteria for fitness are 
expected to change dramatically under both regimes. 
Therefore, alterations in vegetation phenology, growth 
and reproductive traits occur because the plants are 
subjected to different levels of stress and distinctive 
selection pressures [3]. Pot experiments showed there 
were significant differences in the flowering and pod set 
between wild and cultivated types of soybean [4]. In addi-
tion, the compounds and microstructures have been sur-
veyed for many horticultural plants [5]. The inadequate 
genetic information prevents us from fully understanding 
the spreading process of cultivated plants. We need to 
compare the genetic differences between cultivated spe-
cies and wild species in order to use these species more 
effectively.

Camellia, containing approximately 280 species, is a 
genus with high economic, ecological and phylogenetic 
values in the family Theaceae [6, 7]. Camellia are native 
to Asia and have been cultivated for more than 1300 years 
[8]. Because their variety of uses, the cultivated species 
are now found all over the world [9, 10]. Camellia species 
can provide many valuable products, including making 
tea with the young leaves and extracting edible oil from 
the seeds. Moreover, most Camellia species are also of 
great ornamental value [11]. The genus Camellia is com-
posed of more than 110 taxa [12], of which Camellia sin-
ensis (L.) O. Kuntze is the most important source of the 
beverage tea. Cultivated tea plant varieties mainly belong 
to two major groups: Camellia sinensis var. sinensis (CSS; 
Chinese type) and Camellia sinensis var. assamica (CSA; 
Assam type) [13]. Due to long-term cultivation and man-
ual selection, C. sinensis formed many local varieties, 
such as Camellia sinensis var. sinensis cv. Anhua (CSSA), 
Camellia sinensis var. sinensis cv. Longjing43 (CSSL), 
Camellia sinensis var. assamica cv. Yunkang10 (CSAY) 
and so on. Wild tea plants are important genetic diversity 
resources that can provide new traits for improved yield, 
disease resistance and tolerance to different environ-
mental conditions. For example, the leaves of CSSA, well 
known for its specific area, are the main sources of dark 
tea [14]. The quality of dark tea products is related to the 
abundant cultivars, germplasm resources and geographi-
cal conditions [15].

The chloroplast (cp) genome is often used to ana-
lyze the evolutionary process and the phylogenetic 
status because of its high degree of conservation and 
relatively compact gene alignment. Moreover, cp genome 
sequences are useful in the identification of closely 
related, breeding-compatible plant species [16]. Although 
the cp genome is very useful, there are still a limited 

number of full cp genomes available from Camellia spe-
cies so far [7, 14, 17–21].

It has been proven that human interference has effects 
on the genetic structure, leaf nutrients and pollen mor-
phology of Camellia [22–24]. For example, due to 
human overexploitation of habitats and long-term tar-
geted selection of traits, the genetic diversity of Camel-
lia germplasm resources has been significantly reduced 
[25]. Thus, it remains unclear what impact the artificially 
selected cultivated Camellia has had on the evolutionary 
mechanism of the cp genome.

Current research often ignores material differences 
between cultivated and wild species. After sequencing the 
complete chloroplast genome of CSSA (MH042531), we 
wanted to explore evolutionary characteristics between 
cultivated tea and its wild relatives [14]. To assess the var-
iations in the chloroplast genome in wild and cultivated 
species of Camellia, and to detect the evolutionary char-
acteristics of cultivated tea, we selected earlier published 
Camellia chloroplast genomes and conducted compara-
tive and evolutionary analysis. This can help us to bet-
ter understand the structure of the Camellia chloroplast 
genomes and the phylogenetic relationships among spe-
cies, and provide more information about the influence 
of human activities on tea. We believe that this research 
will encourage more researchers to pay attention to tea 
resources.

Results
Chloroplast genome features of cultivated tea
The lengths of the whole genomes of cultivated tea 
(CSSA, CSSL and CSAY) were slightly different, ranging 
from 157,025 to 157,100  bp. However, compared with 
CSSA and CSSL, the genome of CSAY was different. 
Both CSSA and CSSL contained 81 unique CDS genes, 
30 tRNA, 4 rRNA and 3 pseudogenes (ψycf1, ψycf2 and 
ψycf15). Among them, atpF, ndhA, ndhB, petB, petD, 
rpl2, rpl16, rpoC1, rps16, trnG-GCC , trnI-GAU , trnL-
UAA , and trnV-UAC  contained a single intron, while 
clpP and ycf3 contained two introns. However, in CSAY, 
orf42 and ycf15 were lost, and rps12 and trnA-UGC  had 
an inserted intron sequence (Fig. 1).

Comparison of chloroplast genomes between cultivated 
tea and wild tea
In our study, first, we compared CSS with its two cul-
tivated species (CSSA and CSSL). These species were 
defined as the Chinese cultivated type. Then, we com-
pared CSA with its one cultivated species (CSAY). 
These species were defined as the Assam cultivated 
type. Finally, we compared CSS, CSA and 12 wild but 
related species: Camellia azalea (CAZ), Camellia 
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crapnelliana (CCR), Camellia cuspidate (CCU), 
Camellia grandibracteata (CGR), Camellia impressin-
ervis (CIM), Camellia petelotii (CPE), Camellia pitardii 
(CPI), Camellia pubicosta (CPU), Camellia reticulata 
(CRE), Camellia sinensis var. pubilimba (CSP), Camel-
lia taliensis (CTA) and Camellia yunnanensis (CYU). 

These species were defined as the wild type (Tables  1 
and 2).

Chloroplast genomic similarity
In the Chinese cultivated type, the average length across 
the cultivated species was 62  bp smaller than CSS. In 
the Assam cultivated type, the genome length of CSAY 

Camellia sinensis var. sinensis cv. Anhua
157,025 bp

Camellia sinensis var. sinensis cv. Longjing43
157,085 bp

Camellia sinensis var. assamica cv. Yunkang10
157,100 bp

Fig. 1 Gene map of the complete chloroplast genome of cultivated tea. The inner circle corresponds to the GC content, and the next circle 
corresponds to the GC skew. The next three circles correspond to the genes. Genes with clockwise arrows represent reverse strands, while genes 
with counterclockwise arrows represent forward strands. Blue, red and aqua colors of the blocks represent protein-coding genes, introns and RNA, 
respectively. The third circle corresponds to the shared genes among three cultivated tea. The fourth circle corresponds to the unique genes of 
Camellia sinensis var. sinensis Anhua and Camellia sinensis var. sinensis Longjing43. The fifth circle corresponds to the unique genes of Camellia 
sinensis var. assamica cv. Yunkang10
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was 72  bp larger than CSA. In the wild type, the aver-
age length of the wild species was 156,923  bp, which 
was 194  bp and 105  bp variation compared with CSS 
and CSA, respectively. This showed that there was less 
length variation when comparing cultivated species with 
wild species (Table  1). Similarly, the number of genes 
and the GC content of cultivated species were more sta-
ble than that of wild species. After comparing the genes 
and introns insertion or deletion among the Chinese 
cultivated type, Assam cultivated type and wild type, we 
found that introns of the rps12 gene were deleted in CSS 
and its two cultivated species. The orf42, ycf1 and ycf15 
genes were deleted in CSA and CSAY. However, these 
events occurred randomly in wild species. The differ-
ences in the GC content of the CDS, intron and IGS in 
the Chinese cultivated type and Assam cultivated type 
were approximately 0.01–0.03%, and 0–0.02%, respec-
tively, but we found that the differences of the CDS, 
intron and IGS in the wild type were 0.02–1.05%.

mVISTA and Blast Ring Image Generator (BRIG) were 
used to compare the genomic sequence identity. Compar-
ing CSS and CSA with their cultivated types, the regions 
with relatively low identity were psaA_ycf3, petL_petG 
and ycf1_ndhF. Comparing CSS and CSA with other 
wild types, the regions with relatively low identity were 
atpH_atpI, trnE-UCC _trnT-GGU , psaA_ycf3, ycf15_trnL-
CAA , ycf1_ndhF and ndhG_ndhI (Figs. 2 and 3). In con-
clusion, at the genomic level, the cultivated species were 
more conserved than the wild species.

The expansion and contraction of IR regions
The locations of inverted repeat (IR) regions were 
extracted via a self-BLASTN search, and the character-
istics of the IR/Large single copy region (LSC) and IR/
Small single copy region (SSC) boundary regions were 
analyzed. The IRs boundary regions of the 17 complete 
Camellia cp genomes were compared, showing slight dif-
ferences in junction positions (Fig. 4). In order to detect 

Table 2 Information regarding the complete chloroplast genomes of the research species

1  The taxonomic classification of Camellia is based on Ming’s research [47]

Species Accession number Subgenus1 Section1 Types Sample location Location References

Camellia sinensis var. 
sinensis

KJ806281 Thea Thea Wild Yunnan Academy of Agri-
cultural Science

Yunnan, China [66]

Camellia sinensis var. sinen-
sis cv. Anhua

MH042531 Thea Thea Cultivar Hunan City University Hunan, China [14]

Camellia sinensis var. sinen-
sis cv. Longjing43

KF562708 Thea Thea Cultivar Huajiachi campus of Zheji-
ang University

Zhejiang, China [17]

Camellia sinensis var. 
assamica

MH394410 Thea Thea Wild Kunming Institute of 
Botany, Kunming

Yunnan, China [21]

Camellia sinensis var. assa-
mica cv. Yunkang10

MH019307 Thea Thea Cultivar Menghai County Yunnan, China [67]

Camellia sinensis var. 
pubilimba

KJ806280 Thea Thea Wild Yunnan Academy of Agri-
cultural Science

Yunnan, China [66]

Camellia grandibracteata NC024659 Thea Thea Wild Yunnan Academy of Agri-
cultural Science

Yunnan, China [66]

Camellia taliensis NC022264 Thea Thea Wild Kunming Institute of 
Botany

Yunnan, China [7]

Camellia impressinervis NC022461 Thea Archecamellia Wild Kunming Institute of 
Botany

Yunnan, China [7]

Camellia pubicosta NC024662 Thea Corallina Wild International Camellia 
Species Garden

Zhejiang, China [66]

Camellia azalea NC035574 Camellia Camellia Wild Yangchun County Guangdong, China [19]

Camellia pitardii NC022462 Camellia Camellia Wild Kunming Institute of 
Botany

Yunnan, China [7]

Camellia reticulata NC024663 Camellia Camellia Wild Kunming Institute of 
Botany

Yunnan, China [66]

Camellia crapnelliana NC024541 Camellia Heterogenea Wild Kunming Botanical Garden Yunnan, China [20]

Camellia cuspidata NC022459 Thea Theopsis Wild Kunming Institute of 
Botany

Yunnan, China [7]

Camellia petelotii NC024661 Thea Archecamellia Wild International Camellia 
Species Garden

Zhejiang, China [66]

Camellia yunnanensis NC022463 Camellia Heterogenea Wild Kunming Institute of 
Botany

Yunnan, China [7]
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possible IR border polymorphisms, first of all, we com-
pared the four IR boundaries of the Chinese cultivated 
type. No difference was found at the LSC/IRb or IRa/
LSC border; meanwhile, only minor differences were dis-
covered at the IRb/SSC and SSC/IRa borders. Next, we 
compared the four IR boundaries of the Assam cultivated 
type, and the results were similar. Then, we compared 
the cp genome boundaries of the wild type. The rps19 
gene at the LSC/IRb boundary expanded 52  bp from 
the LSC region to the IRb side in CPU, while it stopped 
at 46 bp from the LSC region in the rest of the species. 
On the other side of the IRa/LSC boundary, the lengths 
of the spacers between the IRa/LSC junction and the 
rpl2 gene (in IRa) were 112  bp for CPU, while those of 
the rest of the species were all 106 bp. Consistently, in all 

of the compared cp genomes, the ycf1 gene spanned the 
SSC/IRa region and the length of ycf1 ranged from 963 
to 1069 bp in IRa. Remarkably, most species have an ycf1 
pseudogene at the IRa/LSC junction, while this was not 
observed in CSA, CTA, CIM, CPI, CCR, CCU, or CYU. 
Similar to most plants, the ndhF gene involved in pho-
tosynthesis was located in the SSC region. However, the 
ndhF gene was located at the IRb/SSC boundary of CRE, 
and there was a 35  bp overlap between ndhF gene and 
ψycf1gene.

Nucleotide diversity
Comparisons based on the nucleotide diversity (Pi) val-
ues of the Chinese cultivated type, Assam cultivated type, 
and wild type were presented, including the intergeneric 
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Fig. 2 The sequence identity of seventeen Camellia species. The inner circle is the reference genome. Next circles represent the sequence identity 
between C.sinensis var. sinensis and sixteen other species. The outermost circle corresponds to the protein-coding genes and intergenic spacer 
regions. Genes with clockwise arrows represent reverse strands, while genes with counterclockwise arrows represent forward strands
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regions (IGS), protein-coding genes and introns (Addi-
tional file 1: Table S1, Fig. 5). In our study, the average Pi 
values for the genes, introns and IGS in wild type were 
approximately 6.6, 3.5 and 9.1 times that of the Chi-
nese cultivated type. In addition, the Pi values for all 
regions in the Assam cultivated type were 0. Compar-
ing Chinese cultivated type with wild type, the Pi values 
of most genes, introns and IGS in the wild species were 
higher than those of in the cultivated species. For exam-
ple, rps12, petD, rps19, trnI-CAU_rpl23, trnI-CAU_ycf2, 
trnI-GAU_rrn16, clpP_intron, rps16_intron, and atpF_
intron were highly variable in the wild species, but they 
were not variable in the three cultivated species. For the 
photosynthetic genes, except for ndhD, ndhF, ndhH and 
psbC, the Pi values of the photosynthetic genes of three 
cultivated tea were 0. The Pi values of these genes were 
smaller than that of the wild species. These results indi-
cate that these genes and noncoding regions were more 
conserved among the cultivated species than among the 
wild species.

Furthermore, although the average Pi values of the 
cultivated species were lower, we still found that the Pi 
values of rps16, rps4, trnL-UAA _intron, rps4_trnT-UGU 
, ndhC_trnV-UAC , cemA_petA, rpl33_rps18, psbN_psbH, 
rpl36_infA, rpl14_rpl16, rps7_rps12, ndhG_ndhI, trnV-
GAC _rps12, and rps12_rps7 in the Chinese cultivated 
type were higher than those in wild species, and these 
difference sequences were mainly located in the LSC 
region (Fig. 5).

Phylogenetic analysis of cultivated tea and wild tea
We constructed three phylogenetic trees of cultivated and 
wild tea, namely, the complete cp genomic tree (complete 
cp-Tree), all shared protein coding genes among all spe-
cies tree (SCDS-Tree) and the ycf1 gene tree (ycf1-Tree) 
(Figs.  6, 7 and 8). All phylogenetic trees supported the 
hypothesis that the Thea subgenus could be divided into 
two clades: clade I, including CSS, CSSL, CSSA, CSA, 
CSAY, CGR, CPU and CSP, and clade II, including CPE 
CIM, CTA and CCU. Clade I was strongly supported, 
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Fig. 3 Alignment visualization of the seventeen Camellia chloroplast genome sequences using C.sinensis var. sinensis as a reference. The vertical 
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because the posterior probabilities or bootstrap values 
obtained by neighbor-joining (NJ), maximum parsi-
mony (MP), Bayesian inference (BI) and maximum likeli-
hood (ML) were very high for each lineage. These results 
suggested that the seven species in clade I were closely 
related. All phylogenetic trees proved that CSS was the 
closest relative to CSSA and CSSL, and CSA was the clos-
est relative to CSAY. In particular, in the ycf1-Tree, the 
posterior probabilities or bootstrap values of these spe-
cies were lower than those of the complete cp-Tree and 
the SCDS-Tree. The value of CSSA was less than 50%. 
These results suggested that the ycf1 gene has diverged in 
cultivated tea.

In addition, we found conflict among the three trees 
(Figs. 6, 7 and 8). The topological structures consisting of 
the Camellia subgenus (CPI, CRE, CAZ, CCR, and CYU) 
and the Thea subgenus (CPE, CIM, CTA and CCU) were 
poorly supported by the complete cp-Tree, SCDS-Tree 

and ycf1-Tree, because most bootstrap values or pos-
terior probabilities were less than 50% for each lineage. 
These results may be caused by unbalanced sampling.

The cp-Tree showed some structural variations among 
the Camellia cp genomes (Fig. 6). The clade, which was 
made up of CSS, CSSL, CSSA, CSA, CSAY, CGR, CPU, 
CSP and CPE, was characterized by the rps12 intron 
deletion, the ψycf1 gene, and the ψycf15 gene (except for 
CSA and CSAY). The other species, except for CRE and 
CAZ, had lost the ψycf1 gene and the orf42 gene.

Chloroplast genome variation and evolution in cultivated 
tea
To explain the changes in the cp genome structure of 
the cultivated tea group, we detected single nucleotide 
polymorphism (SNP) and insertion/deletion (indel) in 
the cp genome of cultivated tea. In the Chinese culti-
vated type, after comparing the whole cp genome of 
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three species, 67 SNPs and 46 indels were found. The 
LSC, IRb, SSC and IRa regions contained 43, 3, 13, and 
8 SNPs and 37, 2, 5, and 2 indels, respectively (Addi-
tional file  2: Table  S2). Most of the SNPs and indels 
were located in the noncoding region (IGS and intron). 
There were 39 SNPs and 41 indels in this region, while 
28 SNPs and 5 indels were found in the protein cod-
ing region. The two ycf1 genes, which are located at 
the junction of SSC and IRa, contained the most SNPs 
and indels, 6 and 2, respectively. For the photosynthetic 
genes, psbC, ndhD, ndhF and ndhH presented SNP var-
iations, while the psbI gene presented indel variation. 
For the 14 sequences with higher Pi values in cultivated 
species than in wild species, trnV-GAC_rps12 and 
ndhG_ndhI contained the most abundant SNPs, with 5 
and 2 respectively (Fig. 5). In the Assam cultivated type, 
after comparing the whole cp genome of two species, 4 
indels were found, but no SNPs. All indels were located 
in the IGS region. In particular, a long sequence (77 bp) 

was inserted into the IRb/SSC boundary region (Addi-
tional file 3: Table S3).

To have a clear view of the evolution of cultivated spe-
cies, we used their 80 shared protein coding genes to cal-
culate their nonsynonymous nucleotide substitution (Ka) 
rates, synonymous nucleotide substitution (Ks) rates and 
Ka/Ks ratio. First, we compared CSS and its cultivated 
species. The results showed that only 16 protein coding 
genes had synonymous or nonsynonymous mutations 
(Fig.  9, Additional file  4: Table  S4). Among them, there 
were nonsynonymous mutations in matK, rps16, rpoC2, 
rpoB, accD, clpP, rps8, ycf1, ndhD, ndhH and rps15. The 
genes with the highest rate of nonsynonymous mutations 
were rps16, rps8 and rps15. There were synonymous 
mutations in rpoB, psbC, rps4, ycf4, rpoA and ndhF. The 
highest mutation rates were rps4, ycf4 and rpoA. Of the 
80 genes, 79 had a Ka / Ks value of 0, and only rpoB, had 
a Ka/Ks value of 0.3004 < 0.5, suggesting very strong puri-
fying selective pressure. Then, we compared CSA and its 
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cultivated species. However, no protein coding genes had 
synonymous or nonsynonymous mutations, suggesting 
very strong purifying selective pressure (Additional file 5: 
Table S5).

The site specific selection events of 16 genes with syn-
onymous or non-synonymous mutations were analyzed 
by Bayesian Empirical Bayes (BEB), and we found that 
some amino acid sites of ycf1 and rps15 exhibited site-
specific selection (Additional file  6: Table  S6). In ycf1, 
there were six sites under positive selection, and in rps15, 
there was one site under positive selection. For example, 
in the rps15 gene, the codon ACC (threonine) of CSS was 
mutated to AAC (asparagine) in two cultivated species.

Discussion
Understanding the genetic variation between cultivated 
and wild species is crucial for introducing interesting 
traits from wild species into cultivars [26]. Organelle 
genome sequencing has proven to be an effective way to 
resolve phylogenetic relationships among closely related 
species [27, 28]. Here, we constructed and compared the 
complete cpDNA genome sequences of three cultivars 
and fourteen wild species of Camellia. At the genomic 
level, cultivated species were more conserved than wild 
species, in terms of both architecture and linear sequence 
order (the length, genes number, genes arrangement, 

and GC content) (Table 2, Figs. 2 and 3). For other land 
plant species, such as peanuts, cherries and radishes, the 
cp genome size and structure, as well as the gene content 
and order, are highly conserved among the cultivated and 
wild species [29–31].

We found that the IR regions of cultivated tea had 
expanded or contracted. The IR length of the CSSA and 
CSSL was approximately 20  bp smaller than that of the 
CSS, accounting for 32% of the difference in the complete 
genome length. The IR length of the CSAY was approxi-
mately 30 bp larger than that of the CSA, accounting for 
42% of the difference in the complete genome length 
(Fig. 4). In fact, the contraction and expansion of IRs is 
considered to be one of the important reasons for the 
cp genome length variation [32]. Further SNP and indel 
analysis showed that ycf1 and trnV-GAC _rps12 changed 
in the Chinese cultivated type, while trnN-GUU _ndhF 
and rrn5_trnR-ACG  changed in the Assam cultivated 
type. In CSS and CSSL, a 9 bp sequence (TCC TTC TTC/
GAA GAA GGA) was inserted into the ycf1 gene (Addi-
tional file 2: Table S2). This is suggested that ycf1 is one of 
the important reasons for the expansion or contraction of 
the IRs of the Chinese cultivated type. The same results 
were also found in Zheng’s study [33]. He analyzed the 
cp genome length variation in 272 species and found that 
atpA, accD and ycf1 accounted for 13% of the difference 
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in length. Therefore, ycf1, which is associated with plant 
survival, may play a key role in the cp genome size vari-
ations of cultivated tea. In CSAY, a 77 bp sequence was 
inserted into the trnN-GUU_ndhF region (IRb/SSC 
boundary region) (Additional file 3: Table S3). This is the 
main reason for the expansion or contraction of the IRs 
of the Assam cultivated type.

In addition to the variations in genome size, there were 
also some nucleotide mutations in the cultivated spe-
cies. In this study, the nucleotide diversity of cultivated 
tea was lower than that of wild tea (Fig. 5), but the unbal-
anced sampling between the 14 wild tea and 3 cultivated 
tea may lead to nucleotide diversity difference of cpDNA 
fragments. The nucleotide diversity comparison of 358 
cultivated rice and 54 wild rice also presented similar 
results [34]. Nevertheless, we found that the nucleotide 
diversity of 14 sequences in the Chinese cultivated tea 
was higher than that of wild tea (rps16, rps4, trnL-UAA 
_intron, rps4_trnT-UGU , ndhC_trnV-UAC , cemA_petA, 
rpl33_rps18, psbN_psbH, rpl36_infA, rpl14_rpl16, 
rps7_rps12, ndhG_ndhI, trnV-GAC _rps12, and 
rps12_rps7) (Fig. 5). These sequences suggested the vari-
ations in the cp genomes of cultivated tea, and they are 
potential molecular markers for distinguishing Camellia 
species and for the phylogenetic analysis of Camellia.

Previous studies have proven that human interfer-
ence had effects on the genetic structure, leaf nutrients 
and pollen morphology of Camellia. Yan et al. analyzed 
the genetic relationship of five semi-wild tea which due 
to lack of human management for a long time were stud-
ied by using genome-wide SNP. They found that human 
interference will affect the genetic structure of tea. After 
the human interference stopped, the tea from five dif-
ferent geographical regions could be divided into three 
different groups because of the absence of free pollina-
tion [22]. Xiong et al. made comparative analyses of the 
nutrient content in the leaves of cultivated and wild C. 
nitidissima. They found that cultivated C. nitidissima 
had significantly higher contents of essential amino acids 
(26.05%) and total amino acids (33.27%) than wild C. 
nitidissima [23]. Shu et al. proved that there are obvious 
differences in pollen morphology and exine morphology 
between cultivated and wild species of Camellia [24]. 
Therefore, to explore specific evolutionary characteristics 
between cultivated tea and its wild relatives, we subse-
quently performed evolutionary research on cultivated 
tea.

First, to have a clear view of the cp genomic adaptive 
evolution of cultivated tea, we performed evolution-
ary analysis on the protein-coding sequences. The Ka/
Ks ratio is very useful for measuring selective pressure at 
the protein level [35]. In the Chinese cultivated type, Ka/
Ks value of 79 genes was 0, and only rpoB had a value of 

0.3004. In addition, some amino acids of ycf1 and rps15 
exhibited site-specific selection (Additional file 4: Tables 
S4 and Additional file  6: S6). rpoB is crucial for genetic 
information transmission, and it affects the transcrip-
tion of DNA into RNA and the translation of RNA into 
protein. They were also found to be under selective pres-
sure in beverage crops [13]. The rps15 gene has a func-
tion in chloroplast ribosome subunits [35]. ycf1, encoding 
a component of the chloroplast’s inner envelope mem-
brane protein translocon, is one of the largest plastid 
genes [13], and it is also essential for almost all plant 
lineages [36]. These positively selected genes may have 
played key roles in the adaptation of cultivated tea to var-
ious environments.

Generally, the deletion or insertion of amino acids in 
the encoded protein will affect the structure and func-
tion of this gene [37–39]. In the Chinese cultivated type, 
16 protein coding genes had nucleotide substitutions, 
among which the ycf1 gene had the largest number of 
nucleotide substitution. At the same time, in ycf1, five 
amino acid sites exhibited site-specific selection, and a 
9 bp sequence insertion was found in CSSA (Additional 
file 4: Table S4 and Additional file 6: S6, Fig. 9).

ycf1 has an open reading frame of unknown function, 
but some studies have inferred that ycf1 is very important 
for plant survival [33, 40]. In tobacco, a chimeric gene 
conferring resistance to aminoglycoside antibiotics has 
been transferred into ycf1 in the cp genome. Then, the 
plantlets were cultured in plant regeneration medium 
containing the antibiotic spectinomycin. After that, the 
maintenance of a fairly constant ratio of wild-type ver-
sus transformed genome copies was found. However, the 
wild-type genome was still present in all samples whereas 
the transplastomic fragments were missing from several 
samples after culturing in antibiotic-free medium. This 
experiment proved that ycf1 encodes products that are 
essential for cell survival. ycf1 is also an important molec-
ular marker of plants [41, 42], because it has higher vari-
ability than other known cp molecular markers (such as 
the widely used rbcL and matk genes), for both the total 
number of parsimony informative characters and the 
percent variability.

Phylogenetic analysis of cultivated and wild tea showed 
that CSSA and CSSL were closely related to the CSS, and 
CSAY was closely related to CSA (Figs. 6 and 7), which 
supports the previous finding that most of the cultivated 
tea originated directly from CSS and CSA [43]. However, 
in the ycf1-Tree, the posterior probabilities or bootstrap 
values of the cultivated tea branch were lower than that 
of the complete cp-Tree and the SCDS-Tree, which sug-
gested that the ycf1 gene has diverged in cultivated tea 
(Figs. 6, 7 and 8). Similar results have been found in Cory-
lus [44]. The ycf1 gene of Corylus chinensis and Corylus 
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avellana have a similar evolutionary history, which is dif-
ferent from that of Corylus heterophylla. This evolution 
of cultivated plants may be related to the utilization effi-
ciency of photosynthesis. Photosystem biogenesis regu-
lator 1 (PBR1), the RNA binding protein encoded by the 
nuclear genome, can improve the translation efficiency 
of ycf1 in the Arabidopsis thaliana cp genome. Addition-
ally, the symbiosis and stability maintenance of the three 
photosynthetic complexes are regulated [45]. However, at 
present, the effect of mutations in the single amino acid 
site and the insertion or deletion of the short sequence 
on the function of ycf1 is still not clear, and cultivated 
tea may provide important materials for this kind of 
research.

In the phylogenetic trees, CSS, CSA, CGR and CPU 
formed a monophyletic clade with 100% bootstrap val-
ues. CSS, CSA and CGR were classified into the sect. 
Thea, but CPU was classified into the sect. Corallina 
(Table 2). This indicates that CPU and sect. Thea plants 
have close genetic relationship. It also supports the result 
of Huang’s research [18]. However, CTA belongs to sect. 
Thea, together with two species of sect. Archecamel-
lia and one species of sect. Theopsis that were located 
in another clade, which indicates that the phylogenetic 
direction of CTA is different from that of the other sect. 
Thea species. CTA is often considered to be a wild rela-
tive of cultivated tea [43]. Both are monoecious, insect-
pollinated and outcrossing species. However, there are 
differences in their morphological characters. For exam-
ple, CTA has the features of 5-locule ovaries and large 
sepals and petals, whereas CSS has features of 3-locule 
ovaries and small sepals and petals [46, 47]. Based on the 
evidence of the chloroplast genome, we hypothesized 
that CTA and CSS have different genetic polymorphism. 
In this study, CIM and CPE were not clustered into the 
same branch. The taxonomy of CIM is controversial. 
CIM and CPE were classified into the sect. Archecamel-
lia by Ming et al. [47], while Chang et al. [46] classified 
CIM into the sect. Chrysantha. Therefore, we infer that 
it is not acceptable to combine the sect. Archecamellia 
and the sect. Chrysantha. In the subgenus Camellia, CPI 
and CRE formed a clade, as did CAZ and CCR, and the 
bootstrap value was 97–100%. Among them, CPI, CRE 
and CAZ are all sect. Camellia plants, while CCR is clas-
sified into sect. Heterogenea [47] or sect. Furfuracea [46]. 
However, both morphological and molecular characteris-
tics indicate that CCR is closely related to some plants in 
sect. Camellia [48].

Conclusion
In this work, the complete cp genomes of three culti-
vated species and 14 wild species of Camellia were stud-
ied. Genomic variation and evolutionary processes were 

compared in these species. Genomic variation analyses 
showed that the cultivated species were more conserved 
than the wild species in terms of architecture and linear 
sequence order. In the Assam cultivated type, the varia-
tion in the chloroplast genome was mainly manifested by 
sequence insertion of IGS regions. In the Chinese culti-
vated type, the variation in the chloroplast genome was 
mainly manifested by the nucleotide polymorphism and 
sequence insertion of some sequences. These nucleotide 
polymorphisms also led to the mutation of amino acid 
sites in some genes, among which ycf1 was the gene with 
the most mutation sites. In addition to amino acid muta-
tions, there was a 9  bp base insertion in the ycf1 gene. 
ycf1 is believed to be a critical gene for plant survival, and 
it may influence photosynthesis and be related to plant 
adaptation. Evolutionary processes analyses showed that 
CSA and its cultivated species were tightly clustered, 
while CSS and its cultivated species were not tightly clus-
tered. The evolutionary relationship between CSS and 
CSSL was closer than that with CSSA in the ycf1-Tree. 
However, at present, the effect of the mutation in the sin-
gle amino acid site and insertion or deletion of the short 
sequence on the function of ycf1 are still not clear, and 
cultivated tea may provide important materials for this 
kind of research.

Methods
Genomic materials collection of cultivated tea
The complete cp genome of CSSA has been presented 
and annotated in our previous study [14] with GenBank 
accession number MH042531. Meanwhile, we searched 
in the National Center for Biotechnology Information 
(NCBI) dataset to find the published cultivated tea’s 
complete cp genomes, and only CSSL and CSAY with 
accession numbers KF562708 and MH019307 have been 
published [17]. Gene map of the three cultivated tea was 
generated using BRIG [49].

Comparative analysis between cultivated tea and wild tea
The Basic Local Alignment Search Tool (BLAST) was 
used to find closely related cp genomes of CSSA in 
NCBI. After the cp genome of Camellia was screened, 
17 Camellia cp genomes with sampling information 
remained, including 3 cultivated species (CSSA, CSSL 
and CSAY) and 14 wild species (Table 2). Previous stud-
ies have shown that both CSSA and CSSL originated 
directly from CSS, while CSAY originated directly from 
CSA [43, 49]. Therefore, we used CSS and CSA as the 
reference sequence to study the genomic variations and 
evolution direction between cultivated tea and wild tea.

Three methods were used for comparative genomic 
analysis: (I) The comparison of the cp genomic sequence 
identity was based on the method of Li [50] using 



Page 15 of 17Peng et al. BMC Ecol Evo           (2021) 21:71  

mVISTA in Shuffle-LAGAN mode and BRIG, respec-
tively. (II) The comparison of the expansion and contrac-
tion of IR regions was presented. First, we annotated and 
extracted the IR boundary of the Camellia cp genomes 
by Plastid Genome Annotator (PGA) [51]. Then, the IR 
boundary regions were visualized by using Visio profes-
sional 2016. (III) Comparisons based on the Pi values 
of the Chinese cultivated type, Assam cultivated type, 
and wild type were performed according to the method 
of Njuguna [52]. First, we used annotation information 
to extract intergenic regions, protein coding genes and 
intron regions of 17 Camellia species in Tbtools v0.6666 
[53]. After comparing these sequences, 211 loci shared 
among Camellia species were found, including 80 pro-
tein coding genes, 117 intergenic regions, and 14 intron 
regions. Each loci was divided into three datasets: (I) the 
sequences consisted of the Chinese cultivated type, (II) 
the sequences consisted of the Assam cultivated type; 
(III) the sequences consisted of wild type. Each sequence 
was aligned using clustal alignment with default set-
tings in MEGA7.0 [54]. The Pi of these regions was cal-
culated using DnaSP v6.10.04 [55] to show divergence at 
sequence level.

Phylogenetic analysis of Camellia
Three datasets were used to construct the following phy-
logenetic trees of Camellia: (I) the complete cp genomes, 
(II) the all shared protein coding genes among all species 
(SCDS), and (III) ycf1 gene sequences. First, all datasets 
were aligned using MAFFT v7.380 [56] under the FFT-
NS-2 default setting. The alignments were used for phy-
logenetic analysis. After that, according to the method 
described by Xie et  al. [57] and Zhang et  al. [58], we 
used four methods to construct phylogenetic trees: NJ 
method, MP method, BI method and ML method. Cof-
fea canephora and Coffea arabica were selected as the 
outgroup.

The NJ analysis was reconstructed via MEGA7.0 [54] 
under the default settings with 1000 bootstrap values. 
The MP analysis was performed in PAUP 4.0a167 [59] 
with heuristic searches with 1000 bootstrap replicates. 
The BI analysis was performed with Mrbayes 3.2.7 [60] 
under the best substitution models and parameters. The 
analysis parameters were set as four chains that were run 
simultaneously for 10,000,000 generations or until the 
average standard deviation of the split frequencies fell 
below 0.01. The best substitution models and parameters 
were computed by jmodeltest 2.1.7 [61]. The ML analy-
sis was carried out in IQ-TREE [62] using the default set-
tings, with 1000 bootstrap values for tree evaluation. The 
best substitution models were computed by IQ-TREE. 
All the best substitution models mentioned earlier were 
listed in Additional file 7: Table S7.

Evolutionary analysis of cultivated tea
After alignment of the cultivated and wild species, 
the number and position of SNPs and indels in the 
genomes were presented in DnaSP v6.10.04 according 
to the Wu’s method [63].

The Ka and Ks rates as well as the Ka/Ks ratio in the 
homologous protein-coding genes were used to evalu-
ate the adaptive evolution of the cultivated species. After 
aligning each gene using the ClustalW (Codons) program 
in MEGA7.0, the Ks, Ka and Ka/Ks values of each gene 
were determined according to Dong’s method [64] with 
the program from the PAML package [65]. For identifica-
tion of site-specific selection, four models, M1 (neutral), 
M2 (selection), M7 (beta) and M8 (beta & ω), were used 
in codeml from the PAML package. The BEB was used to 
calculate the posterior probabilities for site classes. Only 
sites with posterior probabilities > 0.9 were selected.
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