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Signal, bias, and the role of transcriptome 
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Abstract 

Background: Phylogenomic approaches have great power to reconstruct evolutionary histories, however they rely 
on multi-step processes in which each stage has the potential to affect the accuracy of the final result. Many studies 
have empirically tested and established methodology for resolving robust phylogenies, including selecting appropri-
ate evolutionary models, identifying orthologs, or isolating partitions with strong phylogenetic signal. However, few 
have investigated errors that may be initiated at earlier stages of the analysis. Biases introduced during the generation 
of the phylogenomic dataset itself could produce downstream effects on analyses of evolutionary history. Transcrip-
tomes are widely used in phylogenomics studies, though there is little understanding of how a poor-quality assembly 
of these datasets could impact the accuracy of phylogenomic hypotheses. Here we examined how transcriptome 
assembly quality affects phylogenomic inferences by creating independent datasets from the same input data repre-
senting high-quality and low-quality transcriptome assembly outcomes.

Results: By studying the performance of phylogenomic datasets derived from alternative high- and low-quality 
assembly inputs in a controlled experiment, we show that high-quality transcriptomes produce richer phylogenomic 
datasets with a greater number of unique partitions than low-quality assemblies. High-quality assemblies also give 
rise to partitions that have lower alignment ambiguity and less compositional bias. In addition, high-quality partitions 
hold stronger phylogenetic signal than their low-quality transcriptome assembly counterparts in both concatenation- 
and coalescent-based analyses.

Conclusions: Our findings demonstrate the importance of transcriptome assembly quality in phylogenomic analy-
ses and suggest that a portion of the uncertainty observed in such studies could be alleviated at the assembly stage.
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Background
The genomics revolution has resulted in a transforma-
tion of the approaches that scientists use to estimate 
phylogeny by vastly increasing the number of available 
independent genetic markers [1, 2], as well as the number 
of taxa included in phylogenetic analyses [3]. However, 
for taxa that remain largely unrepresented in publicly 
available datasets, generating a large number of genetic 

markers, often accomplished as part of a de novo whole 
genome sequencing project, continues to be a chal-
lenge. Transcriptome sequencing is a more accessible 
method of generating a reduced representation of the 
nuclear genome that requires fewer sequenced reads and 
is therefore less expensive than whole genome sequenc-
ing (although it is not without its own challenges, see 
[4]). In addition, transcriptomes perform comparably to 
genomes in phylogenomic studies when used with robust 
methods of ortholog identification [5]. For these reasons, 
data derived from transcriptome assemblies have become 
widely used in phylogenomic studies and have come to 
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represent a mainstream approach to phylogenetic recon-
struction [6–10].

The generation of a phylogenomic data matrix is a 
complex and critical process, as biases introduced at this 
point can propagate in downstream analyses in unpre-
dictable ways. Phylogenomic data matrices are composed 
of multiple (often hundreds of ) partitions, alignments 
of orthologous loci that have been filtered and con-
catenated together (concatenation-based methods) or 
analyzed as separate gene trees to inform species trees 
(coalescent-based methods), resulting in data matrices 
that are highly dimensional. In addition, phylogenomic 
datasets are often comprised of an agglomeration of data 
from multiple research groups that may have leveraged 
different sequencing and assembly strategies. Therefore 
it is not surprising that there are still many questions 
concerning the best practices related to the generation 
and application of these massive new datasets to phylog-
enomics [11–13]. Many researchers have addressed ques-
tions related to the most appropriate modeling schemes 
for different partitions of the data matrix [14–19]. Some 
have considered the impact of incomplete lineage sorting 
in phylogenomic reconstruction and have leveraged this 
property of recently diverged lineages to inform species 
trees [20, 21]. Others have sought to examine differential 
phylogenetic signal among partitions in order to maxi-
mize phylogenomic performance [22, 23]. Increasingly, 
researchers have added the additional step of recoding 
the amino acid data matrix in an attempt to account for 
saturation and compositional heterogeneity ([16, 22–24], 
although see [25]). While each of these issues is critical to 
consider in phylogenomic studies, collectively they deal 
with aspects of the analyses that occur after transcrip-
tome datasets have been assembled. In most cases, biases 
introduced during the generation of the primary tran-
scriptome assemblies are not explicitly addressed and 
may persist in influencing downstream inferences.

Whole transcriptome sequencing is itself a relatively 
new technology, having gained widespread popularity 
only in the past decade [26]. Therefore, RNA-seq data are 
commonly treated inconsistently among different phy-
logenomic studies. While many genomics studies have 
investigated methodological impacts of read trimming 
[27, 28], error correction [29–31], different approaches 
to transcriptome assembly [32], and quality assessment 
[33–35], researchers using transcriptome assemblies for 
phylogenomic applications have been slow to adopt many 
of these recommendations (but see [36–39]). Phylog-
enomics studies commonly provide few details regarding 
the nature and quality of the transcriptome assemblies 
used as input in phylogenomic workflows.

To date there has been no empirical study of how 
transcriptome assembly quality may affect downstream 

phylogenomic analyses, although many impacts are pos-
sible. Poor-quality assemblies may alter the accuracy of 
ortholog prediction, alignment quality, and phylogenetic 
signal. We predicted that in phylogenomic analyses, 
poor-quality assemblies would result in differences in the 
number and identity of orthogroups obtained as well as 
differences in the quality of the partition alignments com-
pared to those from higher-quality transcriptomes. Here 
we examine the effects of transcriptome assembly quality 
on these metrics. Our research strategy is to eliminate as 
many variables that arise from phylogenomic workflows 
as possible so that we can attribute discrepancies in phy-
logenomic results to the differences in transcriptome 
assembly quality. We use a well-characterized quanti-
tative metric (TransRate score, see “Methods”; [35]) to 
evaluate transcriptome assemblies and to systematically 
construct two separate phylogenomic datasets: one of 
high quality and one of intentionally low quality. We then 
perform identical phylogenetic analyses on each dataset, 
allowing the identification of discrepancies between them 
and the assessment of their relative phylogenomic perfor-
mance. We find that high-quality transcriptomes produce 
larger phylogenomic datasets with partitions that have 
less alignment ambiguity, weaker compositional bias, and 
are more concordant with the constraint tree, in both 
concatenation- and coalescent-based analyses, than data-
sets derived from low-quality transcriptome assemblies. 
Our results indicate that a portion of the uncertainty in 
phylogenomic studies likely stems from issues related to 
the initial assemblies used in preparing phylogenomic 
data matrices.

Results
Datasets chosen based on TransRate scores have different 
numbers of transcripts, but show little variation in BUSCO 
score
Our study design controls for several factors that could 
preclude direct comparison between empirical outcomes 
in phylogenomic analyses. We focus on the craniate 
phylogeny because there is little debate about the major 
relationships within the group and because RNA-seq 
read data are available from the same tissue type (liver) 
for a wide range of taxa. The read sets used in this study 
ranged in size from 13.7  million read-pairs (Calidris 
pugnax) to 46.4  million read-pairs (Ambystoma mexi-
canum). We prepared one high-quality dataset and one 
low-quality dataset from the same read sets using the 
Oyster River Protocol (ORP) [32], an assembly pipeline 
that creates five different transcriptome assemblies for 
each raw RNA-seq dataset, calculates quality scores for 
each one, and produces a merged transcriptome assem-
bly consisting of the highest quality unique transcripts 
(Fig. 1). We leverage the ORP here to intentionally create 
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low-quality transcriptome assemblies that represent real-
world empirical outcomes, in addition to high-quality 
transcriptome assemblies, for each taxon. Reads assem-
bled into significantly fewer transcripts in the high-qual-
ity dataset compared to the low-quality dataset (P < 0.001, 
Fig.  2a), with an average of 178,473 and 321,306 tran-
scripts per assembly respectively. The BUSCO scores 
and numbers of orthogroups recovered from orthology 
analysis of each assembly were both higher on average 
in the high-quality dataset (Table  1). We compared the 
number of transcripts in each assembly with the num-
ber of orthogroups found for that assembly and identi-
fied a significant relationship between these measures 
in both datasets (linear regression: high-quality dataset, 
P = 0.001; low-quality dataset, P = 0.002; Fig.  2b). The 
high-quality dataset based on overall TransRate assem-
bly scores had a median TransRate score of 0.47236 
(ranging from 0.23542 to 0.68372), while the low-quality 
dataset’s median TransRate score was 0.15943 (ranging 
from 0.09216 to 0.25281), and overall TransRate scores 
of the two datasets were significantly different from one 
another (P < 0.001; Fig.  2c). We did not find a signifi-
cant relationship between the overall TransRate scores 
of assemblies and the number of orthogroups obtained 
for each assembly (linear regression: high-quality data-
set, P = 0.43; low-quality dataset, P = 0.51; Fig.  2d). The 
number of orthogroups for each dataset was higher in the 
high-quality dataset, but still largely comparable to the 
low-quality dataset with the exception of two low-quality 

read datasets, Takifugu rubripes and Callorhinchus milii. 
Each of these datasets recovered much lower numbers of 
orthogroups than other taxa in the low-quality dataset. In 
addition to TransRate evaluations, the BUSCO scores for 
the low-quality T. rubripes and C. milii assemblies were 
also dramatically lower than all other BUSCO scores in 
both datasets (2.7% and 7.2% respectively, compared 
to the next lowest score: 42.9% for Notechis scutatus). 
However, the overall BUSCO scores for the high- and 
low-quality datasets were not significantly different (Wil-
coxon rank sum: P = 0.24, Fig. 2e). We observed a signifi-
cant relationship between BUSCO score and number of 
orthogroups recovered in both datasets (linear regres-
sion: high-quality dataset, P = 0.001; low-quality dataset, 
P = 0.001; Fig. 2f ).

High‑quality assemblies result in a larger number 
of partitions after processing
Next, we isolated one-to-one orthologs that were pre-
sent in 100% of taxa. After aligning and filtering these 
orthologs into partitions we observed that one major 
impact of assembly quality on phylogenomic data 
matrix construction is the scale of the resulting data. 
We obtained 2016 data partitions from the high-quality 
dataset, whereas we recovered only 408 data partitions 
from the low-quality dataset. 332 data partitions in both 
the high- and low-quality datasets included an identi-
cal reference sequence from the Mus musculus refer-
ence transcriptome, demonstrating that a majority of the 

Fig. 1 The phylogenomic pipeline used in this analysis from publicly available transcriptomic datasets to partition tree statistics. In the top 
flowchart red borders indicate bioinformatic tools used while pink ones depict datasets. The Oyster River Protocol is highlighted in yellow, and in 
the inset: darker blue borders represent steps of the protocol while the resulting transcriptome assemblies are outlined in lighter blue
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data partitions recovered from the low-quality dataset 
are also represented in the high-quality dataset (Fig. 3a). 
The high-quality dataset however, included many more 
unique sequence partitions (1684 unique partitions 
compared to 76, Fig. 3a). The distributions of alignment 
lengths between datasets differed significantly before 
alignment filtering (Wilcoxon rank sum, P = 0.02; Fig. 3b) 
with alignments in the high-quality dataset being longer 
on average, but not after alignment filtering (Wilcoxon 
rank sum, P = 0.79; Fig. 3c).

High‑quality alignments possess reduced compositional 
bias and alignment ambiguity
In order to draw direct comparisons between the parti-
tions derived from the high- and low-quality datasets, 
we examined the alignment statistics of the 332 parti-
tions that were shared between them. The percentage 

of constant sites in each alignment was not significantly 
different between the high- and low-quality datasets 
(Wilcoxon rank sum, P = 0.37, Fig.  4a). Similarly, the 
percentage of parsimony-informative sites in the align-
ments did not differ significantly between the two data-
sets (Wilcoxon rank sum, P = 0.89, Fig.  4b). However, 
the number of sequences that failed the composition 
 Chi2 test [40] and the number of sequences with over 
50% alignment ambiguity were significantly different 
between the two datasets (composition—Wilcoxon 
rank sum, P = 0.006, Fig. 4c; ambiguity—Wilcoxon rank 
sum, P < 0.001, Fig. 4d), and both of these metrics were 
higher in the low-quality dataset.

a c e

b d f

Fig. 2 Summary statistics for the high- and low-quality datasets produced. We selected high- and low- quality datasets based on TransRate 
score. This resulted in transcriptome assemblies with both high and low completeness, according to complete BUSCO score, in each dataset. 
Larger assembles in the low-quality dataset did not lead to higher BUSCO or TransRate scores. Dotted lines in density plots represent medians for 
each dataset. a Density plot of the total number of transcripts (in thousands) in each transcriptome. b Relationship between the total number of 
transcripts (in thousands) and the total number of orthogroups. c Density plot of overall TransRate scores for each assembly. d Relationship between 
the overall TransRate score and the total number or orthogroups. e Density plot of complete BUSCO score for each transcriptome assembly. f 
Relationship between BUSCO score and total number of orthogroups
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No bias in gene content in partitions from both high‑ 
and low‑quality datasets
Phylogenetic information content of a given phylog-
enomic data matrix could be impacted if the partitions 
themselves are drawn from a biased set of loci. In order 
to understand the genetic composition of phylogenomic 
datasets derived from high- and low-quality assemblies, 
we conducted gene ontology (GO) analysis of the recov-
ered partitions. We did not observe enrichment for func-
tional category in either the high- or low-quality datasets.

Partitions from high‑quality assemblies recapitulate 
the constraint tree to a larger extent than those 
from low‑quality assemblies in both concatenation‑ 
and coalescent‑based analyses
Finally, we sought to understand the impact of assem-
bly quality on phylogenetic signal. We first compared 
the two datasets to a constraint tree representing the 
current view of craniate relationships [41, 42] by using 
Robinson–Foulds (RF) distances and internode cer-
tainty all (ICA) values in concatenation analyses. RF 
distances reflect topological differences between par-
tition subtrees and the constraint tree [43], whereas 
ICA values indicate the proportion of data partitions 
for the high-quality and low-quality datasets that sup-
port each node in our constraint tree [44]. We found 

that the high-quality dataset had significantly lower RF 
values overall than the low-quality dataset (Wilcoxon 
rank sum, P < 0.001; Fig.  5), indicating a shorter dis-
tance to the constrained craniate tree for the partitions 
in the high-quality dataset. The partitions derived 
from the high-quality dataset possessed character-
istically higher ICA values than those from the low-
quality dataset, although the distributions of scores 
were not significantly different (Wilcoxon rank sum, 
P = 0.47; Fig. 6) likely due to low statistical power. We 
also investigated the relative performance of the two 
datasets in coalescent-based analyses using ASTRAL 
[20, 45]. Similarly, we found that the high-quality data-
set produced gene trees with less discordance to the 
estimated species tree than their low-quality counter-
parts, with a normalized quartet score of 0.75 for the 
high-quality partitions compared to 0.73 for the low-
quality partitions. Both datasets resolved the same 
topology in ASTRAL analyses (Fig. 7).

In summary, we find that datasets derived from 
high-quality transcriptome assemblies yield larger 
phylogenomic matrices than those from low-quality 
transcriptome assemblies. In addition to being more 
numerous, the data partitions in the high-quality 
dataset are also less compositionally biased, have less 
alignment ambiguity, and are less discordant with the 
constraint tree.

a

b

c

Fig. 3 Length of alignments and number of partitions for each dataset. a Venn diagram showing number of partitions unique to each dataset, 
and common between them. The number of partitions recovered through the phylogenomic analysis pipeline is fivefold higher when the dataset 
is made up of high-quality transcripts compared to lower-quality ones. b Density plot of alignment lengths of each partition before filtering 
with Gblocks. c Density plot of alignment lengths of each partition after filtering with Gblocks. While the lengths of the individual alignments are 
significantly different before Gblocks filtering, they are similar afterwards
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Discussion
Given the ubiquity of transcriptome usage phylogenom-
ics, we sought to understand how sub-optimal data hand-
ing practices during the assembly process may affect 
downstream phylogenomic analyses. We observed a 
general trend in our analyses where more accurate tran-
scriptome assemblies resulted in phylogenomic datasets 
with a greater number of unique data partitions, longer 
alignments, fewer ambiguous regions, less compositional 
bias, greater consistency with the known phylogeny in 
concatenation-based analyses, and higher normalized 
quartet scores in coalescent-based analyses. We did not 
uncover any functional biases in the GO terms associated 
with either dataset.

High‑quality assemblies result in a larger number 
of partitions after phylogenomic processing
The most dramatic difference between the high- and 
low-quality phylogenomic data matrices is the number 
of orthogroups that contained all species. After estimat-
ing one-to-one orthologs, aligning the orthologs, and 

filtering the alignments, this difference led to ~ five times 
the number of data partitions in the high-quality dataset 
compared with the low-quality dataset. Transcriptomic 
assembly errors that are expected to pervade low-qual-
ity assemblies include the generation of chimeric tran-
scripts, the generation of incomplete transcripts, or the 
failure to generate transcripts due to missing data [32, 
35]. Our results from analyses of the low-quality assem-
blies indicate that incompletely assembled transcripts 
may be at least partially responsible for the differences 
in partition number because the partition alignments 
before filtering are significantly longer in the high-qual-
ity dataset, indicating fewer incompletely assembled 
transcripts in the latter. While OrthoFinder [46, 47] may 
be somewhat robust to these issues, when more com-
plete sequence information is provided in high-quality 
transcripts, OrthoFinder analyses identify significantly 
greater numbers of orthogroups that contain a high 
proportion of species and therefore greater numbers 
of orthologs. Missing transcripts could also impact the 
accuracy of downstream analyses and the establishment 

ba

dc

Fig. 4 Density plots of four alignment metrics for both datasets. Alignments created from low-quality transcriptome assemblies have similar 
percentages of constant and parsimony-informative sites, but higher compositional bias and ambiguity when compared to alignments from 
high-quality assemblies. a Percentage of constant sites in each partition alignment. b Percentage of parsimony-informative sites in each partition 
alignment. c Number of sequences that fail the composition test, normalized by partition alignment length. d Number of sequences that contain 
more than 50% gaps/ambiguity in each partition alignment
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of one-to-one orthologs because, depending on what 
data are missing, orthologs and paralogs could become 
conflated between taxa. Our results are consistent with 
this expectation because among partitions that are 
shared between high- and low-quality datasets, those 
from the high-quality dataset show more accurate phylo-
genetic signal, as measured by constraint tree analyses in 
concatenation analyses and in coalescent approaches (see 
below).

We identified two transcriptome assemblies within the 
low-quality dataset, Takifugu rubripes and Callorhinchus 
milii, which have dramatically lower BUSCO scores 
and number of orthogroups recovered than other taxa 
within the same dataset. We included these two taxa in 
the analysis despite their extreme BUSCO scores for a 
number of reasons. First, these taxa occupy important 
phylogenomic positions within the craniate tree and pub-
licly available craniate liver transcriptome datasets are 
somewhat limited. Second, while the TransRate scores 
for these two taxa are below average for the low-quality 
dataset (Fig. 2c, d), they are well within the distribution 
of low-quality assembly TransRate scores, indicating that 

these two taxa yield assemblies that are contiguous and 
correctly assembled to a comparable extent to the other 
assemblies included in that dataset. While it is standard 
practice to deposit raw reads into public databases, the 
read-sets for these two species appeared to have been 
trimmed prior to public data deposition [48], making 
them shorter than the other read-sets. We identified 
average read length as the probable reason for the lack of 
genic completeness as measured by BUSCO for these two 
taxa. Due to this shorter read length, these two organ-
isms performed especially poorly in rnaSPAdes with a 
kmer length of 75 (only reads of length k + 1 are used in 
assembly), which was subsequently the assembly used 
in the low-quality dataset for both of these organisms. 
Importantly, these two species’ corresponding assem-
blies in the high-quality dataset were not outliers (Fig. 2c, 
d), indicating that a robust assembly strategy can com-
pensate for sub-optimal sequence reads. Therefore, by 
including these two taxa, we were able to represent a sit-
uation commonly encountered in phylogenomic studies 
that utilize publicly available data—the inclusion of reads 
of poor quality or that have been previously processed.

ba

Fig. 5 Per partition Robinson–Foulds (RF) distances to the constraint tree are significantly shorter in the high-quality dataset compared with the 
low-quality dataset. a Density plot for all partitions from both datasets. b Density plot for only those 332 partitions that are shared between the two 
datasets
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The drastic difference in number of partitions in the low-
quality dataset compared to the high-quality dataset is due 
in part to these two taxa having smaller and less complete 
assemblies than all others. However, when we relax the 
strict filtering to include orthogroups with up to two miss-
ing taxa (thereby giving the low-quality dataset the oppor-
tunity to exclude T. rubripes and C. milii) we find that the 
high-quality dataset still has over 1600 more partitions 
than the low-quality dataset, and therefore the inclusion 
of these taxa is not the only driving force behind the dif-
ference in partitions between the datasets. While there are 
fewer partitions in the low-quality dataset, it is still a suf-
ficient number (408) for most downstream phylogenomic 
applications. Therefore, we conclude that while the situa-
tion encountered with the T. rubripes and C. milii RNA-seq 
data has an effect on some aspects of our phylogenomic 
analysis, their effects are only manifested in analyses of the 
low-quality assemblies and extend beyond data drop out.

Low‑quality assemblies produce alignments with more 
compositional bias and alignment ambiguity 
than high‑quality assemblies
In the process of making gene trees for each of the data 
partitions, IQ-TREE calculates a number of metrics 

about the partition alignments and the sequences 
within them [40]. One such test is for compositional 
homogeneity, which measures the character composi-
tion of amino acids in each sequence against the char-
acter composition in the whole alignment. Here, we 
chose to assess changes in compositional heterogene-
ity using the simple  Chi2 test implemented in IQ-TREE 
[40, 49]. Heterogeneity or bias in amino acid compo-
sition can mislead phylogenetic inferences: distantly-
related organisms that have high compositional bias 
may erroneously group together [50]. The number of 
sequences failing the composition test—that is, the 
number of sequences with higher compositional het-
erogeneity than expected by chance—was higher in the 
partitions from the low-quality dataset. Because these 
partitions have direct counterparts in the high-quality 
dataset, this difference in compositional heterogeneity 
is directly attributable to a difference in assembly qual-
ity. Similarly, the partitions from the low-quality data-
set also contained more sequences with over 50% gaps 
or ambiguity in the alignment. While global alignments 
often contain gaps because of insertions or deletions in 
the sequences, comparison of the two datasets implies 
that the greater number of gaps in the low-quality 

b

a

Fig. 6 Partitions derived from the high-quality dataset have higher internode certainty all (ICA) values than those derived from the low-quality 
dataset when compared to the constraint tree. a Density plot of ICA values. b Average ICA values for each node. Blue represents the high-quality 
dataset, red represents the low-quality dataset. Negative ICA values suggest that the node conflicts with at least one other node that has a higher 
support
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dataset also results from incorrect transcriptome 
assemblies rather than natural variation.

The low-quality dataset contained some partitions that 
the high-quality dataset did not have. These partitions 
could be unique transcripts only assembled in the low-
quality dataset, or they could be the result of differential 
pruning of paralogous sequences between the two data-
sets, resulting in a different Mus identifying sequence in 
two partitions that represent the same gene family. They 
might also be erroneous or duplicate partitions that were 
misidentified during the OrthoFinder procedure as sepa-
rate gene families due to poor assembly quality. In prin-
ciple, differential data assembly quality could inject bias 
into the resulting orthogroups if some loci, perhaps short 

or highly expressed genes, were preferentially assembled 
among the different datasets, however our GO analyses 
showed no enrichment or depletion of GO terms in these 
partitions.

Partitions derived from high‑quality assemblies perform 
better in both concatenation‑ and coalescent‑based 
phylogenomic analyses
In this study, we used quantitative analyses to assess 
phylogenomic performance of the high- and low-quality 
transcriptome assemblies. We showed that the individ-
ual partitions included in the high-quality dataset were 
closer to the constraint tree by calculating RF distances. 
The high-quality dataset had significantly smaller RF 

Fig. 7 Species tree analysis in ASTRAL reveals a similar pattern to concatenation analyses. ASTRAL analyses of gene trees from 332 shared partitions 
from the high- and low-quality datasets result in identical topologies. In addition to normalized quartet scores being higher for gene trees derived 
from the high-quality dataset, node support values for the high-quality dataset are marginally stronger than those from the low-quality dataset. 
Support values represent support for quadripartitions of the tree, and only those that were less than 1 are represented
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distances to the constraint tree in concatenation-based 
analyses (Wilcoxon rank sum, P < 0.001) and less dis-
cordance in coalescence-based analyses as indicated by 
normalized quartet score (Fig. 7). While the ICA values 
of the high-quality dataset were not significantly higher 
than those in the low-quality dataset, the trend shows 
that ICA values are generally higher among partitions 
from the high-quality dataset with a greater proportion 
of partitions falling above 0.6. This indicates that the gene 
trees estimated from the high-quality dataset partitions 
are more consistent with the constraint tree of craniates 
and show greater phylogenetic signal [51] than the low-
quality dataset in concatenated analyses (Fig. 6b).

Limitations in data availability and statistical power 
do not affect our conclusions
Our research strategy was to eliminate as many vari-
ables as possible so that we could isolate the effects of 
assembly quality on phylogenomic performance. These 
variables include the type of tissue that RNA-seq data-
sets are derived from and the topology itself. We treat 
the craniate phylogeny, for which few arguments remain 
regarding the relationships of the taxa included [41, 42], 
as a “known” parameter to constrain our analyses. In 
this way we were able assess how close a given analysis 
accords with that constraint in light of other perturba-
tions like assembly quality. However, it is notable that 
phylogenomic trees based on the 332 data partitions that 
are common to both the high-quality and low-quality 
datasets, using either concatenation- or coalescent-based 
methods, fail to resolve the craniate phylogeny accurately 
(Fig. 7; Additional file 2: Figure S1). While this result has 
no bearing on any of the conclusions presented here, it 
is likely due to two factors. First, the magnitude of both 
datasets, 332 partitions, is far fewer than that included in 
recent well-resolved phylogenomic studies of craniates 
[41]. Here, our utilization of only 332 partitions derives 
from the necessity that they be shared between the high- 
and low-quality assemblies, and therefore directly com-
parable. Second, our taxon sampling is low compared to 
recent phylogenomic studies of craniates. This is due to 
the requirement of our study design that RNA-seq reads 
be derived from a homologous tissue (e.g. liver) across 
taxa, offering a different type of direct comparison. While 
we were able to represent most of the major lineages of 
craniates with RNA-seq data derived from liver tissue, it 
was not possible to provide greater taxon sampling given 
current publicly available data while also preserving taxo-
nomic evenness in sampling across various vertebrate 
clades.

We also point out that some of the quantitative meas-
ures reported here (e.g. ICA) show clear trends that favor 
the high-quality dataset over the low-quality dataset but 

are not significantly different. This may be due to intrin-
sic differences in statistical power that make it unlikely 
that a significant difference would be identified between 
datasets for those measures that have fewer data points 
(RF distances yield one data point per gene tree (332) 
while ICA scores provide one data point per node [34]). 
However, we do not observe a single instance of the low-
quality dataset being quantitatively or qualitatively bet-
ter than the high-quality dataset in terms of phylogenetic 
signal for any of our measures.

Conclusions
Phylogenomic approaches leverage great power to 
resolve phylogenetic relationships, but they also include 
many analytical pitfalls associated with ortholog identi-
fication, alignment filtering, and model selection. While 
these pitfalls have been well-characterized, we chose to 
focus on transcriptome assembly quality—a more fun-
damental and largely overlooked aspect of phylogenomic 
analyses. We addressed this problem empirically using a 
study design that controls for variables including taxon 
selection, data type, data provenance, and phylogenetic 
uncertainty. We show that assembly quality, when all 
other factors are controlled, can have a dramatic impact 
on phylogenomic analyses in three ways. First, the rich-
ness and size of the dataset can differ profoundly when 
assembly errors are prevalent in the data. Second, align-
ments created from low-quality assemblies are more 
prone to ambiguity and compositional bias than their 
high-quality counterparts. And third, the partitions 
derived from high-quality assemblies have greater phy-
logenetic signal to resolve true evolutionary relationships 
than partitions derived from low-quality assemblies. We 
conclude that additional analytical interventions aimed 
at improving assembly quality, such as the Oyster River 
Protocol [32], are likely worth the additional effort.

Methods
Read selection and assembly
To understand the effects of transcriptome assembly 
quality on phylogenomic inference, we created two data-
sets, one of high and one of low quality, from publicly 
available transcriptomic reads (see Additional file  1 for 
more information on data availability). All read data are 
available on the European Nucleotide Archive (Table 1). 
We focused on craniates because there are few remain-
ing disputes on the craniate phylogeny [41] and these 
well-established phylogenetic relationships serve as a 
comparison to the topologies found using our high- and 
low-quality transcriptome assemblies. Our research 
strategy was to assemble high- and low-quality tran-
scriptomes from the same set of reads. We obtained 
Illumina-generated paired-end liver transcriptomic 
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reads for 37 vertebrate species spanning the majority of 
the diversity contained within the clade as well as one 
craniate outgroup. We assembled each read set using 
the Oyster River Protocol (ORP) version 2.2.3 [32] on a 
Linux computer with 24 CPUs and 128 GB of RAM. In 
brief, this protocol begins by adapter- and quality-trim-
ming reads using Trimmomatic version 0.38 [52] as per 
recommendations in MacManes [27], after which it cor-
rects read errors using Rcorrector version 1.0.8 [30] fol-
lowing recommendations from MacManes and Eisen 
[29]. The ORP then assembles trimmed and corrected 
reads using three different assemblers: Trinity version 
2.8.5 [53] with a kmer length of 25, Trans-ABySS version 
2.0.1 [54] with a kmer length of 32, and rnaSPAdes ver-
sion 3.14 [55] using kmer lengths of 55 and 75. The pro-
tocol continues by merging the resultant four assemblies 
and clustering them into isoform groups. The ORP then 
scores all transcripts using TransRate version 1.0.3 [35] 
which maps the read sets onto the assembly and, based 
on the mapping, detects assembly errors such as frag-
mentation, chimerism, and local misassembly. TransRate 
then uses this error information to assign quality scores 
to each transcript before integrating these individual 
scores into a score for the assembly as a whole. The ORP 
selects the member of each isoform group with the high-
est TransRate score and places it into a new file. Finally, 
the protocol uses cd-hit-est version 4.8.1 [56] and a 98% 
sequence identity threshold to reduce transcript redun-
dancy. The assemblies produced by the ORP are there-
fore populated by the highest quality, non-redundant 
sequences produced by any of the five possible assembly 
strategies [32]. A graphical summary of this protocol and 
our phylogenomic pipeline can be found in Fig. 1.

Quality analysis and high‑ and low‑quality dataset 
construction
We evaluated each of the five assemblies generated 
from the ORP (from Trinity, TransABySS, rnaSPAdes 
at two kmer lengths, and the final ORP assembly) for 
each species in two main ways. We used BUSCO ver-
sion 3.0.1 [57], which uses benchmarking universal sin-
gle copy orthologs to measure the genic completeness 
of an assembly. In addition, because we were primarily 
interested in assessing the structural differences in the 
transcriptome assemblies arising from errors during the 
assembly process, we generated TransRate scores for 
each assembly. Of the five assemblies for each species, 
we chose the assembly with the highest overall TransRate 
score to be part of the high-quality dataset, and the one 
with the lowest overall score to be part of the low-quality 
dataset. We selected assemblies for each dataset regard-
less of which assembler produced them, resulting in data-
sets that contain transcriptomes from multiple different 

programs. This was done in part to simulate transcrip-
tomic datasets in other studies that may be constructed 
from preexisting transcriptome assemblies, rather than 
those that have reassembled each dataset using the same 
program and to provide appropriate contrast between 
the high- and low-quality datasets. We performed all 
subsequent steps on both datasets in parallel.

Orthogroup inference, statistics, and data partition 
creation
We used TransDecoder version 5.5.0 [58] to translate all 
transcript sequences to amino acid sequences. The tran-
scriptome assembly process assigns each new transcript 
a unique name so that it can be differentiated within 
the assembly. This means that the high- and low-quality 
assemblies do not share identical transcripts or names 
common to both assemblies, making the direct compari-
son of sequences impossible. To circumvent this issue, 
we added the Mus musculus reference transcriptome 
(release 96) [59] to both datasets just before the Trans-
Decoder step so that a Mus sequence would be present in 
many orthogroups and partitions downstream. This cre-
ated a common naming system by which we could com-
pare the content of orthogroups and partitions derived 
from assemblies of high and low quality later in the 
analysis.

For each dataset (containing either the high-quality or 
low-quality transcriptome assemblies for the 38 crani-
ate species plus the Mus reference transcriptome) we 
performed a separate OrthoFinder version 2.3.3 analy-
sis [46, 47]. We then used linear regressions in R version 
3.5.2 [60] to evaluate the relationship between the total 
number of orthogroups found for each taxon and three 
other measures: the total number of transcripts in each 
assembly, the overall TransRate score, and the BUSCO 
complete score. We also plotted the distributions of these 
three measures for each dataset and performed Wilcoxon 
rank sum tests in R to determine if they were statistically 
different.

We filtered the resulting orthogroups so that we 
retained only those that had each taxon represented by 
at least one sequence. From these, we obtained one-to-
one orthologs using PhyloTreePruner [61]. We realigned 
these sequences using MAFFT version 7.305b using the 
“auto” setting [62], and filtered the alignments for poorly 
aligned or divergent regions using Gblocks version 0.91b 
[63, 64] with options “−  b2 = 0.65 −  b3 = 10 −  b4 = 5 
− b5 = a” in the script “gblocks_wrapper.pl” [65]. Finally, 
we concatenated all sequences into a NEXUS file for 
each dataset. We measured the lengths of the alignments 
both before and after Gblocks and compared the content 
of both groups of partitions by using the Mus sequence 
headers as common identifiers that were present in both 
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datasets and determined the numbers of unique and 
shared partitions. We then used IQ-TREE version 1.6.12 
under the LG model [40] to find individual gene trees for 
each partition in each dataset.

GO analysis and alignment metrics
To investigate the differences in content and qualities of 
the partitions between the two datasets, we separated the 
partitions into groups containing only those that were 
unique to each dataset, and only those that were shared 
between the two datasets. We used InterProScan version 
5.31–70.0 [66] to annotate the partitions unique to each 
dataset and then performed a gene ontology (GO) analy-
sis with topGO version 2.32.0 [67] in R version 3.5.2 [60] 
to check for any functional enrichment or depletion bias 
in the partitions of either dataset. For each partition com-
mon to both datasets, we extracted various alignment 
metrics from the log and information files generated 
while making partition trees in IQ-TREE. These included 
percent constant sites, percent parsimony-informative 
sites, number of sequences that failed the  Chi2 composi-
tion test (which we normalized by alignment length), and 
the number of sequences that contained more than 50% 
gaps or ambiguity. To test for significant differences, we 
performed Wilcoxon rank sum tests in R version 3.5.2 
[60] between the two datasets for each of these measures.

Constraint tree and comparisons of partition trees
The phylogenetic relationships among the 38 craniate 
species for which we obtained liver RNA-seq data are 
well-supported by previous work [41]. Therefore, we used 
a tree that reflects the most well-supported hypothesized 
relationships for comparison against the partition trees. 
Using Mesquite version 3.6 [68], we constructed a con-
straint tree that reflects the widely accepted topology 
for craniates. We used the high-quality dataset NEXUS 
alignment file along with this topology to estimate the 
constraint tree topology with branch lengths in IQ-TREE 
using the LG model [40]. We calculated RF distances [43] 
from the partition trees in each dataset to the constraint 
tree using phangorn version 2.5.5 [69] in R version 3.5.2 
[60]. This metric measures the differences in topology (RF 
distance) from the partition trees to the constraint tree, 
with smaller numbers indicating less conflict between 
the two trees. We also calculated ICA values between the 
individual partition trees and the constraint tree using 
RAxML version 8.2.11 [70]. The ICA refers to the degree 
of certainty for each internal node of the tree compared 
to the constraint tree when all other conflicting biparti-
tions are taken into account for that dataset. Numbers 
close to 1 show a lack of conflict between the partition 
tree and the constraint tree [44]. We tested for significant 
differences between the two dataset distributions using a 

Wilcoxon rank sum test in R version 3.5.2 [60] for both 
RF distances and ICA values. Finally, we created species 
trees using the 332 gene trees that were common to both 
the high-quality and low-quality datasets with a coales-
cent method implemented in ASTRAL version 5.7.4 [20, 
45]. We calculated the normalized quartet score for each 
tree, which represents the percentage of quartet trees in 
the input trees that are satisfied by the species tree and 
ranges from 0–1, with higher numbers indicating less 
discordance.
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