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Abstract 

Background: Rearrangement is an important topic in the research of amphibian mitochondrial genomes ("mitog-
enomes" hereafter), whose causes and mechanisms remain enigmatic. Globally examining mitogenome rearrange-
ments and uncovering their characteristics can contribute to a better understanding of mitogenome evolution.

Results: Here we systematically investigated mitogenome arrangements of 232 amphibians including four newly 
sequenced Dicroglossidae mitogenomes. The results showed that our new sequenced mitogenomes all possessed 
a trnM tandem duplication, which was not exclusive to Dicroglossidae. By merging the same arrangements, the 
mitogenomes of ~ 80% species belonged to the four major patterns, the major two of which were typical vertebrate 
arrangement and typical neobatrachian arrangement. Using qMGR for calculating rearrangement frequency (RF) (%), 
we found that the control region (CR) (RF = 45.04) and trnL2 (RF = 38.79) were the two most frequently rearranged 
components. Forty-seven point eight percentage of amphibians possessed rearranged mitogenomes including all 
neobatrachians and their distribution was significantly clustered in the phylogenetic trees (p < 0.001). In addition, we 
argued that the typical neobatrachian arrangement may have appeared in the Late Jurassic according to possible 
occurrence time estimation.

Conclusion: It was the first global census of amphibian mitogenome arrangements from the perspective of quantity 
statistics, which helped us to systematically understand the type, distribution, frequency and phylogenetic character-
istics of these rearrangements.

Keywords: Mitogenomics, Amphibians, qMGR, Rearrangement score, Rearrangement frequency, Phylogenetic 
characteristics
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Background
As semi-autonomous organelles, mitochondria retain 
their own genomes and participate in many essential 
biological processes in eukaryotic cells such as energy 

transduction and intermediary metabolism. The content 
of vertebrate mitogenomes is conservative, including 13 
protein-coding genes (PCGs), 22 tRNA genes (trns), 2 
rRNA genes (rrns) and a control region (CR) with repli-
cation and gene transcriptional regulatory signals [1, 2]. 
Because of the moderate evolutionary rate of the mitoge-
nome, it has been an excellent molecular marker for phy-
logenetic studies [3–6].

The gene order of vertebrate mitogenomes is as con-
servative as its content, such that human, mouse, clawed 
frog and zebrafish all share the same gene arrangement 
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in their mitogenomes [7–10]. However, with an increas-
ing number of different species’ mitogenomes completely 
sequenced, gene rearrangements have been reported in 
many different taxa. Generally, these rearrangements are 
inferred to the results from events such as gene transpo-
sition, gene inversion, gene duplication, and gene loss. 
Summaries and comparisons of animal mitogenome rear-
rangements have been reported [3, 11]. An initial impor-
tant study undertaken by Boore summarized all gene 
arrangements known for Metazoa, based on no more 
than 100 mitogenomes available at that time [1]. Further 
comparative studies of mitogenome arrangement have 
subsequently been published (e.g., [12–15]). In addition, 
several possible rearrangement models were proposed 
to explain mechanisms, including tandem duplication–
random loss (TDRL) [16, 17], tandem duplication and 
non-random loss (TDNL) [18, 19], intramitochondrial 
recombination [20, 21], etc. Using the CREx and TreeREx 
programs, based on four rearrangement models, other 
studies have tried to find common intermediate steps 
(common intervals) in two or more gene orders being 
investigated to elucidate the evolution of mitogenome 
rearrangements in different lineages such as insects and 
crabs [22–25].

In general, most animals retain the conserved rather 
than rearranged mitogenome components and order. The 
conservative arrangement is called the “typical vertebrate 
(mitogenome) arrangement” in vertebrates and the “typi-
cal invertebrate (mitogenome) arrangement” in inverte-
brates [1, 26]. To date, the number of vertebrate species 
with typical vertebrate arrangement accounts for more 
than half of all species for which mitogenomes have been 
determined. Among the amphibians, neobatrachians are 
the majority of frogs, accounting for ~ 92% of the total, 
over 6600 species (AmphibiaWeb, http://www.Amphi 
biawe b.org/, accessed February, 2020). Most sequenced 
neobatrachian frogs possess a derived mitogenome 
arrangement, “typical neobatrachian arrangement” [14, 
27, 28]. Furthermore, there are some other types of rear-
rangements in addition to typical neobatrachian arrange-
ment in amphibians. For example, the mitogenome of the 
neobtrachian frog Limnonectes bannaensis lacks trnA, 
trnN, trnC and trnE and contains a tandem duplication 
of trnM [29], the mitogenome of the caecilian Crotapha-
trema lamottei includes the duplications of trnF, trnP and 
trnT and lack of trnK [30], and there are two CRs found 
in the mitogenomes of the neobatrachian frogs Mantella 
madagascariensis [31] and Rhacophorus schlegelii [32]. 
In addition, while nad6 is located between nad5 and cob 
genes within typical vertebrate mitogenome, it is rear-
ranged to between rrnL and nad1 in the mitogenome of 
the plethodontid salamander Aneides hardii [33]. Fur-
thermore, in some amphibians intraspecific variation 

in mitogenome rearrangements has been reported [34]. 
These findings inspire us to further explore the landscape 
of mitogenome rearrangements in amphibians.

Except for earlier studies on a few species of amphib-
ians, most studies have focused only on a few lineages 
rather than a more global and systematic analysis. Also, 
previous studies have paid little attention to the role of 
individual genes in rearrangement. Recently we proposed 
a method, qMGR, for quantifying mitogenome rear-
rangement and developed a web service (http://qmgr.
hnnu.edu.cn/) that provides large-scale and accurate 
analysis of mitogenome rearrangement information [35].

In this study, we newly determined mitogenomes for 
four frogs in the neobatrachian frog family Dicroglossi-
dae, and found that they all had a tandem duplication of 
trnM (IQMM trn cluster), which was not a feature exclu-
sive to this family [36, 37]. To identify common charac-
teristics of mitogenome rearrangement in amphibians, 
we then focused on the study of gene rearrangement 
patterns of all known amphibian mitogenomes, quanti-
fied the rearrangement frequency (RF) for each single 
gene and the rearrangement score (RS) for each mitog-
emome by qMGR, detected phylogenetic characteristics 
of species with identical mitogenome arrangements, and 
estimated possible time for rearrangement patterns. Our 
findings contribute to understanding characteristics and 
evolution of mitogenome rearrangement in amphibians.

Results
trnM tandem duplication of amphibian mitogenomes
Lengths of the four newly sequenced mitogenomes are 
18,520  bp (Quasipaa robertingeri), 16,640  bp (Limnon-
ectes fragilis), 18,154  bp (Limnonectes fujianensis (Tai-
wan)) and 18,293  bp (Limnonectes fujianensis (Fujian)), 
respectively, and the full range of their GC contents 
was relatively narrow (39.7–42.9%). The four new 
mitogenomes all contain a tandem duplication of trnM 
(IQMM trn cluster) that also occurs in other sequenced 
dicroglossids [14].

Among the 35 amphibian mitogenomes presenting 
evidence of duplication or loss of genes as well as CRs 
(excluding gene rearrangement with the same total num-
ber of genes), 19 species (including our four new mitog-
enomes) possess a tandem duplication of trnM (IQMM 
trn cluster) (see Table 1). These 19 species represent 16 
species of Dicroglossidae, two species of Megophryidae 
(the non-neobatrachian frog family), and one species 
of the neobatrachian Ceratobatrachidae. Thus, tandem 
duplication of trnM is not exclusive to Dicroglossidae, 
and more than one rearrangement event is required 
to explain this pattern given that these families are dis-
tantly related to each other [38, 39]. The frogs Lepto-
lalax oshanensis (I-Q-M-V-P-M-nad2) and Mantella 

http://www.Amphibiaweb.org/
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madagascariensis (nad5-I-M-L2-P-F-rrnS-V1-rrnL-L1-
T-nad1-M-CR) have two separate copies of trnM rather 
than a tandem duplication (Additional file  1: Table  S1). 
The difference in position suggests that they may pos-
sess different mechanisms of occurrence [29, 31]. The 
amphibian species with gene duplication or loss (involved 
with other tRNA genes, rRNA genes, PCGs and CRs) are 
also shown in Additional file 1: Table S1.

Different patterns of mitogenome rearrangement 
in amphibians
We subsequently investigated more rearrangement 
types of 232 amphibian complete mitogenomes filtered 
by available annotation information. Among them, 121 
species’ mitogenomes represented typical vertebrate 
arrangement, and the remaining 111 species possessed 
43 types of gene arrangement, when we examined the 
arrangements of all mitochondrial (mt) genes involved, 
which were defined as global arrangement. Their 
arrangements were summarized in Additional file 1: Fig-
ure S1. However, ignoring the species with rare arrange-
ments (only one or two occurrences), they all belonged 
to major arrangements that occurred at least three times 
(irrespective of phylogeny) in amphibian mitogenomes, 
as shown in Fig.  1a. In the figure, there were only four 
patterns in these global arrangements. We labeled them 

as Patterns 1 ~ 4 in descending order of the frequency 
of rearrangement types. And we identified two seg-
ments that were subject to highly frequent rearrange-
ments as Region 1 and Region 2, respectively. Between 
them, Region 1 covered the nad5-nad6-cob gene cluster 
and CR, and Region 2 was mainly composed of IQM trn 
cluster and WANCY trn cluster. Compared with typical 
vertebrate arrangement (Pattern 1), 55 neobatrachians 
shared the second most frequent pattern of mitogenome 
arrangement, known as typical neobatrachian arrange-
ment, which had an LTPF trn cluster in their Region 1, 
and we found that all neobatrachians belonged to Pat-
tern 2. Due to the existence of novel IQMM trn cluster in 
Region 2, the six species of Dicroglossidae including the 
new mitogenomes determined were distinguished from 
typical neobatrachian arrangement and formed a new 
pattern, Pattern 3. Pattern 4 occurred in three species of 
the genus Odorrana, whose HLTPF trn cluster replaced 
LTPF trn cluster of neobatrachians in Region 1.

PCGs play an important role in mitogenome rear-
rangement in vertebrates [40, 41]. To reduce the com-
plexity of mitogenome rearrangement caused by RNA 
genes and CRs, we further investigated the local arrange-
ment (not all genes involved) limiting analyses on only 
PCGs. Figure  1b shows the 3 patterns (Pattern 1 ~ 3) of 
PCGs arrangements (frequency ≥ 3), which only the frog 

Table 1 List of amphibian mitogenomes with two trnM genes in this study

* All species with two trnM are tandem duplication except Leptolalax oshanensis and Mantella madagascariensis

Species Taxon Accession Nos

Platymantis vitianus Anura; Ceratobatrachidae NC_027671

Euphlyctis hexadactylus Anura; Dicroglossidae NC_014584

Fejervarya cancrivora Anura; Dicroglossidae NC_012647

Fejervarya limnocharis Anura; Dicroglossidae NC_005055

Hoplobatrachus rugulosus Anura; Dicroglossidae NC_019615

Hoplobatrachus tigerinus Anura; Dicroglossidae NC_014581

Nanorana parkeri Anura; Dicroglossidae NC_026789

Nanorana pleskei Anura; Dicroglossidae NC_016119

Nanorana taihangnica Anura; Dicroglossidae NC_024272

Occidozyga martensii Anura; Dicroglossidae NC_014685

Quasipaa boulengeri Anura; Dicroglossidae NC_021937

Quasipaa robertingeri Anura; Dicroglossidae this study

Quasipaa spinosa Anura; Dicroglossidae NC_013270

Quasipaa yei Anura; Dicroglossidae NC_024843

Limnonectes bannaensis Anura; Dicroglossidae AY899242

Limnonectes fragilis Anura; Dicroglossidae this study

Limnonectes fujianensis (Fujian & Taiwan) Anura; Dicroglossidae this study

Mantella madagascariensis* Anura; Mantellidae NC_007888

Leptobrachium boringii Anura; Megophryidae NC_024427

Leptolalax oshanensis* Anura; Megophryidae NC_020610

Oreolalax major Anura; Megophryidae NC_030605
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Hoplobatrachus rugulosus, a species with double mito-
chondrial nad5 genes (only present once among sampled 
amphibians) was excluded. Among them, 91.3% of the 
sampled amphibians shared the first pattern (Pattern 1) 
of PCGs arrangement, while the other 19 species from 
Anura and Caudata belonged to the remaining two pat-
terns, implying that the probability of rearrangement 
involved proteins is much smaller than other genes. The 

major differences among the 3 patterns related to the 
gene orders of nad5, nad6, and cob. Therefore, we consid-
ered that the nad5-nad6-cob segment may be “an active 
region” of mt PCGs rearrangement, and the segment was 
defined as Region 3.

Figure  1c and d show the patterns of mitogenomic 
local arrangements that occurred at least three times 
in Region 1 and Region 2, respectively. The Region 1 of 
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Fig. 1c included two extra trn clusters: a TPW trn cluster 
at the 5′ end of CR and a TPLF trn cluster at the 3′ end of 
CR, which was derived from 3 species of Megophryidae 
and 3 species of genus Fejervarya, respectively, compared 
with Fig.  1a of mitogenomic global arrangements. The 
left part of Fig. 1d shows that a novel local arrangement, 
the IQMM trn cluster, was derived from 19 species out 
of 3 families (all within Anura), namely Dicroglossidae, 
Megophryidae, and Ceratobatrachidae (see also results of 
trnM tandem duplication above). Similarly, we also found 
other rearrangement patterns in the WANCY region of 
Region 2, the pattern of ‘WNACY’ was present in 4 spe-
cies of Microhyloidae and the pattern of ‘ANCY’ was pre-
sent in 3 species of Megophryidae (whose mitogenome 
possessed the TPW trn cluster).

Compared to major arrangements, 47 species with 
rare arrangements accounted for 42.3% of all rearranged 
amphibian mitogenomes including 7 pairs of species with 
double rearrangements (the same rearrangement type 
appeared only twice in all sampled species) and 33 spe-
cies with single rearrangement (this rearrangement type 
is unique in all sampled species) (Fig. 2).

Accurate quantification of rearrangement frequency
qMGR [35] is a method for large-scale and rapid quanti-
fication of mitochondrial genome rearrangements. Com-
pared with the arrangement of the reference genome, it 
can calculate the rearrangement score (RS) of each gene 
in each genome one by one based on the changes of genes 
on its both sides, and accumulate RS of all genes in this 
genome to obtain the genome’s RS. In a given taxonomic 
group, dividing the actual RS of a gene by its maximum 
possible RS can be used to extrapolate the relative rear-
rangement frequency (RF) of the individual gene. qMGR 
was used to accurately calculate the RF of amphibian 
mitochondrial genes. Figure  3a and b show the RF dis-
tributions of all individual genes of amphibians and their 
three consistent orders, respectively. As shown in Fig. 3a, 
RF of most genes were less than 10 (%), the genes with 
high RF (%, coloring deeper) were mainly concentrated 
in the nad5-CR segment and IQM-WANCY segment 
(namely, Region 1 and Region 2 mentioned above), con-
sistent with previous findings for rearrangement hot-
spots in vertebrate mitogenomes [16, 42]. For each single 
gene, CR was assigned the highest RF(%) with a score of 
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45.04 by using qMGR [35], indicating that about 45% of 
the flanking genes of CR have been changed, that is, the 
changes have been accumulated more than 200 times 
(trnP and trnF are located at the 5′ and 3′ end of CR, 
respectively). trnL2 was ranked second with a score of 
38.79, and nad5 had the highest RF(%) among all PCGs, 
with a score of 24.14. In addition, according to the defi-
nition of RF, if consecutive adjacent genes all have the 
smallest RF value (here 0), we believed that they them-
selves formed a rearranged conserved segment in the 
mitochondrial genome. We identified the two most con-
served segments in amphibian mitogenomes as atp6-
cox3-G-nad3-R-nad4L and S-D between cox1 and cox2.

In Fig. 3b, there were fewer genes with a non-zero RF 
(< 50%) and with relatively low scores (< 15) in Caudata 
and Gymnophiona. In comparison, RF of most genes 
(27 of the total 38) in Anura were greater than zero, and 
some of them were greater than 30. The primary reason 
was that most species with rearranged mitogenomes 
belonged to typical neobatrachian arrangement in this 
group (56.3%). Also, RF of anuran trnL2 and CR were 
both greater than 50, mainly due to the fact that their 
rearrangements were accompanied by > 50% changes in 
adjacent genes on both sides compared to typical verte-
brate arrangement.

Considering that typical neobatrachian arrangement is 
the dominant gene order in frogs’ mitogenomes, we also 

tried to choose it as the benchmark for calculating RF. 
The results showed that the genes with changed RF were 
those rearranged genes relative to typical vertebrates 
arrangement (Fig. 4). Interestingly, all of their scores had 
declined, but the relative rank of their RF changes lit-
tle. The top 3 of them were both CR, trnL2, and nad5 in 
order, implying that they are the most active elements of 
mitogenome rearrangement in frogs.

To further investigate the rearrangement degree of 
species with rare arrangement, based on qMGR [35], we 
also calculated their species RS, which was the cumula-
tive value of the rearrangement scores of all genes in the 
genome of a given species. As shown in Fig. 2, we found 
that the species with the highest RS is the neobtrachian 
frog Platymantis vitianus (species RS = 32), which had 
17 genes involved in rearrangement compared with typi-
cal vertebrate arrangement. The species with the lowest 
scores, consisting of the salamander Tylototriton verru-
cosus, the salamander Rhyacotriton variegatus and the 
caecilian Boulengerula taitana (species RS = 2), had only 
one rearranged gene, which was a tandem duplcation 
of trnT, trnT, and trnP, respectively (Fig. 2). The average 
RS of all species with rare arrangements was 12.9, which 
was slightly higher than the species with typical neoba-
trachian arrangement (Patten 2). In addition, Fig. 2 also 
shows RS of the species belonging to the other three 
global arrangement patterns.
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Phylogenetic characteristics of mitogenome 
rearrangement in amphibians
For phylogenetic characteristics of rearranged amphib-
ian mitogenomes, the optimal ML tree and BI tree of 232 
amphibians were shown in Fig.  5 and Additional file  1: 
Figure. S2, respectively, and they had similar basic topol-
ogies. In them, the monophylies of the three amphibian 
groups (frogs, caecilians, and salamanders) were strongly 
supported, as found in most phylogenetic analyses [38, 
43–46]. Within frogs, the relationship of two higher-
level groups, Neobatrachia and Archaeobatrachia (non-
neobatrachian frogs) was consistent with most previous 

reports (e.g., [38, 44, 47, 48]). Overall support was high 
within all species. 84% of the nodes had a bootstrap value 
(BS) ≥ 75% (Fig. 5), and 98% had Bayesian posterior prob-
abilities (BPPs) ≥ 0.90 (Additional file 1: Figure. S2). Our 
results suggested that the superfamily and family-level 
relationships of Neobatrachia were mostly consistent 
with most previous studies (i.e., superfamily Ranoidea 
includes Ranidae, Dicroglossidae, Microhylidae, Mantel-
linae, Rhacophoridae, etc.) [38, 44, 49, 50]. Additionally, 
BS and BPPs also strongly supported most families of 
salamanders and caecilians, for instance, Salamandridae, 
Plethodontidae, and Hynobiidae within Caudata [51], 
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and Caeciliidae, Typhlonectidae, Ichthyophiidae within 
Gymnophiona [52].

Compared with other vertebrate taxa, mitogenome 
rearrangement of amphibians is seemingly more frequent 
[27], particularly in neobatrachian frogs [14, 28]. Among 
the 232 amphibian mitogenomes examined, there were 
111 species (47.8%) with non-typical organization (red 

branches marked in Fig. 5). In the 111 species with rear-
ranged mitogenomes, only 15 species were members of 
the 117 total species sampled of Caudata (11.9%) and 
Gymnophiona (15.2%), while most of them were con-
centrated in Anura (83.5%), especially Neobatrachia (90 
species: 100%). Figure 5 also shows 20 species with rear-
rangements of PCGs (only the gene order of 13 PCGs in 
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the mitogenome was considered), accounting for only 
8.6% of total species (red species name marked in Fig. 5). 
Species with rearranged mitogenomes tended to be 
phylogenetically clustered whether studied on all genes 
(p < 1.0e–10, hypergeometric test) or PCGs (p < 0.001, 
hypergeometric test), suggesting that mitogenomic rear-
rangement of amphibians also possesses phylogenetic 
characteristics, similar with insects [22] and birds [53].

In Fig.  5, these species with rare arrangement were 
marked with asterisks. We found that they included 
90% of the species with rearrangements of PCGs, which 
might be one of the reasons why their rearrangements 
were “rare”. Among the 232 species examined, 28 species 
belong to 22 families, each of which includes only one or 
two species. We also further examined whether the rarity 
could be due to the density of taxon sampling. The result 
showed that it was highly dependent on density of taxon 
sampling (p < 1.0e-04, hypergeometric test).

Rearrangement time estimation of amphibian 
mitogenomes
Because mitogenome rearrangement of amphibians pos-
sessed phylogenetic characteristics, and the same gene 
arrangement among different species was generally 
unlikely to be the result of convergent evolution [11], we 
could estimate the (latest) possible occurrence time of 
their pattern according to the divergence time of com-
mon ancestor lineages with the same rearrangement pat-
tern. So we referred to the literature on divergence time 
of different taxa of amphibians [14, 39, 43, 45], and esti-
mated the possible occurrence time of various patterns 
from three rearrangement enrichment regions, namely, 
Region 1, Region 2 and Region 3, as shown in Fig. 1.

Compared with the older Amphioxus (Branchiostoma 
floridae) mitogenome arrangement [54], the pattern 
of typical amphibian arrangement was consistent with 
that of vertebrates, including H-S2-L2-nad5-nad6-E-
cob-T-P-CR-F (Region 1), IQM-nad2-WANCY (Region 
2), and nad5-nad6-cob (Region 3). Different from their 
Region 3, the pattern, nad5-cob-nad6, were identified in 
3 caudatans and 2 archaeobatrachians. It implied that the 
rearrangement pattern could have occurred before the 
divergence of frogs and salamanders, that is, it may be 
earlier than 350 million years ago (Ma) [39]. Four newly 
sequenced species of neobatrachians, and 2 archaeoba-
trachians, all had the IQMM pattern (IQMM trn clus-
ter), suggesting that the pattern can appear earlier than 
250  Ma, before the divergence of neobatrachians and 
archaeobatrachians in Anura [39, 43] (Additional file  1: 
Figure. S3). Similarly, the pattern, H-S2-nad5-nad6-
E-cob-CR-L2-T-P-F (from Region 1 of typical neoba-
trachian arrangement) may have existed in the Late 
Jurassic (earlier than 140  Ma) when neobatrachians 

appeared [14]. We also marked possible occurrence time 
of other rearrangement patterns in Additional file 1: Fig-
ure. S3.

According to the estimated time of the rearrangement 
patterns, as shown in the lower left corner of Additional 
file  1: Figure. S3, we speculated that the rearrangement 
of amphibian mitogenomes might present the following 
trends: (1) the trn genes near CR tended to be rearranged 
to the 3′ end of CR which was consistent with the tran-
scription direction of protein-coding genes; (2) the nd5 
gene also had a tendency to rearrange to the 3′ end of CR.

Discussion
Mitogenome rearrangement and qMGR method
Just like our newly determined species, rearrangement 
events are often accompanied by related gene duplica-
tion as well as gene loss. Most existing models of rear-
rangement mechanisms often involve gene duplication 
and gene deletion (e.g. [17–19, 55, 56],). Among these 
models, TDRL (tandem duplication–random loss) model 
has been widely accepted to explain the rearrangement 
mechanism of amphibian mitochondrial genomes[34], 
Such as Fejervarya limnocharis [57], L. bannaensis[29], 
Hoplobatrachus tigerinus [58], Leiopelma archeyi [59]. 
With TDRL model, Xia et al. [34] perfectly explained the 
rearrangement events within the species. TDNL (tandem 
duplication and non-random loss) is also another simi-
lar model involving gene duplication and gene loss, and 
it has been used to rationally explain the rearrangement 
of the millipedes (Narceus annularus and Thyropygus sp.) 
[18]. In addition, DMNR (the Dimer-Mitogenome and 
Non-Random Loss) and DRRL (the Double Replications 
and Random Loss) have also been proposed to explain 
the course of the rearrangement in two flatfish mitog-
enomes (Crossorhombus azureus and Samariscus latus) 
[19, 60].

Our research has found that trn genes were more prone 
to rearrangement than other genes, and some trn genes 
(such as trnL2, trnT, and trnP) preferred to turn to the 3′ 
end of CR. Satoh et al. [61] proposed that there was a sig-
nificant correlation between trn gene position (that is, trn 
gene order) and codon usage in vertebrate mitogenomes, 
and the closer to the 3′ end of CR the trn gene was, the 
higher its usage was, inferring that the mt gene arrange-
ment of vertebrates is affected by translation constraints, 
which may help maintain the gene order for a long time. 
However, Xia et al. [28] claimed that the correlation was 
not significant for them of typical neobatrachian mitog-
enome. Furthermore, Xia et  al. [34] also believed that 
the gene distributions of rearranged frogs were related 
to their non-adaptive forces. Therefore, the mecha-
nism of trn gene order is still under debate in amphibian 
mitogenomes.
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Nevertheless, due to the relatively rarity of rearrange-
ments and their constitution of useful synapomorphies, 
they may provide more useful information for phyloge-
netic inference with increasing difficulty of their own 
research [16, 28]. A large number of studies have been 
carried out to clarify possible units of rearrangement 
and possible evolutionary processes between two rear-
ranged mitogenomes (e.g. [17, 22, 23, 29]). qMGR has 
more flexibility than other rearrangement analysis algo-
rithms (e.g., CREx [25], TreeRex [62], amGRP [63] and 
GRAPPA [64]), and can analyze mitogenomes (or mt 
gene fragments) of different numbers and different rear-
rangement types, even other circular genomes such as 
chloroplasts. In the absence of prior knowledge, within 
a certain group, qMGR [35] was able to filter out highly 
rearranged genes and genomes, which would contribute 
to the study of the choice of rearrangement models and 
rearrangement pathways.

Mitogenome rearrangement and phylogenetic analysis
Many previous rearrangement studies were often accom-
panied by phylogenetic analysis (e.g., [14, 32, 34, 50]), 
which helped to speculate on the evolution of rearrange-
ment events. In our study, we reconstructed two phylo-
genetic trees (BI tree and ML tree). We found that the 
phylogenetic relationship of most neobtrachians was con-
sistent with previous studies (e.g., [38, 43, 44, 49, 65]), the 
relationship between teresomatans and all other caecil-
ians was in full agreement with previous reports (e.g. [44, 
49, 52],), and our trees also supported a sister-group rela-
tionship between frogs and salamanders (the Batrachia 
hypothesis), as found in most previous studies(e.g. [44, 
52, 66],). In addition, the relationship between Leiopel-
matidae and all other frogs was compatible with previous 
reports in BI tree (e.g. [50, 59, 67]). The sister relation-
ships of Pipoidea and Discoglossoidea were consistently 
supported (BPPs = 1, BS = 83%), however, some recent 
studies did not support the view (e.g. [38, 44, 50]). The 
inconsistent results may be affected by different species 
and selected molecular markers. But these subtle differ-
ences did not change the overall distribution of amphib-
ian rearrangement types in the phylogenetic trees. Based 
on the results of the phylogenetic study above, species 
with the same pattern of mitogenome rearrangement 
mostly belonged to closely related taxa. Just like the pre-
vious reports of avian mitogenome rearrangement [53], 
the phylogenetic characteristics of rearrangement were 
further interpreted that they could originate from a com-
mon ancestor and were then retained during subsequent 
lineage diversification. Therefore, this makes it possible 
to use the divergence time of ancestral species with com-
mon mitogenome arrangement to estimate the occur-
rence time of rearrangement patterns.

Non‑coding regions of mitogenome rearrangement
In the mitochondrial genomes, two non-coding regions, 
CR and  OL, play important roles in the rearrangement 
studies [16, 42]. The duplicated CR and mitochondrial 
gene rearrangement have been found in many parrot spe-
cies [68]. Our study showed that CR was the most active 
element in the mitogenome rearrangement of amphib-
ians. When we disregarded it in the study of PCGs 
rearrangements, the results may have missed some infor-
mation. For example, nad6-cob-CR-nad5 of neobtrachian 
frog Buergeria buergeri [69] and nad6-cob-CR-nad5-CR 
of neobtrachian frog R. schlegelii [32] were treated as the 
same arrangement type.

Unfortunately, we found that a few species in the Gen-
Bank database have incomplete or even incorrect anno-
tations for  OL (as found by the references [70]). So we 
ignored this important element in the WANCY region, 
which was considered as a hotspot for rearrangement 
[16, 42]. This made us unable to distinguish between 
ACW-OL-NY of marsupial Trichosurus vulpecula [71] 
and A-OL-CWNY of caecilian Siphonops paulensis [16], 
and between WA-OL-NCY and WAN-OL-CY of neob-
trachian frog Q. boulengeri (intraspecific rearrangement 
of mitogenome) [34]. These implied that the components 
examined in the study of gene rearrangements had a great 
influence on the results. In fact, some reports have found 
that  OL is absent in birds, crocodiles, fish, scorpions, etc. 
[42, 72, 73]. However, in vertebrates with mitochondrial 
 OL, the WANCY region of amphibians possessed the 
most frequent rearrangements, which also involved gene 
duplication, gene loss, and pseudogenes (e.g., [16, 29, 34, 
42, 50]).

Conclusion
In this study, we first examined the characteristics of 
trnM tandem duplication in four newly sequenced 
Dicroglossidae mitogenomes as well as in other amphib-
ian taxa, and found that it was not an exclusive feature 
of Dicroglossidae. We then applied qMGR for calculat-
ing RS and RF of each single mt gene, and screened out 
high-frequency genes and conservative genes involved 
in different taxa of amphibian mitogenome rearrange-
ment. Based on phylogenetic analysis, we found that 
mitogenomic rearrangement of amphibians possessed 
phylogenetic implications, and were concentrated in 
Neobatrachia. Still, typical vertebrate arrangement was 
the most dominant type of arrangements for amphib-
ians. In addition, qMGR can also obtain RS of species 
with rare arrangements, which can be used to measure 
the rearrangement degree of a single species. This was a 
systematic survey of the rearrangement of the amphibian 
mitochondrial genome and its evolution. Nevertheless, 
as the currently available data was less than 5% of the 
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total number of known species, our results may still lack 
representativeness and integrity. More data and more in-
depth analysis will help us figure out thoroughly the rear-
rangement characteristics of amphibians.

Methods
Determination and analysis of 4 new mitogenomes
Samples of four dicroglossid frogs Q. robertingeri (code 
Zhang-YBJW031), L. fragilis (code DT-CP005), L. fuji-
anensis (Taiwan population) (code Zhang-TWDT034) 
and L. fujianensis (Fujian population) (code DT-FJ002) 
were collected from Sichuan, Hainan, Taiwan and 
Fujian province in China, respectively. Total DNA was 
extracted from their fresh muscle tissues after the frogs 
were euthanized using 0.5% MS-222. Then tissues of the 
first two were stored at − 80 °C at the College of Life Sci-
ences, Anhui Normal University, China, and the latter 
two were stored at − 20 °C at the School of Bioengineer-
ing, Huainan Normal University, China. In accordance 
with Regulation for the collection of genetic resources of 
China (HJ 628-2011), we collected all laboratory animals, 
and animal experiments and follow-up disposal were 
carried out based on Regulations for the management 
of laboratory animals in Huainan Normal University 
(2015). We designed multiple primer pairs (Additional 
file  1: word S1) based on sequence alignments of mito-
chondrial genes from closely related species [29, 57, 74], 
and carried out shotgun sequencing and assembling. We 
identified genomic components by the MITOS2 (http://
mitos .bioin f.uni-leipz ig.de/index .py) [75], tRNAscan-SE 
(http://lowel ab.ucsc.edu/tRNAs can-SE/) [76], and man-
ual sequence comparison [2, 37]. Base composition was 
determined using DNASTAR (www.dnast ar.com).

Preparation of rearrangement data
We downloaded sequences data of amphibian mitoge-
nomes from NCBI: Organelle Genome Resource (http://
www.ncbi.nlm.nih.gov/genom e/organ elle/) on May 10, 
2019. In total, we retrieved mitogenomes of 228 species 
(in addition to the four species newly sequenced here) by 
filtering out the data without complete annotation infor-
mation. We then extracted location information of genes 
and their nucleotide sequences for subsequent rearrange-
ment analysis and phylogeny using designed Perl and R 
scripts.

Different rearrangement patterns
To investigate major patterns of amphibian mitogenome 
rearrangement, we sorted all genes based on their posi-
tion information in the genome. When starting with the 
same gene, we merged and counted species with identi-
cal gene orders. We defined the arrangement involved 
with all mt genes (37 genes + CR in this study) as a global 

arrangement, and those of not all genes were called local 
arrangements. We surveyed major arrangement whose 
the cumulative number with the same arrangements 
was ≥ 3 times, For the type of arrangement less than or 
equal to two times, we called it "rare arrangement". We 
further subdivided the high-frequency rearrangement 
regions in the global arrangements or local arrange-
ments into different regions, which also belonged to local 
arrangements. To facilitate research, we also numbered 
the different arrangement types of these major arrange-
ments into multiple patterns.

Precise quantification of rearranged genes and genomes
qMGR can be used to accurately calculate the rear-
rangement frequency of each single gene or each single 
genome within a given taxonomic group [35]. When a 
reference arrangement (benchmark) of mitogenome was 
selected, it can accumulate changes in genes at the two 
nearest flanking positions of a gene to be tested and give 
the gene a score. Based on this principle, qMGR can cal-
culate the rearrangement score (RS) of a complete mitog-
enome and the relative rearrangement frequency (RF) of 
individual genes within a certain group (e.g., neobatra-
chians, anurans or amphibians) (referring to reference 
[35] and its website for more details on the method). 
We chose typical vertebrate arrangement as a bench-
mark for the comprehensive analysis of mitochondrial 
genome rearrangement in amphibians, and also chose 
typical neobatrachian arrangement for comparative 
analysis of RF. In the calculation process, we regarded the 
CR as a single gene, while ignored pseudogenes and the 
origin of L-strand replication  (OL) for their incomplete 
annotations.

Phylogenetic analysis and rearrangement time estimation
We performed phylogenetic analysis using maximum 
likelihood (ML) [77] and Bayesian inference (BI) [78] 
methods based on the combined nucleotide dataset of 
13 PCGs of 232 species (including 43 families, about half 
of them contain only 1–2 species) as well as two out-
group species (turtle: Chinemys reevesi, NC_006082, and 
iguana: Iguana iguana NC_002793). Multiple sequence 
alignment was carried out using MAFFT 7.2 [79]. The 
substitution saturation analyses for each codon positions 
of each gene were assessed by using DAMBE 7.2.25 [80]. 
And we detected the saturation on their third codon posi-
tions. The information of substitution saturation for all 
codon positions of 13 genes could be seen in Additional 
file 1: Table S2. Therefore, phylogenetic analysis was only 
based on their first two codon positions. For BI analysis, 
the best schemes for partition and substitution models 
(Additional file  1: Table  S3) were determined in Parti-
tionFinder version 2.1.1 [81] according to the Bayesian 

http://mitos.bioinf.uni-leipzig.de/index.py
http://mitos.bioinf.uni-leipzig.de/index.py
http://lowelab.ucsc.edu/tRNAscan-SE/
http://www.dnastar.com
http://www.ncbi.nlm.nih.gov/genome/organelle/
http://www.ncbi.nlm.nih.gov/genome/organelle/
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Information Criterion (BIC) and greedy search algo-
rithm. Then the BI analysis was implemented in MrBayes 
v.3.2.7a [82, 83]. We ran four Markov chains for 5 × 107 
generations (sampling every 1000 generations) and cal-
culated a 50% majority-rule consensus tree and Bayesian 
posterior probabilities (BPPs) after discarding the initial 
25% trees as burn-in. All MCMC runs were repeated 
twice to avoid spurious results. Furthermore, the conver-
gence of the MrBayes analyses was checked with Tracer 
1.7.1 [84]. Subsequently, the ML tree was inferred with 
RAxML v.8.2.12 [85] using the GTRGAMMA model, 
100 starting trees and 1000 bootstrap replicates to assess 
node support [86]. After that, the ML bootstrap conver-
gence test was carried out with parameter "-I autoMRE".

To estimate the possible occurrence time of gene rear-
rangement, we referred directly to the results of the stud-
ies on divergence time estimations [14, 39, 43, 45]. Based 
on the divergence timetable of amphibians and related 
taxa, we estimated the latest possible occurrence time of 
the different rearrangement patterns.
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