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Narrow environmental niches predict 
land-use responses and vulnerability of land 
snail assemblages
Katja Wehner1* , Carsten Renker2, Nadja K. Simons1, Wolfgang W. Weisser3 and Nico Blüthgen1

Abstract 

Background: How land use shapes biodiversity and functional trait composition of animal communities is an impor-
tant question and frequently addressed. Land-use intensification is associated with changes in abiotic and biotic con-
ditions including environmental homogenization and may act as an environmental filter to shape the composition of 
species communities. Here, we investigated the responses of land snail assemblages to land-use intensity and abiotic 
soil conditions (pH, soil moisture), and analyzed their trait composition (shell size, number of offspring, light prefer-
ence, humidity preference, inundation tolerance, and drought resistance). We characterized the species’ responses to 
land use to identify ‘winners’ (species that were more common on sites with high land-use intensity than expected) or 
‘losers’ of land-use intensity (more common on plots with low land-use intensity) and their niche breadth. As a proxy 
for the environmental ‘niche breadth’ of each snail species, based on the conditions of the sites in which it occurred, 
we defined a 5-dimensional niche hypervolume. We then tested whether land-use responses and niches contribute 
to the species’ potential vulnerability suggested by the Red List status.

Results: Our results confirmed that the trait composition of snail communities was significantly altered by land-use 
intensity and abiotic conditions in both forests and grasslands. While only 4% of the species that occurred in forests 
were significant losers of intensive forest management, the proportion of losers in grasslands was much higher (21%). 
However, the species’ response to land-use intensity and soil conditions was largely independent of specific traits and 
the species’ Red List status (vulnerability). Instead, vulnerability was only mirrored in the species’ rarity and its niche 
hypervolume: threatened species were characterized by low occurrence in forests and low occurrence and abun-
dance in grasslands and by a narrow niche quantified by land-use components and abiotic factors.

Conclusion: Land use and environmental responses of land snails were poorly predicted by specific traits or the spe-
cies’ vulnerability, suggesting that it is important to consider complementary risks and multiple niche dimensions.
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Background
Land use disturbs natural environments, changes 
local geographical landscape structure and alters local 
biotic and abiotic conditions, e.g. microclimate [1–6]. 

Reduction of habitat and microhabitat heterogeneity 
may lead to a homogenization of plant and animal com-
munities, trigger a reduction in functional diversity and 
thus lower the capacity of an ecosystem to buffer distur-
bances [7, 8]. Homogenization of animal communities by 
increasing land-use intensity has been shown for several 
taxa; e.g., in managed grasslands, 34% of plant- and leaf-
hoppers species were significant losers (i.e. species that 
were significantly less abundant under conditions of high 

Open Access

BMC Ecology and Evolution

*Correspondence:  kdwehner@gmx.de
1 Ecological Networks, Technische Universität Darmstadt, 
Schnittspahnstraße 3, 64287 Darmstadt, Germany
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-0792-0542
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12862-020-01741-1&domain=pdf


Page 2 of 23Wehner et al. BMC Ecol Evo           (2021) 21:15 

land-use intensity) of land-use intensification, particu-
larly increases in mowing frequency had a negative effect 
[9].

Land snails are an important macroinvertebrate group 
that is directly and indirectly involved in ecosystem pro-
cesses such as litter decomposition or nutrient cycling 
[10, 11]. There is a natural north–south and west–east 
gradient of snail species distributions and abundances 
within Europe; species richness increases from north to 
south and to a lesser extent from west to east which is 
linked to regional and ecological differences and the land-
use history [12]. Snail species also differ in their tolerance 
to abiotic factors (pH, soil moisture), and vary greatly in 
life-history parameters (e.g., lifespan, development, num-
ber of offspring, food requirement, shell size) and general 
behavior [13] which also affect their distribution. Varia-
tion in body size and diet seems to be especially impor-
tant for structuring snail communities [14] as well as the 
species-specific tolerance to a variety of environmental 
factors which can result in nested communities at a spe-
cific site [15, 16].

Studies on trait composition of snail communities in 
Sweden pointed to the importance of the species’ niche-
width and the importance of local environmental condi-
tions over spatial variables [17]. While tolerance-related 
traits such as humidity preference or inundation toler-
ance were positively associated with abiotic soil moisture, 
a large amount of variation remained unexplained [17], 
which may be related to land use. The impact of land 
use and its intensity on land snail communities is less 
intensively investigated although most land snail species 
are characterized by a limited mobility and therefore are 
vulnerable to human introduced habitat changes [15, 18–
20]. Changes in abiotic factors such as soil pH, soil mois-
ture, soil calcium content, leaf litter depth, soil surface 
structure or the type of vegetation have been shown to 
alter snail communities [15, 21–25]. Also land-use factors 
such as the proportion of wood harvested in forests or the 
amount of grazing livestock in grasslands can influence 
snail communities directly and/or indirectly [20, 26, 27]. 
In addition, disturbances by different land-use types and 
intensities may alter the trait composition of snail com-
munities on the regional level; i.e. the presence of conif-
erous timber may favor snail communities with differing 
traits than communities in natural deciduous stands.

In the present study, we investigated land snail com-
munities at forest and grassland sites in different regions 
of Germany, which were characterized by different land-
use types and intensities. We aimed to test whether the 
trait composition of the snail community is influenced by 
land-use intensity (and soil conditions). We then tested 
the responses of each snail species to land-use intensity; 
‘winners’ significantly increase in abundance and occur-
rence with land-use intensity, whereas ‘losers’ signifi-
cantly decrease compared to the null model [9, 39]. We 
than compared these responses with the snail species’ 
habitat association; i.e. we asked whether species that 
only occasionally occur in forests are more affected by 
forest management than species that are specialized to 
forest habitats. On the other hand, do species that are 
grassland specialist suffer less from grassland manage-
ment than those only occasionally occurring in grass-
lands? Finally, we compared our findings of the land-use 
effects and the ‘winner/loser’ status of a species with its 
putative vulnerability (Red List status), to test if losers 
of land-use intensifications in forests and grasslands are 
those species that are classified as vulnerable.

Results
Response to land use
The trait composition of land snail communities dif-
fered strongly between forests and grasslands within 
regions, indicated by a strong differentiation of commu-
nity-weighted mean trait values (CWMs). Assemblages 
of forest species consisted of larger species, consistently 
showed lower light and higher humidity preference, 
lower drought resistance and mostly lower inundation 
tolerance than grassland assemblages; differences in the 
number of offspring were inconsistent among forest and 
grassland habitats (Fig. 1).

In forests, land-use intensity and abiotic conditions sig-
nificantly influenced the CWMs of all traits investigated, 
although often in a different way across regions (Table 1, 
Additional file 1: Appendix 1; see interaction terms with 
region). Similarly, in grasslands the trait composition of 
snail communities was significantly influenced by most 
land-use components and abiotic conditions (Table  2, 
Additional file 1: Appendix 1).

In forest habitats, some 4% of all species were ‘losers’ 
of the combined forest management index (i.e. they were 
significantly less common in intensively used forests), 

(See figure on next page.)
Fig. 1 Trait distribution (a shell size, b number of offspring, c light preference, d humidity preference, e drought resistance, f inundation tolerance) 
of snail communities among forest (grey) and grassland (white) habitats in the Swabian Alb, the Hainich-Dün and the Schorfheide-Chorin. Traits 
are given as community weighted mean (CWM). Difference among habitats per region are tested using an ANOVA (asterisks), differences between 
regions are tested by a posthoc Tukey test (letters). Significances: ns not significant, *p < 0.05, **p < 0.01, ***p < 0.001
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whereas 12% were ‘winners’ and thus increased with for-
est management intensity (Table  3). The proportions of 
non-native trees (4% losers vs. 8% winners) and the pro-
portion of dead wood with saw cuts (6% losers vs. 8% 
winners) revealed a similar pattern, but for the propor-
tion of wood harvested the percentage of losers (12%) 
exceeded that of winners (8%).

In grasslands, many species were predominantly found 
at low land-use intensities (LUI); 21% of all species were 
significant losers and only Monacha cartusiana prof-
ited from high LUI (Table  4). However, single land-use 
components in grasslands had only weak effects. Graz-
ing intensity positively affected Cecilioides acicula and 
Cepaea hortensis, but showed no negative impact. Simi-
larly, mowing (2% losers and 2% winners) and fertiliza-
tion (4% losers and 4% winners) had a very little impact 
compared to the combined LUI.

However, in both forests and grasslands, species’ land-
use responses (i.e. their ‘winner/loser’ status) were inde-
pendent of their traits; i.e. losers in forests or grasslands 
were neither characterized by a smaller or larger shell 
size nor by lower or higher numbers of offspring nor by 
lower or higher light preference etc. (Additional files 2–
15: Appendix 2–15).

Response to abiotic factors
Although niches of common land snail species for soil pH 
and soil moisture were generally broad, some differentia-
tion was found in the communities of both habitats. In 
forests, Aegopinella pura, the genus Carychium, Coch-
licopa lubrica, Ena montana and Vitrea contracta were 
significantly associated with higher pH values (Table  3) 
and Cepaea hortensis, Euconulus fulvus, Nesovitrea ham-
monis, Vallonia pulchella and Vitrinobrachium breve 
were found at sites with low pH (Table 3). Furthermore, 
A. pura and Carychium tridentatum were associated with 
high soil moisture in forests and Ceciliodes acicula, E. ful-
vus, N. hammonis, Punctum pygmaeum, Trochulus stri-
olatus and V. pulchella were found at low soil moisture 
values (Table 3).

Grassland sites had a higher mean pH (6.7) as com-
pared to forest soils, and many snail species (e.g., Can-
didula unifasciata, the genus Carychium, Granaria 
frumentum, Pupilla muscorum, Vertigo antivertigo) were 
associated with higher pH values (Table 4). Only N. ham-
monis was significantly more common on sites with low 
pH. Soil moisture niches of grassland species were even 
broader than those of pH. The genus Carychium, Tro-
chulus hispidus and Vallonia pulchella were found at 
high moisture values, while C. unifasciata, Discus rotun-
datus, Truncatellina cylindrica, V. excentrica were asso-
ciated with low soil moisture (Table 4).

Habitat association
Snail species differed in their habitat association and their 
distribution among regions (Fig.  2). However, effects of 
land-use management components and abiotic factors in 
forests were independent of the species’ habitat associa-
tion, i.e. species that occurred in forests at low frequen-
cies (e.g., 25% of the individuals in Cochlicopa lubrica; 
Fig.  2) were equally affected by land-use intensifica-
tion as species that are exclusively found in forests (e.g., 
Cepaea hortensis)  (F1,49 = 0.14, p = 0.71, Fig. 2, Additional 
file 14: Appendix 14). In contrast, grassland species that 
predominately prefer grassland habitats were less toler-
ant to fertilization than species that also occur in forests 
 (F1,50 = 5.84, p = 0.019, Fig. 3a, Additional file 15: Appen-
dix  15). Furthermore, grassland “specialists” were sig-
nificantly associated with higher pH values  (F1,49 = 9.21, 
p = 0.004, Fig. 3b).

Species’ vulnerability
Across forests and grasslands, 75% of the 61 snail spe-
cies found are currently not threatened or endangered 
according to their Red List status (Tables 3, 4). Neverthe-
less, Nesovitrea petronella, Candidula unifasciata and 
Granaria frumentum are regarded as ‘endangered’ while 
Vallonia enniensis is ‘highly endangered’ and V. angustior 
is listed on the FFH directive.

There was no statistical support that a negative 
response to land-use intensity of a certain species 
(“loser”) is associated with a high vulnerability of the 
species, neither in forests nor in grasslands (Table 5). A 
better predictor for the species’ vulnerability in forests 
was a relatively low number of sites in which the species 
occurred, and in grasslands both a low occurrence and 
a low total abundance corresponded to a higher vulner-
ability (Table  5). Furthermore, the 5-dimensional niche 
hypervolume based on the species’ tolerance to land-
use components and abiotic conditions was significantly 
correlated with the species’ vulnerability, hence species 
with a small niche hypervolume are more vulnerable in 
both forests (Spearman rank test: S = 20,091, p = 0.0004; 
Fig.  4a) and grasslands (Spearman rank test: S = 15,547, 
p = 0.003, Fig. 4b).

Discussion
Response to land use and abiotic factors
Land snail species are slow-dispersing organisms, and 
historical influences are of general importance for their 
distribution [28]. Their diversity and heterogeneity is 
modified by predation, parasitism, competition, abiotic 
environmental gradients, natural barriers and distur-
bances [16]. While abiotic and vegetation parameters can 
be used to predict snail communities, disturbances by 
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human land use are less frequently discussed. Our previ-
ous study [27] focused on land snail density, diversity and 
species composition and emphasized that direct impacts 
of land use on snail communities were on average lower 
than the impact of abiotic drivers and biotic substrates. 
However, unlike several studies on insects, few direct 
effects have been shown for wood harvesting in forests 
and mowing in grasslands on snail diversity [27]. How 
these direct land-use effects influence populations of sin-
gle species and whether these effects are related to spe-
cies-specific traits remains largely unclear.

Our study showed that snail assemblages varied con-
sistently in their trait composition (shell size, number 
of offspring, light and humidity preference, drought 
resistance and inundation tolerance) across regions and 
among the two habitats, forests and grasslands. The vari-
ation between regions is consistent with a biogeographic 
gradient of increasing land snail diversity from the north 
to south caused by historical and ecological factors (tem-
perature, moisture) [12, 22] and snail species responded 
differently to variable physical environments [13]. Local 
environmental conditions have been shown to explain 
about 19% of the trait variability of a snail metacommu-
nity in Sweden [17], where the authors suggested that the 

unexplained variation may mirror land use. Our results 
confirmed that land-use intensity significantly influenced 
the trait distribution of snail communities, a pattern that 
was more pronounced in forest habitats than in grass-
lands. Since snail species in forest communities seem to 
be more specialized than those of grassland communi-
ties [12, 28], they may suffer more from habitat changes. 
For example, as the activity level of snails is temperature-
dependent, thinning the canopy by wood harvesting or 
a high amount of non-native trees can enhance solar 
irradiance and the enhanced snail locomotion allows 
the exploitation of ambient heterogeneity [29] and may 
favor species with higher light preferences. This hypoth-
esis is consistent with results from snail assemblages in 
our study, since the community-weighted mean (CWM) 
of light preference increased with the amount of non-
native, mainly coniferous trees that may not have a closed 
canopy. Furthermore, changes of the community trait 
composition are not only directly caused by land-use 
parameters, but also by indirectly changing abiotic fac-
tors such as soil pH and soil moisture although most snail 
species exhibit broad niches for these abiotic factors.

In our study, 4% of all forest and 21% of all grassland 
snail species were significant losers concerning the 
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Fig. 2 Relation between the responses (abundance-weighted mean) of each snail species to fertilization (a) and soil pH (b) and their proportional 
occurrence in forests. Indicated species above the line are significant “winners” for fertilization respective soil pH, indicated species below the line (in 
italic) are significant “losers”
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Fig. 3 Proportional distribution of land snail species in the Schorfheide-Chorin, the Hainich-Dün and the Swabian Alb. Grasslands are given in light 
grey, forests in dark grey. The three most abundant species are symbolized by big circles, less abundant species by small circles. Species that are 
underlined are specific for the respective region. Percentages in brackets indicate the proportional occurrence of species of the same genus
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Table 5 Statistical p values of  a  general linearized model with  Poisson distribution testing the  influence of  land-use 
parameters and abiotic factors on species vulnerability

Significant values are given in bold

Species vulnerability Estimate p value Species vulnerability Estimate p value

FORMI − 0.224 0.689 LUI − 0.511 0.256

Occurrence − 1.441 0.002 Occurrence − 1.303  < 0.001
Total abundance 0.546 0.158 Total abundance 0.673 0.001
Inonat − 0.424 0.150 Mowing − 0.031 0.903

Occurrence − 1.512 0.002 Occurrence − 1.227  < 0.001
Total abundance 0.598 0.112 Total abundance 0.638 0.001
Idwcut − 0.094 0.945 Grazing − 0.049 0.339

Occurrence − 1.454 0.005 Occurrence − 1.212  < 0.001
Total abundance 0.573 0.177 Total abundance 0.643  < 0.001
Iharv 0.119 0.948 Fertilization − 0.038 0.413

Occurrence − 1.477 0.002 Occurrence − 1.224  < 0.001
Total abundance 0.594 0.103 Total abundance 0.616 0.001
pH 0.198 0.573 pH 0.092 0.849

Occurrence − 1.643 0.004 Occurrence − 2.001  < 0.001
Total abundance 0.699 0.104 Total abundance 0.615 0.012
Soil moisture 0.039 0.333 Soil moisture − 0.043 0.330

Occurrence − 1.719 0.002 Occurrence − 1.184  < 0.001
Total abundance 0.726 0.063 Total abundance 0.631 0.001
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Fig. 4 Species vulnerability in relation to the five-dimensional niche hypervolume in forest (a) and grassland (b). The hypervolume was the product 
of the abundance-weighted standard deviations (AWSDs) of all single land-use components as well as pH and soil moisture in forests or grasslands, 
respectively
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compound indices of land-use intensity, including three 
land-use components in the forests or in the grasslands, 
respectively. The proportion of losers among grassland 
snail species was lower than the level found for grass-
hoppers (about 52%) [30] and plant- and leafhoppers 
(about 34%) [9], but similar to that for moths (28%) 
[31], confirming that snails are a suitable indicator for 
habitat quality and land-use intensity [17, 22, 32, 33]. 
The low proportion of loser species may be explained 
by their ground-living behavior (intangible for combine 
harvesters), the presence of a shell (protection against 
exposure and predation) and a larger diet breath com-
pared to insect taxa (omnivory for flexibly changing 
food resources). However, we may have underestimated 
the amount of loser species since we did not distinguish 
between living individuals and empty shells. Empty shells 
decay at different rates under different ecological condi-
tions [44]. Therefore, in some cases we may have evalu-
ated shells of species which can no longer be found alive 
in the respective places. Keeping this in mind, our meth-
odological approach may have ramifications on the con-
clusions drawn.

While increasing land-use intensity in open habitats is 
known to trigger a decline of pollinator species, and such 
losses were associated with species-specific trait attrib-
utes such as a narrow diet breadth, climate specialization, 
a large body-size and low fecundity [33–39], we did not 
find traits for snail species to correspond with their land-
use response at species level. This is surprising, given 
that particularly those traits that are associated with soil 
moisture (drought resistance, inundation tolerance), 
body size or reproductive outcome are likely to respond 
to human-mediated disturbances. Furthermore, land-use 
effects in forests were independent of the species habitat 
association (i.e. forests specialists were equally affected as 
non-forests specialists), but grassland specialists suffered 
more from land use (i.e. fertilization) and were more 
dependent on high soil pH.

Note that single land-use parameters and abiotic con-
ditions are often confounded in real landscapes as in our 
study, and thus responses of some snail species may not 
always correspond to single environmental dimensions 
as known from their global distribution or other sources. 
For example, Cochlicopa lubricella is a xerophilic land 
snail [42] whereas our data showed a neutral response to 
soil moisture.

Species’ vulnerability
The range of resources and the ecological conditions 
generally define the niche breadth and determine the 
geographical area of a species at the small or large scale 
[40]. Specialists are expected to be more vulnerable to 

habitat loss and climate change due to synergistic effects 
of a narrow niche and a small range size.

Only a few snails in our study across managed forests 
and grasslands are considered threatened or endangered 
according to the national Red List. Consistent with the 
expectation based on their environmental niche breadth, 
the species’ vulnerability status was significantly pre-
dicted by a particularly narrow niche hypervolume—an 
index that includes single land-use components as well 
as pH and soil moisture in each habitat. The smaller the 
hypervolume of a species, the higher its vulnerability 
according to the Red List. In addition, rarity was impor-
tant: in forests, the most important predictor for their 
vulnerable status was a low number of sites in which 
they occurred. In grasslands, both their restricted occur-
rence and low total abundance predicted the species’ 
vulnerability.

Conclusion
In summary, our results indicate that the trait composi-
tion of snail communities was significantly altered by 
land-use intensities and abiotic conditions, and several 
species especially in grasslands were losers of intensive 
land use. These land-use and environmental responses 
were largely independent of specific traits and the spe-
cies’ Red List status—this suggests that complementary 
risks may be important for predicting a species’ vulner-
ability. Instead, species vulnerability was mirrored in the 
species’ rarity and its overall niche hypervolume includ-
ing single land-use components and abiotic factors.

Methods
Data origin
Data for this study were already part of a previous analysis 
of biodiversity and community composition, i.e. Wehner 
et al. [27] and are available at https ://www.bexis .uni-jena.
de/Publi cData /Publi cData Set.aspx?Datas etId=24986 
. Wehner et  al. [27] collected 15,607 snail individu-
als belonging to 71 taxa in three regions in Germany in 
the framework of the Biodiversity Exploratories Project 
(http://www.biodi versi ty-explo rator ies.de) [2]. The col-
laborative research unit addresses effects of land-use on 
biodiversity and biodiversity-related ecosystem processes 
in three regions: the Swabian Alb (ALB), a low-moun-
tain range in South-West Germany (460–860  m a.s.l., 
09° 10′ 49″–09° 35′ 54″ E/48° 20′ 28″–48° 32′ 02″ N), the 
Hainich-Dün (HAI), a hilly region in Central Germany 
(285–550 m a.s.l., 10° 10′24″–10° 46′ 45″ E/50° 56′ 14″–
51° 22′ 43″ N) and the Schorfheide-chorin (SCH), a gla-
cial formed landscape in North-East Germany (3–140 m 
a.s.l., 13° 23′ 27″–14° 08′ 53″ E/52° 47′ 25″–53° 13′ 26″ 
N). SCH is characterized by the lowest annual precipi-
tation (520–580  mm), with a mean annual temperature 

https://www.bexis.uni-jena.de/PublicData/PublicDataSet.aspx?DatasetId=24986
https://www.bexis.uni-jena.de/PublicData/PublicDataSet.aspx?DatasetId=24986
http://www.biodiversity-exploratories.de
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of 6–7 °C. It is followed by HAI (630–800 mm, 6.5–8 °C) 
and ALB (800–930 mm, 8–8.5 °C).

In each region, 100 experimental plots (50 in forests 
and 50 in grasslands) were setup in 2008 along a land-
use gradient covering different management types and 
intensities including mowing, grazing and fertilization 
in grasslands and the proportion of non-native trees, the 
proportion of dead-wood with saw cuts and the propor-
tion of wood harvested in forests (Table 6). Forest plots 
have a size of 1 ha and grassland plots are 0.5 ha in size.

In June 2017, Wehner et  al. [27] took five replicated 
surface samples from all 50 forest and 50 grassland exper-
imental plots (EPs) in the Swabian Alb and the Hainich, 
and from 49 forest and 34 grassland plots in the Schorf-
heide due to constrained accessibility (1415 samples in 
total). Shelled snails were subsequently determined to 
the species, genus or family level using [41–43]. Although 
suggested elsewhere [e.g., 44], [27] did not distinguish 
between empty shells and living snail individuals.

As our current study focuses on species-level responses, 
only those individuals that could be assigned to the spe-
cies level were used (ALB grasslands: 36, ALB forests: 
37, HAI grassland: 31, HAI forest: 35, SCH grassland: 24, 
SCH forest: 21, 61 different land snail species in total). 
Grassland plots (although not permanently flooded) in 
one region (Schorfheide) harbored large numbers of 
aquatic and semi-aquatic snails. In contrast to our pre-
vious analysis that covered all snails recorded [27], we 
excluded aquatic snails from the analyses since their role 
and responses to terrestrial environmental variables such 
as land-use in grasslands remain unclear,

Statistical analyses
All statistical analyses were performed in R 3.5.2 [45] 
using the main packages “car” [46], “dplyr” [47], “lme4” 
[48] and “SMDTools” [49].

Trait composition of snail communities
Morphological and life-history trait values for all snail 
species were obtained from an established trait data-
base by Falkner et  al. [50] and compared to findings of 
[51] whenever possible; see Astor et al. [17] for a similar 
approach based on [50]. Traits for the set of species in our 
study are summarized in Table  7. Note that these traits 
are either continuous variables (size), integers (offspring) 
or ranks (all others); ranks can been treated as integers or 
continuous variables for an analysis based on community 
weighted mean (CWM, see below); the resulting distribu-
tion of the CWM in species-rich communities and across 
a large number of plots typically approach a Gaussian 
distribution. Moreover, to explore the response to poten-
tial environmental filtering, traits with different meaning 
are treated independently for the following analysis (a 

common practice, although some traits, e.g. shell size and 
number of offspring, may be correlated, see [17]).

For comparing snail communities among habitats and 
regions, the community weighted mean (CWM) of each 
trait was calculated as CWM per plot p

where Ti is the trait value of species i, ai,p is the abun-
dance of species i in plot p and Ap the total abundance of 
all snails in plot p (total I species).

Environmental niches
We characterized the environmental conditions of each 
forest or grassland plot by its land-use intensity and two 
abiotic soil parameters (pH and soil moisture; Table  6) 
[52, 53]. Data were obtained from the BExIS database 
(Table 6).

We tested the response of the CWM of each trait 
to variation in environmental conditions using linear 
regressions. Values for grazing and fertilization were 
square root transformed before statistical analyses.

In order to characterize the snail species’ responses to 
environmental conditions (land-use gradient, soil condi-
tions), we calculated each species’ “environmental niche”. 
The method has been established in the context of the 
Biodiversity Exploratories and was applied to several taxa 
such as grasshoppers [30], cicadas, moths [31], bumble-
bees [54] or plants [55]. The “niche optimum” was cal-
culated as the abundance weighted mean (AWM) for 
species i as

where np is the number of plots investigated, Lp is the 
land-use gradient value of plot p, ai,p the abundance of 
species i in plot p and Ai the total abundance of species i 
across all 149 forest or 134 grasslands sites, respectively. 
Hence, the CWM characterizes the plots by the trait dis-
tribution of snails, and the AWM characterizes snail spe-
cies by the environmental conditions of the plot, and the 
snail abundance ai,p is used to weight either species or 
plot, respectively.

In addition to the AWM as a niche optimum, we also 
characterized the “niche breadth” of each species to a 
single environmental variable using the abundance-
weighted standard deviation (AWSD) [30]. To test 
whether AWMs and AWSDs statistically deviate from 
an expected random distribution, we compared the cal-
culated values against the expected values obtained from 
a null model that distributes each species across Ni sites 

CWMp =

I∑

i=1

Ti •
ai,p

Ap

AWMi =

np∑

p=1

Lp •
ai,p

Ai
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with the same probability, with Ni being the number of 
sites in which species i was found. The null model thus 
chooses values of the focal land-use parameter (LUI, 
Formi, single components, pH, soil moisture) of Ni sites 
and calculates a distribution of predicted AWMs and 
AWSDs values for each species based on 10,000 itera-
tions. The null model was restricted to the one, two, or 
three regions in which the species was recorded to con-
sider potential distribution boundaries of each species in 
Germany that may not be related to plot conditions [30].

As in any randomization model, the proportion of 
AWMs or AWSDs from 10,000 null models with greater 
or smaller expected values respectively than the observed 
value, provides the p value for the significance of the devi-
ation between observed and expected values. A ‘winner’ 
is defined as a species with an observed AWM larger than 
the upper 5% of the distribution of AWMs obtained by 
the null models (i.e. adapted on higher-than average land-
use intensity), a ‘loser’ shows an observed AWM smaller 
than the lower 5% (low land-use intensity specialist). For 
species which could be classified neither as ‘losers’ nor 
as ‘winners’, we tested whether they are specialized on 
intermediate land-use or abiotic levels, that is, whether 
they have an intermediate AWM with a narrower niche 
than expected. We standardized the niche breadth as 
weighted coefficient of variation (CV = AWSD/AWM) 
to account for the increase in SD with increasing mean, 
and compared observed CV and expected CV from the 
null models. This comparison allows us to distinguish 
‘opportunists’ (observed CV ≥ expected CV) from spe-
cies that are ‘specialized’ on intermediate land-use 
intensities (observed CV < expected CV and species not 
only occurring on one site, i.e., CV ≠ 0) [30]. The envi-
ronmental niche (AWM, AWSD) and the assignment of 
low- and high-gradient specialists were also calculated 
for soil pH and soil moisture, although we did not adopt 
the ‘loser’/’winner’ terminology here unlike for land-use 
intensity.

Species vulnerability
Vulnerability (classified as a rank variable comparable to 
IUCN categories: least concern, endangered to unknown 
extent, very rare, near threatened, critically endan-
gered, endangered, vulnerable) of land snail species was 
obtained from the Red List 2011 (according to [56]; see 
Table 3). We tested the relation of vulnerability with the 
species’ habitat association by calculating the propor-
tional occurrence in either forest or grassland habitats 
of a certain species’ presence; a ‘specialist’ was defined if 
more than 90% of all individuals found were present in 
one habitat (forest or grassland). The relation between 
vulnerability and species’ habitat association was tested 
by a linear model using the land-use management com-
ponents and the abiotic conditions as fixed factors and 
the proportional occurrence as explanatory factor.

To further test if a species’ vulnerability can be pre-
dicted by its land-use response (‘winner’ or ‘loser’ status) 
and its relation to abiotic soil conditions, we used a gen-
eral linearized model with Poisson distribution includ-
ing vulnerability as response factor and the respective 
land-use parameter or abiotic factor, the number of plots 
where the species occurred and its total abundance as 
explanatory factors. Values for grazing and fertilization 
were square-root transformed prior to statistical analyses 
and data on abundances and occurrence were log trans-
formed because of data structure.

Finally, we calculated a five-dimensional niche hyper-
volume (consistent with Hutchinson’s n‐dimensional 
niche concept) as a proxy for the total ‘niche breadth’ 
of each snail species by multiplying the abundance-
weighted standard deviations (AWSD) of all three single 
land-use components as well as of pH and soil moisture, 
respectively. The hypervolume was defined for forests 
and grasslands separately.

Whether the total niche breadth can predict vulner-
ability was tested using a Spearman rank correlation 
between the vulnerability and the five-dimensional niche 
hypervolume.

Table 7 Characterization of snail traits according to Falkner et al. 2001 [50]

Trait Explanation Unity

Shell size Maximal height of an oblong shell or the maximal diameter of a depressed shell in 
mm; in case of globose/conical shells, whichever measure has the greater value is 
considered

mm

Number of offspring Numbers of eggs/juveniles per clutch 1–10, 11–100, > 100

Light preference Degree to which species occur in direct sunlight or shaded conditions Deep shade, light shade, 
no shade, indifferent

Humidity preference Degree to which species occur at wet or dry conditions Wet, moist and dry

Drought resistance Degree to which species can survive dry periods Hours, days, weeks, months

Inundation tolerance Degree to which species are tolerant to inundation Low, moderate, high
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and inundation tolerance. * p < 0.05, ** p < 0.01, *** p < 0.001. ↓ negative 
effect, ↑ positive effect.
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species in bold are land-use “losers”.
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ber of offspring, light preference, humidity preference, drought resistance 
and inundation tolerance in grasslands. Species in italics are land-use 
“winners”, species in bold are land-use “losers”.

Additional file 9: Appendix 9. Influence of the abundance-weighted 
mean (AWM) of mowing on the maximum shell size, number of offspring, 
light preference, humidity preference, drought resistance and inundation 
tolerance in grasslands. Species in italics are land-use “winners”, species in 
bold are land-use “losers”.

Additional file 10: Appendix 10. Influence of the abundance-weighted 
mean (AWM) of grazing on the maximum shell size, number of offspring, 
light preference, humidity preference, drought resistance and inundation 
tolerance in grasslands. Species in italics are land-use “winners”, species in 
bold are land-use “losers”.

Additional file 11: Appendix 11. Influence of the abundance-weighted 
mean (AWM) of fertilization on the maximum shell size, number of 
offspring, light preference, humidity preference, drought resistance and 
inundation tolerance in grasslands. Species in italics are land-use “winners”, 
species in bold are land-use “losers”.

Additional file 12: Appendix 12. Influence of the abundance-weighted 
mean (AWM) of soil pH on the maximum shell size, number of offspring, 
light preference, humidity preference, drought resistance and inundation 
tolerance in grasslands. Species in italics are land-use “winners”, species in 
bold are land-use “losers”.

Additional file 13: Appendix 13. Influence of the abundance-weighted 
mean (AWM) of soil moisture on the maximum shell size, number of 
offspring, light preference, humidity preference, drought resistance and 
inundation tolerance in grasslands. Species in italics are land-use “winners”, 
species in bold are land-use “losers”.

Additional file 14: Appendix 14. Relation of the abundance-weighted 
means (AWM) of the forest management index, proportion of non-native 
trees, proportion of dead wood with saw cuts, proportion of wood har-
vested, pH and soil moisture and the proportional occurrence of a certain 
species in forests.

Additional file 15: Appendix 15. Relation of the abundance-weighted 
means (AWM) of the land-use intensity, mowing, grazing, fertilization, pH 
and soil moisture and the proportional occurrence of a certain species in 
forests.
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