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Abstract

Background: Although phylogenomic analyses are increasingly used to reveal evolutionary relationships among
ciliates, relatively few nuclear protein-coding gene markers have been tested for their suitability as candidates for
inferring phylogenies within this group. In this study, we investigate the utility of the heat-shock protein 90 gene
(Hsp90) as a marker for inferring phylogenetic relationships among hypotrich ciliates.

Results: A total of 87 novel Hsp90 gene sequences of 10 hypotrich species were generated. Of these, 85 were
distinct sequences. Phylogenetic analyses based on these data showed that: (1) the Hsp90 gene amino acid trees
are comparable to the small subunit rDNA tree for recovering phylogenetic relationships at the rank of class, but
lack sufficient phylogenetic signal for inferring evolutionary relationships at the genus level; (2) Hsp90 gene
paralogs are recent and therefore unlikely to pose a significant problem for recovering hypotrich clades; (3)
definitions of some hypotrich orders and families need to be revised as their monophylies are not supported by
various gene markers; (4) The order Sporadotrichida is paraphyletic, but the monophyly of the “core” Urostylida is
supported; (5) both the subfamily Oxytrichinae and the genus Urosoma seem to be non-monophyletic, but
monophyly of Urosoma is not rejected by AU tests.

Conclusions: Our results for the first time demonstrate that the Hsp90 gene is comparable to SSU rDNA for
recovering phylogenetic relationships at the rank of class, and its paralogs are unlikely to pose a significant problem
for recovering hypotrich clades. This study shows the value of careful gene marker selection for phylogenomic
analyses of ciliates.
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Background

Evolutionary relationships of many ciliated protists (ciliates)
remain unknown due to difficulties in species identification
caused by their small size, complex morphological charac-
ters and high species diversity, although this topic is vital
for understanding the evolution of life on Earth [1-4]. Most
published molecular phylogenetic trees of ciliates are based
on rDNA sequences, including the small subunit rDNA
(SSU rDNA), large subunit rDNA (LSU rDNA) and the in-
ternal transcribed spacer (ITS) region [5-8]. All presently
used markers give rise to artifacts in phylogenetic recon-
structions resulting in the recovery of ambiguous relation-
ships in gene trees [9, 10]. Analysis of sequences of
multiple unlinked loci having different evolutionary histor-
ies, as opposed to linked SSU rDNA, LSU rDNA, and ITS
regions, is necessary since phylogenetic bias might be com-
mon to loci that are linked [11]. Hence, protein-coding
genes, such as alpha-tubulin, actin, Hsp70 and histone H4
genes, are increasingly used to reconstruct ciliate phyloge-
nies [1, 3, 12-17]. With the development of phylogenomics,
it is now possible to reconstruct phylogenetic relationships
among ciliates based on analyses of hundreds of protein-
coding genes [1, 18-22]. However, only a few of these
protein-coding gene markers in comparatively few taxa
have been tested for their suitability as candidates for infer-
ring phylogenetic relationships among ciliates [23—25].

It has previously been shown that heat shock protein
90 (Hsp90) can resolve evolutionary relationships among
eukaryotic taxa at high taxonomic rank, including alveo-
lates and deep-branching dinoflagellates [26—29], and
possibly also at genus level, e.g., Paramecium and Tetra-
hymena [30]. Furthermore, Hsp90 is ubiquitous and
highly conserved in eukaryotic cells making it easy to
amplify using PCR [31, 32]. As in other protein-coding
genes used for molecular phylogenies, paralogs caused
by gene duplication, especially recent ones, might be the
biggest disadvantage of using Hsp90 in phylogenetic
analyses [3, 33, 34]. Notably, gene duplications in ciliates
are common due to extremely high copy numbers of
genes caused by unique features such as nuclear di-
morphism [6, 35, 36]. Hence, it is necessary to test
whether Hsp90 gene paralogs will confound phylogen-
etic analyses before this gene is widely used for deter-
mining evolutionary relationships among ciliates.

The subclass Hypotricha is mainly defined by the pat-
terns of ventral cirri arranged either in longitudinal files
or in scattered groups and represents one of the most
diverse groups within the Ciliophora [37]. This subclass
has been the subject of many taxonomic revisions, par-
ticularly in the past three decades [1, 38—43]. Phylogen-
etic relationships within the Hypotricha are still poorly
understood and the rapidly growing molecular phylogen-
etic studies have consistently questioned monophylies
and assignments of many taxa [44—46].
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In the present study, phylogenetic analyses based on
the Hsp90 gene were carried out for 10 species (11 pop-
ulations) of hypotrichs. The main aims were to examine
whether Hsp90 is a suitable gene marker for resolving
evolutionary relationships among ciliates using Hypotri-
cha as an example, and to re-evaluate phylogenetic rela-
tionships within the subclass Hypotricha based on new
Hsp90 sequence data.

Results

Hsp90 gene sequences of hypotrich ciliates

We obtained a total of 87 novel Hsp90 gene sequences
from 11 populations of hypotrichs (Table 1). In order to
avoid data redundancy we only used 85 distinct sequences
in downstream analyses. The amplified fragment length of
the Hsp90 gene was 1089—1119 base pairs (bp) with 41.2—
60.1% GC content of which 543 sites (47.4%) were vari-
able. Numbers of variable sites were highly divergent
within each population, ranging from 16 (1.4%, Pseudoker-
onopsis rubra) to 216 (18.9%, Ponturostyla enigmatica).
The third codon position exhibited the highest level of
variation (42.0%). A total of 74 distinct amino acid se-
quences were detected among the 85 distinct nucleotide
sequences. The 11 identical amino acid sequences were
removed. The numbers of parsimony-informative and
variable sites varied greatly at intra-population level. For
instance, only one parsimony-informative site and five
variable sites were present in Pseudokeronopsis rubra,
while 48 and 67, respectively, were observed in Ponturos-
tyla enigmatica (Fig. 1a).

Average nucleotide and amino acid pairwise distances
within 11 hypotrich populations ranged from 0.0066
(Pseudokeronopsis rubra) to 0.1461 (Ponturostyla sp.),
and 0.0051 (Pseudokeronopsis rubra) to 0.0843 (Pontur-
ostyla enigmatica), respectively (Fig. 1b). Average inter-
specific pairwise distances varied from 0.1062 (Pseudo-
keronopsis erythrina vs. P. rubra) to 0.3156 (Hypotrichi-
dium paraconicum vs. Neowallackia sp.) for nucleotides,
and 0.0424 (Pseudokeronopsis erythrina vs. P. rubra) to
0.1966 (Pseudokeronopsis erythrina vs. Pseudoamphi-
siella quadrinucleata) for amino acids (Table S1).

Phylogenetic trees

In the Hsp90 amino acid (HSP90-Amino) tree, Oligohy-
menophorea and Spirotrichea were the only monophy-
letic classes with more than one representative species
included in the analyses (Fig. 2). Another two classes, i.e.
Heterotrichea and Phyllopharyngea, contain only one se-
quence each. Within Hypotricha, the orders Sporadotri-
chida and Urostylida were both monophyletic and order
Stichotrichida was represented by only one species. Two
out of six hypotrich families (Oxytrichidae and Urostyli-
dae) represented by more than one species were polyphyl-
etic. At the genus level, there was no sister relationship
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Fig. 1 Amino acid variable sites and parsimony-informative sites in Pseudokeronopsis rubra and Ponturostyla enigmatica (), and intra-population
genetic distances of Hsp90 gene amino acid and nucleotide sequences (b). a Only variable sites are shown: parsimony-informative sites are
shaded red; b genetic distances of amino acid and nucleotide are green solid and hollow boxes respectively

between the two representatives of Urosoma, i.e., U. caud-
ata and U. karinae, and sequences of two Ponturostyla
species fell into three different clades. In contrast, the two
Pseudokeronopsis species clustered together in a strongly
supported clade (98% ML, 1.00 BI). Only U. caudata was
represented by more than one population (U. caudata pl
& p2), and their sequences formed a clade with reliable
support (97% ML, 1.00 BI). For each of six populations,
i.e., Urosoma karinae (99% ML, 1.00 BI), Neowallackia sp.
(100% ML, 1.00 BI), Pseudoamphisiella quadrinucleata
(99% ML, 1.00 BI), Hypotrichidium paraconicum (99%
ML, 1.00 BI), Hemigastrostyla enigmatica (100% ML, 1.00
BI) and Pseudokeronopsis rubra (93% ML, 1.00 BI), all se-
quences formed high to maximally supported clades. For
five other populations, i.e., U. caudata pl, U. caudata p2,
Ponturostyla enigmatica, Ponturostyla sp. and Pseudokero-
nopsis erythrina, this was not the case. For example, one
sequence of Pseudokeronopsis erythrina grouped within
the P. rubra clade. Within the class Oligohymenophorea,
two sequences of Paramecium tetraurelia branched off
with full support (100% ML, 1.00 BI) and clustered with
Tetrahymena bergeri (AY391257) with moderate or low
support (82% ML, 0.75 BI).

The topologies of the Hsp90 nucleotide (HSP90-Nuc)
trees (Fig. 3) and Hsp90 nucleotide trees without third
codon positions (HSP90-Nuc12) (Fig. 4) corresponded
closely with that of the HSP90-Amino tree (Fig. 2), al-
though there were three notable differences. Firstly, se-
quences of Urosoma caudata pl and U. caudata p2
were separated from each other within a large clade and
both populations appeared to be monophyletic in both
the HSP90-Nuc and HSP90-Nucl2 trees, whereas they
clustered together in the HSP90-Amino tree. Secondly,
the clade comprising sequences of Chilodonella

uncinata (DQ662856) occupied the basal position in the
HSP90-Nuc and HSP90-Nucl2 trees, but it grouped
with Oligohymenophorea and Heterotrichea in the
HSP90-Amino tree. Thirdly, the subclass Hypotricha
was polyphyletic in the HSP90-Nuc and HSP90-Nucl2
trees, but monophyletic in the HSP90-Amino tree.

The topology of the SSU-rDNA tree (Fig. 5a) was almost
congruent with the HSP90-Amino tree (Fig. 2). The major
difference was that the two Urosoma species clustered to-
gether in the SSU-rDNA tree, whereas they were sepa-
rated into different clades in the HSP90-Amino tree.

The topology of the SSU-HSPNuc12 tree (Fig. 5b) was
nearly identical to that of the SSU-rDNA tree (Fig. 5a)
except that Urostylida/Urostylidae was monophyletic
only in the SSU-HSPNucl2 tree (Fig. 5b). The mono-
phyly of the subclass Hypotricha was also recovered in
SSU-HSPNucl2 tree which is consistent with the
HSP90-Amino and SSU-rDNA trees (Figs. 2 and 5a).

Discussion

Is Hsp90 gene a suitable gene marker for inferring
hypotrich phylogeny?

Previous studies have shown that the best way to evaluate
the utility of a gene marker is to compare its congruence
with other data [9]. Some researchers have suggested that
Hsp90 is as good or better than any other single gene
marker for inferring eukaryote phylogeny [29]. Here, the
reliability of the Hsp90 gene is compared with other gene
markers, especially SSU rDNA, based on accepted mono-
phyletic groups at different taxonomic ranks. In the
present investigation the class Oligohymenophorea was
monophyletic, which is consistent with previous reports
based on a variety of gene markers [3, 6, 54, 55]. In con-
trast, the subclass Hypotricha was non-monophyletic in
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our HSP90-Nuc and HSP90-Nucl2 trees (Figs. 3 and 4)
but monophyletic in the HSP90-Amino, SSU-rDNA and
SSU-HSPNucl2 trees (Figs. 2 and 5). Non-monophyly in
HSP90 trees (Figs. 3 and 4) might be caused by the rapid

evolution of Hsp90 gene nucleotide sequences which is
not suitable for reconstruction relationships of high-level
taxa. It is suggested that amino acid sequences, rather
than nucleotide sequences, of the Hsp90 gene are more
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suitable for the classification of ciliates. The subclass
Hypotricha was monophyletic in most previous molecular
phylogenetic trees based on a variety of gene markers
[6, 56-59], although in a few studies it was non-
monophyletic [1, 6, 33]. The utility of the Hsp90 gene
is comparable to that of SSU rDNA at class level
Out of three hypotrich genera for which Hsp90 gene
sequences from more than one species were available,
two (Urosoma and Ponturostyla) were paraphyletic

(Figs. 2 and 3). This suggests that the Hsp90 gene
might lack sufficient phylogenetic signal for inferring
evolutionary relationships at the genus level. Due to
the lack of taxon coverage, we were unable to deter-
mine whether the Hsp90 gene yields sufficient phylo-
genetic signal to determine relationships at order or
family levels. The order Sporadotrichida, and two
families for which sequences from multiple species
were available, were polyphyletic (Figs. 2, 3, 4, 5).
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This is consistent with previous findings based on
SSU rDNA, actin and alpha-tubulin gene markers [43,
44, 46].

Multiple distinct Hsp90 nucleotide sequences were de-
tected in every species, probably as a result of gene du-
plications. Of the 11 populations represented by more
than one sequence, eight formed a well-supported clade
in the HSP90-Nuc tree, the exceptions being Pseudoker-
onopsis erythrina, Ponturostyla sp. and Ponturostyla
enigmatica (Fig. 3). This indicates that the Hsp90 gene
duplications are recent and might have occurred after
the separation of populations, suggesting that Hsp90

gene paralogs are unlikely to pose a substantial problem
in defining hypotrich clades. Similarly, only recent dupli-
cation events have been detected in ciliates for the
alpha-tubulin gene [17], this being the most widely used
protein-coding gene for inferring evolutionary relation-
ships in a range of ciliate groups [1, 13, 16, 17, 25]. Some
studies, however, have concluded that the alpha-tubulin
gene might not provide sufficient phylogenetic signal to
resolve evolutionary relationships within some groups,
e.g., Spirostomum, possibly due to the especially pro-
nounced purifying selection [16, 60, 61]. In the case of
the actin gene, the presence of ancient gene duplications
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and actin isoforms being too divergent means that it is
not possible to resolve evolutionary relationships below
the rank of class [3]. These findings indicate that gene
duplication patterns of different protein-coding genes
are variable depending on the gene and the ciliate group.
More studies are therefore needed to test more genes
and more ciliate groups.

Phylogenetic relationships within the subclass Hypotricha
In the present study, each of the orders Sporadotrichida
and Stichotrichida were paraphyletic and support values
for some clades were low (Figs. 2, 3, 4, 5). This is con-
sistent with previous molecular phylogenetic studies [3,
62—67]. It seems that gene markers with sufficient
phylogenetic signal to recover the monophyletic Hypo-
tricha are currently unavailable, although several (e.g.,
SSU rDNA, LSU rDNA, ITS and alpha-tubulin) have

been widely used. This is reasonable considering that
classification systems based on morphology, morphogen-
esis and gene sequences are not concordant with each
other, probably due to the high diversity of ciliary and
other somatic structures, as well as various modes of
cortical development, within the Hypotricha [38—43, 68].
Currently, Hsp90 gene sequence data are available for
only one species of Stichotrichida, namely Hypotrichi-
dium paraconicum. Therefore, relationships within this
order could not be analyzed. In contrast, several import-
ant phylogenetic relationships are recovered within the
orders Sporadotrichida and Urostylida.

Sporadotrichida

It has been suggested that the family Oxytrichidae,
which is characterized by typically having 18 front-
ventral-transverse (FVT) cirri, should be divided into
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two subfamilies, the Oxytrichinae, with a flexible body,
and the Stylonychinae, with a rigid body [38, 39]. All
genera of Oxytrichidae included in the present study,
i.e., Oxytricha, Urosoma, Ponturostyla and Hemigastros-
tyla belong to the subfamily Oxytrichinae. However, the
subfamily Oxytrichinae was not monophyletic in any of
the trees (Figs. 2, 3, 4, 5). This is consistent with previ-
ous studies based on SSU rDNA [69], actin [3] and
alpha-tubulin genes [17], suggesting that the ontogenetic
character which characterizes this group, viz. the partici-
pation of the posteriormost postoral ventral cirrus in
primordia formation, might not be a synapomorphy.
Furthermore, approximately Unbiased (AU) tests per-
formed on HSP90-Nuc, HSP90-Nucl2, HSP90-Amino,
SSU-rDNA and SSU-HSPNucl2 datasets rejected the
monophyly of the subfamily Oxytrichinae (P < 0.05)
(Table 2). The monophyly of the genus Urosoma was
not supported in the HSP90-Nuc, HSP90-Nucl2,
HSP90-Amino and SSU-HSPNucl?2 trees, although this
was not rejected by AU tests (P>0.05, Table 2) (Figs.
2, 3, 4, 5b). Furthermore, no support values were re-
vealed for the clade containing two Urosoma species
shown in ML analyses based on the SSU-rDNA data-
set (Fig. 5a). It is noteworthy that the monophyly of
the genus Urosoma was not recovered in previous
studies based on SSU rDNA sequences [47, 48]. The
genus Urosoma might therefore be an artificial assem-
blage and its synapomorphies (i.e., frontoventral cirri
arrange in a row with anterior cirrus (III/2) located
slightly to the left, postoral ventral cirri in a dense
cluster behind the buccal vertex, usually with two
pretransverse ventral, five transverse cirri, one right
and one left row of marginal cirri, and caudal cirri
present) might be plesiomorphies of the subclass
Hypotricha [38, 48]. Morphological, morphogenetic
and molecular data for more taxa are required in
order to resolve the systematics of Sporadotrichida.

Table 2 Approximately Unbiased (AU) test results of the
monophyly of Oxytrichinae and Urosoma based on different
datasets

Datasets Topology constraints  -Ln® Likelihood AU value (P)
HSP90-Nuc Oxytrichinae 18,926.77844542 < 0.001
Urosoma 18,720.53438758 0.693
HSP90-Nuc12  Oxytrichinae 24,480.25572958 < 0.001
Urosoma 24,253.92785203 0.579
HSP90-Amino  Oxytrichinae 6100.82366514  0.001
Urosoma 6017.78810081 0.576
SSU-rDNA Oxytrichinae 9661.66588815 0.001
SSU-HSPNuc12  Oxytrichinae 16,370.74872451  0.001
Urosoma 16,280.08580004 0.736

-Ln = negative value of natural logarithm; P values> 0.05 in bold
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Urostylida

It is not surprising that Pseudoamphisiella was separated
from the “core” Urostylida in most our trees (Figs. 2, 3,
4, 5a) since phylogenetic trees based on various gene
markers have previously revealed the fragmentation of
the order Urostylida into a “core” group and the rest [1,
46, 70, 71]. Considering that the monophyly of the
“core” urostylid group was consistently recovered and
other urostylid taxa usually had no robust assignment in
our phylogenetic trees, we suggest that the morpho-
logical definition of the order Urostylida needs to be fur-
ther refined.

Conclusions

Our investigation indicates that, though lacking suffi-
cient phylogenetic signal at the genus level, the Hsp90
gene is comparable to SSU rDNA for recovering evolu-
tionary relationships at the rank of class and that its
paralogs are unlikely to pose a significant problem for
recovering hypotrich clades. The Hsp90 gene therefore
has significant potential utility for determining the sys-
tematics of ciliates. The findings of this study also sug-
gest that careful selection of nuclear protein-coding gene
markers is needed for phylogenetic analyses of ciliates.

Methods

Culturing, DNA extraction, PCR amplification, and
sequencing

All the ciliates used in this study are listed in Table 3.
Pure cultures were maintained in Petri dishes at room
temperature (approximately 25°C) with rice grains to
stimulate the growth of bacteria as food for the ciliates
[72]. One or more cells of each culture were repeatedly
washed in sterile water with the same salinity as that of
the sampling site. Genomic DNA was extracted using
REDExtract-NAmp Tissue PCR Kit (Sigma, St. Louis,
MO, USA).

PCR amplifications of the Hsp90 genes were per-
formed using a TaKaRa Ex Taq DNA Polymerase Kit
(TaKaRa Biomedicals, Japan). The primers used for
Hsp90 gene amplification were Hsp90F4 (5'-CGGCAC
GTTCTACWSNAAYAARGA-3') and Hsp90R3 (5'-
GGTCTTTCTTCTGGCGTGTTCAGTGTA-3")  [26].
PCR conditions were: 2 min initial denaturation (95 °C),
followed by 35 cycles of 45s at 92°C, 45s at 48 °C and
1.5 min at 72 °C, with a final extension of 10 min (72 °C).
Reactions were run in a total volume of 50 ul containing
5 ul 10 x Ex Taq DNA Polymerase buffer, 5 ul 2.5 mmol/
L dANTP mix, 0.4 ul Ex Taq DNA Polymerase, 0.8 ul of
each primer (25 mM), 2 ul of template DNA, and 36 ul
of autoclaved double-distilled water.

After confirmation of the amplified DNA by 1.0%
agarose gel, a single bright band containing the target
DNA was purified using the Universal DNA purification
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Table 3 Sampling information of 11 ciliate populations sequenced in this study

Organisms Sampling locality Location Sampling Salinity GenBank Morphological Data
(%o0) No. Sources
Ponturostyla sp. Futian Mangrove (22°31'N; 114°04'F), Guangdong 20 MN892397  [53]
-MN892398
Ponturostyla enigmatica Futian Mangrove (22°31'N; 114°04'F), Guangdong 5 MN892399  [53]
-MN892404
Urosoma caudata p1 Nansha Island (22°85'N; 113°51'E), Guangdong 25 MN892405  [48]
-MN892419
Urosoma caudata p2 Futian Mangrove (22°31'N; 114°04'E), Guangdong 8 MN892420  [48]
-MN892424
Urosoma karinae Futian Mangrove (22°31'N; 114°04'E), Guangdong 7 MN892425  [2, 47]
-MN892434
Pseudokeronopsis rubra Qingdao(36°03'N;120°20'F), Shandong 30 MN892435  [50]
-MN892443
Pseudokeronopsis erythrina Pearl River Estuary (22°41'N; 113°38F), 15 MN892444  [44]
Guangdong -MN892451
Pseudoamphisiella Clear Water Bay (22°20'N, 114°17'F), Hong Kong ~ 33.5 MN892452  [52]
quadrinucleata -MN892458
Hemigastrostyla enigmatica Daya Bay (22°43'N; 114°32'E), Guangdong 20 MN892459  [51]
-MN892465
Hypotrichidium paraconicum Maipo Mangrove (22°29'N; 114°02'E), Hong Kong 18 MNB892466  [49]
-MN892472
Neowallackia sp. Futian Mangrove (22°31'N; 114°04'E), Guangdong 10 MN892473  [41]
-MN892481

kit (TIANGEN, Beijing, China). Subsequently, the puri-
fied PCR products were cloned with the pMD18-T Clon-
ing Vector (TaKaRa Biomedicals, Japan) and DH5-a E.
coli cells. A total of 2-15 positive colonies from each
population were sequenced in both directions in an ABI
Prism 377 Automated DNA Sequencer (Majorbio se-
quencing facility, Shanghai, China) using primers M13-
F47 and M13-R48.

Sequence analyses and construction of phylogenetic trees
Five datasets were included in the phylogenetic analyses:
(1) HSP90-Nuc (98 sequences in total, i.e., Hsp90 nu-
cleotide sequences including 85 that were distinct and
newly obtained from the present study together with all
10 ciliate sequences available from the GenBank data-
base); (2) HSP90-Amino (98 sequences in total, i.e., cor-
responding amino acid sequences of HSP90-Nuc); (3)
HSP90-Nucl2 (98 sequences in total, i.e. HSP90-Nuc in-
cluding only first two codon positions); (4) SSU-rDNA
(15 sequences in total, i.e., corresponding SSU rDNA se-
quences of species in Dataset HSP90-Nuc, expect for
three that were absent in GenBank, namely Oxytricha
trifallax, Newallackia sp. and Blepharisma inter-
medium); (5) SSU-HSPNucl2 (15 sequences in total:
two-gene combined dataset including SSU-rDNA and
HSP90-Nuc including only first two codon positions). In
each dataset, three species of Apicomplexa were chosen
as the outgroup.

The Hsp90 nucleotide sequences were translated into
amino acid sequences by DAMBE 6.3.0.1 software [73].
Intra- and inter-population genetic distances were calcu-
lated using MEGA 7.0 [74]. Mean pairwise nucleotide
distances were calculated using the Kimura 2-parameter
correction model [75]. Mean pairwise amino acid dis-
tances were calculated using the Poisson model [76].
Multiple sequence alignments of all nucleotide and
amino acid sequences were performed with CLUSTAL
W implemented in BioEdit v.7.0.1 [77] and then manu-
ally modified in order to trim both ends. Alignments
used for subsequent phylogenetic analyses included the
following numbers of positions: 1743 (HSP90-Nuc), 386
(HSP90-Amino), 1162 (HSP90-Nucl2), 1806 (SSU-
rDNA), and 2968 (SSU-HSPNucl2). Models for nucleo-
tide datasets were selected under the Akaike information
criterion (AIC) by MrModeltest [78]. GTR +1+ G was
the best-fitted model for datasets HSP90-Nuc and SSU-
rDNA. GTR + G was the best-fitted model for datasets
HSPNuc12, SSU-HSPNucl2, as well as first and second
codon positions of Hsp90 nucleotide sequences. Blo-
sum62 + [+ G was the best-fitted model for the amino
acid dataset (HSP90-Amino) selected by AIC as imple-
mented in ProtTest 1.4 [79]. Bayesian inference (BI) ana-
lyses were performed with MrBayes 3.1.2 [80]. Markov
chain Monte Carlo (MCMC) simulations were run with
two sets of four chains for 1,000,000 generations with
trees sampled every 100 generations. The first 2500 trees
were discarded as burn-in. The remaining trees were
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retained to generate a consensus tree and to calculate
the posterior probabilities (PP) of all branches using a
majority-rule consensus approach. A maximum likeli-
hood tree (ML) was constructed using online software
RAxXML-HPC2 on XSEDE (http://www.phylo.org/). The
branches of the resulting tree were evaluated by the
GTRGAMMA model of nucleotide substitution and the
PROTGAMMA model of amino substitution. MEGA7.0
[74] was used to visualize tree topologies. Terminology
and systematic classification follow Gao et al., (2016) [1]
and Lynn (2008) [43].

Constrained ML trees of Oxytrichinae species and
Urosoma species were generated based on HSP90-Nuc,
HSP90-Nucl2, HSP90-Amino, SSU-rDNA and SSU-
HSPNucl2 datasets by RAXML; the remaining taxa were
unspecified. Resulting constrained topologies and the
unconstrained ML topologies were calculated using
PAUP* v.4.0 [81] and were analyzed with AU test [82] in
CONSEL v0.1j [83].
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