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Abstract

Background: A frequent event in the evolution of prokaryotic genomes is homologous recombination, where a
foreign DNA stretch replaces a genomic region similar in sequence. Recombination can affect the relative position
of two genomes in a phylogenetic reconstruction in two different ways: (i) one genome can recombine with a
DNA stretch that is similar to the other genome, thereby reducing their pairwise sequence divergence; (ii) one
genome can recombine with a DNA stretch from an outgroup genome, increasing the pairwise divergence. While
several recombination-aware phylogenetic algorithms exist, many of these cannot account for both types of
recombination; some algorithms can, but do so inefficiently. Moreover, many of them reconstruct the ancestral
recombination graph (ARG) to help infer the genome tree, and require that a substantial portion of each genome
has not been affected by recombination, a sometimes unrealistic assumption.

Methods: Here, we propose a Coarse-Graining approach for Phylogenetic reconstruction (CGP), which is recombination-
aware but forgoes ARG reconstruction. It accounts for the tendency of a higher effective recombination rate between
genomes with a lower phylogenetic distance. It is applicable even if all genomic regions have experienced substantial
amounts of recombination, and can be used on both nucleotide and amino acid sequences. CGP considers the local density
of substitutions along pairwise genome alignments, fitting a model to the empirical distribution of substitution density to
infer the pairwise coalescent time. Given all pairwise coalescent times, CGP reconstructs an ultrametric tree representing
vertical inheritance.

Results: Based on simulations, we show that the proposed approach can reconstruct ultrametric trees with accurate
topology, branch lengths, and root positioning. Applied to a set of E. coli strains, the reconstructed trees are most consistent
with gene distributions when inferred from amino acid sequences, a data type that cannot be utilized by many alternative
approaches.

Conclusions: The CGP algorithm is more accurate than alternative recombination-aware methods for
ultrametric phylogenetic reconstructions.
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Background

The transfer of DNA stretches from one prokaryotic
genome to another—also called horizontal gene transfer
(HGT) or lateral gene transfer (LGT)—is a major driver
of prokaryotic evolution [1]. It is caused by a variety of
mechanisms, including transformation, transduction,
conjugation, and gene transfer agents [2, 3]. Many pro-
karyotic genomes encode defense systems against foreign
DNA, such as the restriction modification system [4]. A
foreign DNA stretch that enters the prokaryotic cell and
survives these host defenses may be incorporated into
the host genome. If the incoming DNA stretch is highly
similar to a stretch on the host genome, homologous re-
combination may occur, where the incoming DNA
stretch homologously recombines with the host stretch
and overwrites it [5, 6]. Alternatively, the incoming
stretch may be inserted directly into the host genome
through non-homologous recombination.

HGT allows the fast spread of genes in prokaryotic pan-
genomes, and facilitates rapid adaptation to environmental
changes. A point in case is the spread of antibiotic resist-
ance genes in pathogenic bacteria via HGT [7]. But re-
combination is also crucial for the long-term maintenance
of prokaryotic populations, as it helps to repair DNA dam-
aged by deleterious mutations, thereby avoiding the muta-
tional meltdown of Muller’s ratchet [8]. In that sense,
prokaryotic recombination may fulfill the same function
as does sex in eukaryotes. Computational modelling also
suggests that recombination may help prokaryotes to
purge selfish mobile genetic elements [9].

Recombination can severely affect phylogeny recon-
structions. Its effects on genome divergence are com-
plex. Depending on the circumstances, recombination
can speed up the divergence of a genome pair or slow it
down [6]; its effects may severely affect the accuracy of
estimated branch lengths of phylogenetic tree. For ex-
ample, (i) when a stretch of genome X is replaced by
DNA from genome Y, some of the single nucleotide
polymorphisms that previously differentiated X and Y
will be erased, shortening the apparent evolutionary dis-
tance between the two genomes. Conversely, (ii) when X
recombines with a DNA stretch of an outgroup genome
(a genome that diverged before the split of the X and Y
lineages), then it introduces further nucleotide polymor-
phisms into X, thereby increasing the apparent X-Y
distance.

Multilocus sequence typing (MLST) aims to extract
sequences of housekeeping genes from prokaryotic
genomes, which can then be utilized to resolve evolu-
tionary relationships [10]. However, MLST genes may
also experience frequent recombination, and phylogen-
etic reconstruction without accounting for recombin-
ation can compromise the resulting trees [11]. In fact,
the frequency with which recombination affects a gene
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can be of the same order of magnitude as the corre-
sponding mutation rate [5]. Thus, if two lineages recom-
bine with each other, application of conventional
phylogenetic algorithms without accounting for recom-
bination will generally lead to an underestimation of the
age of their common ancestor [12]. When there are
more than two strains, recombination affects the reliabil-
ity of inference of relative divergence times between the
strains and may hence compromise both tree topology
and branch length estimation.

There are several popular recombination-aware algo-
rithms, including ClonalFrameML (and its predecessor
ClonalFrame) [13, 14], the Bacter package in BEAST2
(which implements the ClonalOrigin model) [15, 16],
and Gubbins [17]; there are also non-phylogenetic algo-
rithms that detect recombination, such as BratNextGen
and fastGEAR [18, 19]. These recombination-aware
algorithms may reconstruct the ARG, which describes
the history of transfer and homologous recombination of
local genomic stretches across the genomes, to help infer
the tree of phylogenetic inheritance of the genomes.
While these algorithms can identify genomic stretches
with high numbers of substitutions due to recombin-
ation with distant strains and thus account for type (ii)
recombination effects, many do not take type (i) recom-
bination effects into account; Bacter can account for
type (i) effects, but is not computationally efficient for
long genome sequences. Some of these algorithms rely
on the assumption of low recombination rates, such that
a substantial part of a genome remains clonal and has
not been affected by recombination. This is unrealistic at
least for some bacteria: e.g., for a pair of E. coli strains
whose DNA sequences have diverged by more than
1.3%, the two share very few stretches larger than a few
kb that have not been affected by recombination [5].
Moreover, ARG may only reveal the latest recombin-
ation events on a genomic stretch, but its ability to re-
cover the earlier events on the same stretch is limited,
since each recombination erases the history of previous
recombinations; this uncertainty on earlier recombin-
ation events may introduce error in branch length
prediction.

In this paper, we propose a novel approach to phylo-
genetic reconstruction that neither assumes low recom-
bination rates nor relies on ARG reconstruction. Our
approach follows a coarse-graining model, which con-
siders the local density of substitutions on a sequence
alignment instead of site-specific substitutions [5]. The
model describes how different parameters, such as muta-
tion rate, recombination rate, or coalescent time be-
tween a pair of genomes, affect the shape of their
distribution of substitution density. It accounts for the
tendency of a higher level of effective recombinations
between genomes with a lower phylogenetic distance:
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while the model imposes a constant, distance-
independent rate of DNA fragments transferring from
one genome to another, it also imposes a success rate on
the subsequent homologous recombination that is expo-
nentially decaying with increasing sequence divergence
between the incoming DNA fragment and the host gen-
ome; thus, this effectively renders a declining trend of
homologous recombination for genomes with increasing
phylogenetic distance. In our algorithm, it fits the empir-
ical distribution of substitution density of genome pairs
to the model, which allows the inference of the matrix
of coalescent time between the genome pairs and there-
after their ultrametric phylogenetic tree. In short, it for-
goes the reconstruction of ARG and infers the branch
lengths—coalescent times—from the relative abundance
of genomic segments with different number of substitu-
tions, and is also applicable to both nucleotide sequences
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implementing this model is available at https://github.
com/TinPang/coarse-graining-phylogenetics.

Results

A coarse-graining approach to phylogenetic
reconstruction

Figure 1 gives a brief illustration on how the proposed
CGP algorithm fits the distribution of local single site
polymorphisms (SSPs) density of the genome pairs to
infer their phylogenetic tree, forgoing the reconstruction
of ARG. In short, CGP is based on a mathematical
model [5, 6] that quantitatively describes the evolution
of genomic sequence divergence; this model is applicable
to both nucleotide sequences and amino acid sequences,
and does not assume low recombination rate. Recombin-
ation can introduce DNA stretches characterized by a
high density of substitutions, and the model considers
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Fig. 1 lllustration of the procedure of the proposed CGP algorithm. a The algorithm takes n aligned sequences as input, which can be nucleotide
sequences or amino acid sequences; substitutions on the sequences are represented by coloured markers. b Each of the n(n-1)/2 genome pairs is
divided into equal-sized segments, and the pairwise substitutions on each segment is enumerated to obtain the distribution of local SSPs density
(denoted as g(x)). ¢ The algorithm aims to infer the distance matrix of the genome sequence pairs from the n(n-1)/2 SSP distributions. d In
particular, the algorithm fits the empirical SSP distributions with a model; the input of this model involves a matrix of n(n-1)/2 coalescent times
and other model parameters (mutation rate u, recombination rate p, average population divergence 6 and transfer efficiency &7¢). e In the fitting
process, the n(n-1)/2 coalescent times are constrained (matrix cells with the same colour have the same value), such that the matrix can be
bijectively mapped to a UPGMA tree. f the algorithm explores the model parameter space and tree space to obtain the best fit ultrametric tree
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A nucleotide sequence alignment (or a corresponding
concatenation of amino acid sequence alignments) is di-
vided into a chain of consecutive, non-overlapping seg-
ments, each with I sites; for a pair of genomes, we
enumerate the SSPs on each segment to obtain the SSP
distribution. CGP algorithm takes the SSP distribution
of every pair of considered genomes as input. The co-
alescent time of two genomes can be inferred by fitting
CGP's model to the empirical SSP distribution. The
ultrametric tree describing the vertical component of in-
heritance among n genomes can be inferred from the
coalescent times resulting from the fits to the n(n-1)/2
empirical SSP distributions, implemented by the score
function of Eq. (3) (Methods). We developed the CGP
algorithm, which employs Monte Carlo simulation to
sample the model+tree space, identifying the tree and
parameters that result in the highest score. As an ex-
ample, Fig. 2 compares the phylogenetic trees recon-
structed by CGP and RAxML, and Figure S3 for trees
reconstructed by more different algorithms.

Testing the CGP algorithm on simulated genomes
We performed Fisher-Wright simulations with recom-
bination to generate genome sequences, allowing us to
test different phylogenetic reconstruction algorithms. In
the simulation, each recombination-attempting DNA
stretch starts at a random site of a genome, with equal
chance to be either a micro (geometric distribution,
mean 100 bp) or a macro stretch (geometric distribution,
mean 1 kb). We used three sets of parameters that cor-
respond to prokaryotic populations with r/m =2, 40, 80
(r/m is the ratio between substitutions contributed by
mutations and by recombinations; these three settings
are denoted as low, intermediate, and high recombin-
ation levels, respectively), and prepared the test groups,
each with 4-10 genome sequences. For comparison, r/m
values observed in nature range from 0.02 to 63.6 [11].

The most recent common ancestor (MRCA) of a
group of random genomes in a simulated population has
an average age close to the age of the population root
node t,o0.. We would like to mimic the condition where
a single lineage diverges from the rest of the population
and forms its own subpopulation, so that the genomes
in its subpopulation continue exchanging DNA among
themselves and with the rest outside. Hence, when pick-
ing genomes in the population to form test groups, we
constrained the age of the MRCA of the genomes in a
test group’ ttest»group»rooti to be ttest»group»root<<troot (See
Supplementary Text in Additional File 5 for the details,
and Additional File 4 for the genome sequences in each
test-group).

We applied CGP, as well as the previously published
methods RaxML [20], ClonalFrameML [14], and Gub-
bins [17] to the sequences of each test group. The
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RAXxML and Gubbins trees are midpoint-rooted. Clonal-
FrameML requires an initial tree as input and we used
the mid-pointed-rooted RAXML tree. We used segment
size [, = 150 and [,/ = 100 in CGP. We compared each
reconstructed tree with the true tree, measuring their
unrooted symmetric distance (SD) [21], as well as their
rooted and unrooted branch score distance (BSD) [22]
to quantify the accuracy of the reconstructed phylogeny
(see Additional File 1 for the these values); the lower the
unrooted SD / unrooted BSD / rooted BSD, the more
accurate is topology / topology and branch lengths / top-
ology and branch lengths and root positioning, respect-
ively. We normalized the branch lengths of each tree by
its total branch length when calculating BSD.

CGP can predict the topology of a phylogeny of verti-
cal inheritance as accurately as the other algorithms. We
quantified the topological deviation between two trees
by unrooted SD, which is defined as the number of
phylogenetic clusters that are found in only one of the
two; hence, an unrooted SD value of 0 corresponds to
correct topological prediction. Figure 3 shows the histo-
gram of unrooted SD values of different algorithms; Clo-
nalFrameML is excluded as it uses the topology of
RAXML trees. The rate of correct prediction decreases
with increasing level of recombination for all algorithms;
at low, intermediate, and high recombination levels,
CGP’s correct prediction rate is 96, 94, and 84%, respect-
ively. In addition, the distributions of unrooted SD of
CGP are not significantly different from the distributions
of RAXML and Gubbins. Two-sided Wilcoxon signed-
rank tests (WSRT) at low, intermediate, and high recom-
bination levels resulted in p=0.25, 0.69, 0.54 between
CGP and RAXxML, and p = 0.25, 0.38, 0.92 between CGP
and Gubbins.

Branch length predictions are more accurate with
CGP than with alternative programs at a higher level of
recombination. Figure 4 plots the distributions of the
unrooted BSD of different algorithms and their z-scores;
the unrooted BSD of trees reconstructed by different
algorithms on the same test group sequences are pooled
together to calculate their z-scores to help data
visualization. The distribution of the unrooted BSD of
CGP is significantly lower than RAxML and Gubbins
(WSRT, p<10 ' at all recombination levels compared
to both RAXML and Gubbins). The unrooted BSD of
CGP is significantly lower than ClonalFrameML except
at low recombination level (WSRT, p =0.76, 2.2 x 10”7,
10~ 7 at low, intermediate, and high recombination levels,
respectively).

CGP can perform accurate root positioning. Figure 5
plots the distribution of the rooted BSD and their z-
scores; the rooted BSD of trees reconstructed by differ-
ent algorithms on the same test group sequences are

pooled together to calculate their z-scores. The
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Fig. 2 Phylogenetic trees of 10 E. coli / Shigella strains reconstructed by CGP and RAXML from their amino acid sequences of their core genes.
They constitute one of the 100 test-groups in the GLOOME-test. See Supplementary Text in Additional File 5 for details of the GLOOME-test, and
Figure S3 for the trees reconstructed by other algorithms

distribution of the rooted BSD of CGP is significantly — Testing the CGP algorithm on real E. coli genomes

lower than the other algorithms (WSRT, p<2x 10" " at ~ We tested CGP, RAXML, ClonalFrameML, and Gubbins
all recombination levels for CGP compared with the using E. coli and Shigella genome sequences (see Supple-
other three algorithms). mentary Table S1 in Additional File 5 for their names);
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and Gubbins from genome sequences derived from Fisher-Wright simulations with low, intermediate, and high recombination levels. Notice that
an unrooted SD value of 0 corresponds to topological consistency between the true tree and the reconstructed tree, which is 96, 94, and 84% at

we refer to them as E. coli, as these two species have
intertwined phylogenies. We prepared test groups, each
with 10 random strains, where each strain is represented
by a nucleotide sequence and an amino acid sequence
made from its concatenated core genes (see Add-
itional File 2 for the strains in each test group, and also
the 1636 orthologous gene families of core genes; see
Additional File 4 for their sequences). We applied CGP,
RAxML, ClonalFrameML (with the topology from
RAxXML trees), and Gubbins on the nucleotide se-
quences, and CGP and RAxML on amino acid se-
quences; the RAXML and Gubbins trees are midpoint-
rooted. CGP uses segment length /=150 and [,/ =
100 for nucleotide sequences, and I, = 50, "7 = 50 for
amino acid sequences.

We analysed the time for reconstructing each tree to
appraise the computational cost of different algorithms
(see Supplementary Text in Additional File 5). We found
that our CGP is the slowest among the algorithms for
reconstructing nucleotide sequences, and also among
those for amino acid sequences (Figure S4), as our script
is developed as a proof-of-concept and has not been op-
timized. In general, the run time of our algorithm is
slower for nucleotide sequences than amino acid se-
quences, a consequent of our choice of parameters.
Since we used a segment size 150 for nucleotide se-
quences and 50 for amino acid sequences, it involves the
operations of the larger 150 x 150 matrices for nucleo-
tide sequences, which is computationally more demand-
ing compared with the smaller 50 x 50 matrices for

amino acid sequences. Further, while the divergence be-
tween amino acid sequences is lower than nucleotide se-
quences, we assumed, for simplicity, the same mutation
rate for both types of sequences; hence, it takes more
time steps for the algorithm to explore the solution
space when using nucleotide sequences, and thus it has
a higher computational cost.

To assess the accuracy of the phylogenetic trees recon-
structed by the different algorithms, we compared the
reconstructed trees with the phylogenetic signal inferred
from the distribution of orthologous gene families in dif-
ferent genomes. We applied the GLOOME algorithm
[23], which considers the interior nodes of the tree as
ancestral strains and reconstructs their gene distribution;
it takes a tree and the presence-and-absence of genes
across the extant strains as input, and performs a recon-
struction of presence-and-absence of genes in the ances-
tral strains based on the GLOOME posterior likelihood
(GPL). We used GPL as a score to quantify the accuracy
of the tree fed into GLOOME; the more consistent the
phylogenetic signal from the gene distributions with a
given tree, the higher the GPL (see Additional File 2 for
the GPL values of the reconstructed trees). Figure 6
plots the distribution of the GPLs and the corresponding
z-scores; the GPLs of trees of the same test groups re-
constructed by different methods are pooled together to
calculate the z-scores. Trees reconstructed from amino
acid sequences have a higher GPL than trees calculated
from nucleotide sequences; moreover, CGP trees based
on amino acid sequences are more accurate than trees
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Clon

calculated using RAXML (p <4 x 10”'* when comparing
CGP on amino acid sequences with any other algorithm;
other recombination-aware algorithms are not applicable
to amino acid sequences). Considering only trees recon-
structed from nucleotide sequences, the CGP trees gener-
ally have higher GPL than RAxML, ClonalFrameML, and
Gubbins trees (WSRT, p=52x10"% 0.049, 1.4 x 10" %,
respectively).

Alternatively, we also used the consistency of a phylo-
genetic algorithm as a proxy indicator of its accuracy.
Within a test-group that comprises 10 real genomes, we
randomly assigned their core genes to either set A or set
B, making a super-gene sequence A and a super-gene se-
quence B for each genome; tree A and tree B of the
group are then reconstructed from the two sets of
super-gene sequences, using the same phylogenetic algo-
rithm. We then calculated the unrooted SD / unrooted
BSD / rooted BSD between the tree pair of 100 test-

groups to quantify the (in)consistency of different algo-
rithms (see Additional File 3 for these scores; see Sup-
plementary Text in Additional File 5 for details); these
tree-distance measures are pooled together to calculate
their z-score (Figure S5). The unrooted SD between tree
pairs reconstructed by CGP applied to nucleotide se-
quences is lower than RAxML and Gubbins applied to
nucleotide sequences, and also RAxML applied to amino
acid sequences (WSRT, p=0.0051, 0.0012, 1.2 x 10>,
respectively), but not CGP applied to amino acid se-
quences (WSRT, p=0.12); CGP applied to amino acid
sequences is lower than Gubbins applied to nucleotide
sequences and RAxML applied to amino acid sequences
(WSRT, p=0.0343, 0.0036, respectively), but not
RAXxML applied to nucleotide sequences (WSRT, p =
0.2273); hence, CGP applied to nucleotide sequences,
ignoring the branch length of the trees, has the highest
topological consistency. The unrooted BSD for CGP
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applied to nucleotide sequences is higher than RAXML,
ClonalFrameML, and Gubbins applied to nucleotide se-
quences (WSRT, p=0.015, 0.00014, 0.0032, respect-
ively), as high as CGP applied to amino acid sequences
(WSRT, p=0.36), and lower than RAxML applied to
amino acid sequences (WSRT, p =0.0183); CGP applied
to amino acid sequences is higher than RAxML, Clonal-
FrameML, and Gubbins applied to nucleotide sequences
(WSRT, p=0.0015, 8.6 x 10", 3.5 x 10" >, respectively),
and lower than RAxML applied to amino acid sequences
(WSRT, p=3.0 x 10" ®); thus, CGP at best does not out-
perform other algorithms, except for RAxML applied to
amino acid sequences, in terms of topological and
branch length consistency. The rooted BSD for CGP ap-
plied to nucleotide sequences is as high as RAxML, Clo-
nalFrameML, and Gubbins applied to nucleotide
sequences, and also CGP applied to amino acid

sequences (WSRT, p=0.63, 0.17, 0.24, 0.70, respect-
ively), but lower than RAxML applied to amino acid se-
quences (WSRT, p = 1.3 x 10™°); moreover, CGP applied
to amino acid sequences is higher than ClonalFrameML
and Gubbins (WRST, p =0.019, 0.0011, respectively), as
high as RAxML applied to nucleotide sequences (WSRT,
p =0.12), and lower than RAxML applied to amino acid
sequences (WSRT, p = 1.9 x 10~ '%); therefore, CGP is no
better than other algorithms, except for RAXML applied
to amino acid sequences, in terms of topological, branch
length and root-positioning consistency. Some of the
findings in this analysis contradict the observations in
previous analyses. For example, trees reconstructed from
amino acid sequences tend to have a higher GPL—a
measure of accuracy—than those reconstructed from
nucleotide sequences, whereas here we observed that
tree pairs reconstructed from amino acid sequences tend
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to have a lower consistency (higher unrooted SD /
unrooted BSD / rooted BSD) than those reconstructed
from nucleotide sequences. When comparing the recon-
structed tree with the real tree on simulated sequences,
CGP has a lower unrooted and rooted BSD, but not a
lower unrooted SD, than other algorithms; however, the
opposite trend is observed in this analysis. Therefore, we
concluded that this consistency test does not reflect the
accuracy of algorithms.

Furthermore, we investigated how the UPGMA as-
sumption perturbs coalescent time inference. For a
phylogenetic reconstruction performed by CGP, we ob-
tained its optimal model parameters y, p, 6, and d7z we
simulated the theoretical model based on these optimal
parameters, and fitted the model to the empirical pair-
wise SSP distributions to directly infer the coalescent
time, fqirecy Of different sequence pairs. Given the co-
alescent time inferred from the optimal tree recon-
structed by CGP, fy.., we calculated the deviation
between the two coalescent times, A, defined as
A= (td[rect - ttree)/(tdirect + ttree)’ to quantifY the perturb'
ation caused by UPGMA assumption (see Supplemen-
tary Text in Additional File 5 for details). The
distribution of A for phylogenetic reconstructions based
on nucleotide sequences, and also on amino acid se-
quences, are mostly confined between —0.1 and 0.1
(Figure S6), roughly indicating a less-than-10% perturb-
ation on the inferred branch length.

Discussion

We introduced the CGP algorithm, which infers phylo-
genetic trees based on the estimated pairwise coalescent
times of genomes. We conducted extensive analyses to
compare the accuracy of the CGP algorithm with other
state-of-the-art algorithms to demonstrate its ability to
reliably predict the topology, branch lengths, and root
positioning of phylogenetic trees. CGP's model does not
rely on the assumption of low recombination rates; this
allows the model to predict branch lengths accurately
even if the vast majority of the considered genome seg-
ments have experienced recombination.

Analyses performed on the real E. coli genome se-
quences showed that trees reconstructed from core gen-
ome amino acid sequences are more accurate, i.e., more
consistent with the signal inferred from the distribution
of genes in the extant genomes, than trees calculated
from nucleotide sequences. Amino acid sequences of
core genes tend to evolve more slowly than the corre-
sponding DNA sequences, as these genes show dN/dS
values < 1 [24], and accordingly, the divergence of a pair
of amino acid sequences is lower than that of their nu-
cleotide sequences counterparts (see Additional File 4
for nucleotide sequence and amino acid sequence diver-
gence between E. coli genome pairs). Thus, amino acid
sequences may be more “clonal” than nucleotide se-
quences and thus may provide more accurate phylogen-
etic signals.
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The major source of error of the CGP algorithm
comes from the mismatch between the genomic seg-
ments as basic unit of the algorithm and the genomic
stretches affected by homologous recombination, as the
algorithm does not try to match the boundary of the
segments to the boundary of the actual recombination
stretches. This mismatch gives rise to segments that lie
on the boundary and cover multiple recombination
stretches, which subsequently reduces the accuracy of
the predictions of the algorithm. Hence, a possible direc-
tion for further development is to find out the criteria to
fine tune the segment size /; so as to minimize these
boundary-overlapping segments; alternatively, we can
improve the theoretical model so that the segments do
not have to be equal-sized and we can match the seg-
ments to the recombination stretches.

The computational demand of the CGP algorithm is in-
dependent of sequence length, as CGP considers only SSP
distributions that are represented by a vector of 1 + [,/
elements in the computer code. Calculation of the CGP
score (Eq. (3)) involves multiplication of (1 + 1oy (1 +
1) matrices; thus, the computational time scales as
O((1,“*°7)*), where k <3 depends on the algorithm that car-
ries out the matrix operations. When reconstructing a tree
of n genomes, the score calculation involves the summa-
tion over n(n-1)/2 pairs, making it scale as O(1%). The seg-
ment size [; affects the efficiency and accuracy of the
algorithm. While a smaller /s leads to lower accuracy, in-
creasing /s leads to higher computational demand; a large
I, combined with a small ,“ can also reduce the accur-
acy. Hence, one needs to set /; and [ cutolf carefully to bal-
ance the need for speed and accuracy.

The current implementation of the CGP algorithm is
very simple and basic; it should be considered a proof of
concept. While it makes use of Monte Carlo simulation
to sample the tree+parameter space, a hill-climbing
method may be more efficient. Other possible improve-
ments involve better local search moves in the ultra-
metric tree space; one might even drop the stringent
ultrametricity constraint, and replace it with a more flex-
ible matrix-tree mapping method that allows a more effi-
cient search in the tree space. The mutation matrix in
the current model can be improved to include back mu-
tations and a more complex mutation model. We leave
these possible improvements to future studies.

Conclusions

Homologous recombination allows a foreign DNA seg-
ment to overwrite a synonymous segment of a bacterial
genome, erasing the history of previous nucleotide sub-
stitutions and posing a great challenge to the reconstruc-
tion of vertical inheritance of the bacterial genomes.
Here we propose the CGP algorithm, which is
recombination-aware and applicable to both nucleotide
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and amino acid sequences, to reconstruct ultrametric
phylogenetic trees. Unlike most phylogenetic algorithms,
which consider individual SSPs on genome sequences,
CGP implements an innovative approach that considers
the density of SSPs across different local regions of the
sequences. By fitting the empirical distributions of SSP
density to a theoretical model, CGP infers the coalescent
time of different pairs of genome sequences, and thus
their ultrametric tree. Analyses in this study compare
the CGP algorithm with alternative recombination-
aware phylogenetic algorithms, and show that for ge-
nomes with frequent recombination CGP can more
accurately reconstruct their phylogenetic trees, not least
branch length prediction and root positioning, than al-
ternative algorithms.

Methods

Overview of the CGP algorithm that reconstructs
ultrametric phylogenetic tree

The proposed CGP algorithm takes » aligned genome
sequences as input (Fig. 1a), which can be either nucleo-
tide sequences or amino acid sequences. For each pair of
sequences, it divides them into L, equal-sized seg-
ments, each segment has [ sites, and enumerates the
SSPs—sites with substitution—on each segment to ob-
tain the distribution of local SSP density of the genome
sequence pair (Fig. 1b). This algorithm considers seg-
ments instead of nucleotide / amino-acid sites as the
basic unit of a genome, because the local SSP density
can be defined conveniently on segments; an SSP can be
a single nucleotide polymorphism (SNP) on a nucleotide
sequence, or a single amino acid polymorphism (SAP)
on an amino acid sequence. It then fits the empirical
SSP distribution of all pairs to a model to infer the
matrix of coalescent time of the genome pairs (Fig. 1d).
While searching for the best fit model parameters and
pairwise coalescent times, it constrains these n(n-1)/2
coalescent times (Fig. le), so that the matrix can be
bijectively mapped to a UPGMA tree that describes the
phylogenetic inheritance of the » genome sequences
(Fig. 1).

Model describing the evolution of the SSP distribution of
a pair of genomes in a fisher-Wright population

CGP's model, which is used to fit the empirical distribu-
tion of local SSP (Fig. 1d), is based on a Fisher-Wright
haploid population with non-overlapping generations,
constant population size, and homologous recombin-
ation [25, 26]. In this framework, a node in one gener-
ation inherits the genome of a random node in the
previous generation, followed by mutation and homolo-
gous recombination. A genome sequence is divided into
Ly, consecutive and non-overlapping segments, where
every segment has length [ (i.e., consists of [ sites). The
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rate of mutation is y per site per generation. The rate
for a site to be covered by a foreign DNA stretch
attempting to recombine with the host genome is p per
generation; the rate for a segment to be covered by a
recombination-attempting DNA stretch is also approxi-
mately p, assuming that the segment is much shorter
than the DNA stretch. Here, p = p;,;.L, where p;,; is the
probability for a recombination-attempting foreign DNA
stretch to start at any given site, and L is the average
length of the foreign DNA stretch. When a recombin-
ation attempt happens on a segment, it either succeeds
and the foreign DNA replaces the host DNA at the seg-
ment, or it fails. The success rate of an attempt is ap-
proximately exp.(-8/dtg), where J§ is the divergence
between the incoming DNA and the host DNA, and
Ote is the transfer efficiency, a constant that governs
the success rate [5]. The average site divergence in
the population is denoted as 6, with 8=2uN, and
population size N..

CGP’s model [5, 6] considers the evolution of an SSP
distribution between a pair of genomes, X and Y. As the
alignment of genome X and Y is divided into L, consecu-
tive and non-overlapping segments with [ sites, let flx|f)
be the distribution of segment divergence, where x=0, 1,
..., Is represents the number of SSPs on a segment of the
XY alignment, t> 0 is the (continuous) XY coalescent
time, and flx|¢) is normalized to unity (summing over x).
To save computational resources, we assume an upper
bound [, < [, to x. At t =0, the MRCA of XY splits into
two lineages; initially, the two have identical genomes, and
thus flx|0) = 8,0 (where 8,0 is the Kronecker delta, ie.,
flx|0) is non-zero only at x = 0). At £ > 0, mutations and re-
combinations occur, and the evolution of flx|t) is de-
scribed by the following equation:

cuto)

YO a1 My 1 ) £
+ ZPZZ:IT (P(xly, 0,01, L)-1(x]y))f (¥]t)
1)

The first term of Eq. (1) accounts for mutations on a
segment—M(x|y) models a mutation event, where a seg-
ment in the pair XY with y SSPs increases to x =y + 1
SSPs during a mutation (ie, M(x|y) =0 for x = y+1);
I(x|y) is the identity matrix. For simplicity, we ignore
back mutations.

The second term accounts for recombination—P(x|y,6,
drels) models a recombination event (see Eq. (S4) of
Dixit et al. [5] or Eq. (3) of Dixit et al. [6] for a detailed
derivation). Since a segment can recombine with its
counterpart on another genome, the model assumes that
each segment of a genome, along with its counterparts
in different genomes of the population, have their own
phylogeny that is independent of the genomes’
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phylogeny, and the segment population structure is ap-
proximated by the coalescent model. For an attempted
recombination between Y and an external donor D, we
can use the coalescent model to calculate the probability
distribution for the segment divergence § between D
and X, and obtain x from x =/,5. As mutation and re-
combination can equally occur on either X or Y, there is
a factor 2 attached to both terms. See Supplementary
Text in Additional File 5 for the exact form of P(x|y,6,
O07el). We solved Eq. (1) with boundary condition
flx|0) =8, to obtain the theoretical SSP distribution
flx|?) at different coalescent times ¢.

We fit the theoretical distribution predicted from
CGP's model to an empirical SSP distribution to infer
the coalescent time of its genome pair. Let us consider
an alignment for a genome pair XY that is divided into
L., segments, with empirical SSP distribution gxy(x) fol-
lowing the normalization condition:

l cutoff
s

Zx:(, Gxy (%) = Leeg

Let us denote the theoretical distribution as
Jup6s7e(x|t), which is normalized to unity. The probabil-
ity to observe the empirical distribution gxy(x) given the
theoretical distribution f, , g s7£(x|t) is

Hx |:f”$p19a6TE (x|t)

If we take the logarithm of this expression, it becomes
the (negative) cross entropy between g(x) and
Juposte(x|t) [27, 28]. The higher their similarity, the
higher is this negative cross entropy; it attains its max-
imum when f, , g s7£(%|£) is equal to g(x).

Suppose that we have n genomes (X, i = 1,..,n), where
their phylogeny is described by an ultrametric tree T;
the n(n-1)/2 pairwise SSP distributions have evolved ac-
cording to the model with parameters y, p, 6, d7¢. Let t1
(X4, Xp) be the coalescent time of X, and X, in the tree
T. We use a score function, S(X1,Xs, ...X, |t p, 0, O1Es
T), which is defined as the logarithm of the probability
to observe the n(n-1)/2 empirical SSP distributions given
the model and the tree, to quantify the model fit to the
empirical SSP distributions. This score is the summation
of the n(n-1)/2 negative mutual entropy terms:

}gxy(x) @)

S(X1, .. Xlpt, p, 0,878, T)

N Z“” (Xa,Xs) pairs lOg{Hx {f 10,6875 (x|tT(Xa,Xh))]gMb (x)}
(3)

Since the n(n-1)/2 SSP distributions are not com-
pletely independent of each other, Eq. (3) is not exactly
a probability and so we call it a score. We developed an
algorithm that samples the tree+model space and
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searches for the configuration with the maximum score
using Monte Carlo simulation with annealing and Me-
tropolis acceptance (See Supplementary Text in Add-
itional File 5 for details).

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512862-020-01616-5.

Additional file 1. Analyses of the simulated genomes: the symmetric
distance (SD) and branch score distance (BSD) between the
reconstructed trees and the true trees.

Additional file 2 Analyses of the real genomes in the GLOOME-test: b-
number of the E. coli core genes used to make the 'super-gene’ se-
quences, strains in each test-group, and also the GLOOME posterior likeli-
hood (GPL) of the reconstructed trees.

Additional file 3. Analyses of the real genomes in the tree-pair-test: the
unrooted symmetric distance, the unrooted branch score distance, and
the rooted branch score distance between the pair of reconstructed trees
in each test group.

Additional file 4 Zipped folder containing the sequences and trees in
the analyses: sequences of the simulated genomes in different test-
groups, their true trees and also the phylogenetic trees reconstructed by
different algorithms; sequences of the E. coli genomes, their trees recon-
structed by different algorithms for the GLOOME-test, and also their time
measurements; sequences of the E. coli genomes, the list of strains and
genes in each test group, and their trees reconstructed by different algo-
rithms for the tree-pair-test; genes to orthologous gene families map pro-
vided by ProteinORTHO.

Additional file 5. Supplementary PDF: Supplementary Text,

Supplementary Figures and Supplementary Tables.

Abbreviations

ARG: Ancestral Recombination Graph; BEAST: Bayesian Evolutionary Analysis
by Sampling Trees; BSD: Branch Score Distance; CGP: Coarse-Graining
approach for Phylogenetic reconstruction; DNA: DeoxyriboNucleic Acid;
GLOOME: Gain LOss Mapping Engine; GPL: GLOOME Posterior Likelihood;
HGT: Horizontal Gene Transfer; LGT: Lateral Gene Transfer; MAFFT: Multiple
Alignment using Fast Fourier Transform; MLST: MultiLocus Sequence Typing;
MRCA: Most Recent Common Ancestor; RAxML: Randomized Axelerated
Maximum Likelihood; SAP: Single Amino-acid Polymorphism; SD: Symmetric
Distance; SNP: Single Nucleotide Polymorphism; SSP: Single Site
Polymorphism; UPGMA: Unweighted Pair Group Method with Arithmetic
mean; WRST: Wilcoxon Rank Sum Test

Acknowledgements
We thank Martin Lercher and Arndt von Haeseler for helpful comments and
advice.

Consent to publish
Not applicable.

Author’s contributions
The author(s) read and approved the final manuscript.

Funding

This work was supported by the German Research Foundation (CRC 680 and
CRC 1310), and Heinrich Heine University Disseldorf. The funding bodies
played no role in the design of the study and collection, analysis, and
interpretation of data and in writing the manuscript.

Availability of data and materials

All data generated or analysed during this study are included in this
published article, its additional files, and GitHub repository (https://github.
com/TinPang/coarse-graining-phylogenetics).

Page 12 of 13

Ethics approval and consent to participate
Not applicable.

Competing interests
The author declares that he has no competing interests.

Received: 24 November 2019 Accepted: 20 April 2020
Published online: 07 May 2020

References

1. P&l C Papp B, Lercher MJ. Adaptive evolution of bacterial metabolic
networks by horizontal gene transfer. Nat Genet. 2005;37:1372-5.

2. Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature
of bacterial innovation. Nature. 2000,405:299-304.

3. Lang AS, Zhaxybayeva O, Beatty JT. Gene transfer agents: phage-like
elements of genetic exchange. Nat Rev Microbiol. 2012;10:472-82.

4. Wilson GG, Murray NE. Restriction and modification systems. Annu Rev
Genet. 1991,25:585-627.

5. Dixit PD, Pang TY, Studier FW, Maslov S. Recombinant transfer in the basic
genome of Escherichia coli. Proc Natl Acad Sci U S A. 2015;112:9070-5.

6. Dixit PD, Pang TY, Maslov S. Recombination-driven genome evolution and
stability of bacterial species. bioRxiv. 2016:067942.

7. Huddleston JR. Horizontal gene transfer in the human gastrointestinal tract:
potential spread of antibiotic resistance genes. Infect Drug Resist. 2014;7:
167-76.

8. Takeuchi N, Kaneko K, Koonin E. Horizontal Gene Transfer Can Rescue
Prokaryotes from Muller's Ratchet: Benefit of DNA from Dead Cells and
Population Subdivision. G3 GenesGenomesGenetics. 2014;4:325-39.

9. Croucher NJ, Mostowy R, Wymant C, Turner P, Bentley SD, Fraser C.
Horizontal DNA transfer mechanisms of Bacteria as weapons of
Intragenomic conflict. PLoS Biol. 2016;14:21002394.

10.  Spratt BG. Multilocus sequence typing: molecular typing of bacterial
pathogens in an era of rapid DNA sequencing and the internet. Curr Opin
Microbiol. 1999;2:312-6.

11. Vos M, Didelot X. A comparison of homologous recombination rates in
bacteria and archaea. ISME J. 2009;3:199-208.

12. Schierup MH, Hein J. Consequences of recombination on traditional
phylogenetic analysis. Genetics. 2000;156:879-91.

13. Didelot X, Falush D. Inference of bacterial microevolution using Multilocus
sequence data. Genetics. 2007;175:1251-66.

14.  Didelot X, Wilson DJ. ClonalFrameML: efficient inference of recombination
in whole bacterial genomes. PLoS Comput Biol. 2015;11:21004041.

15.  Didelot X, Lawson D, Darling A, Falush D. Inference of homologous
recombination in Bacteria using whole-genome sequences. Genetics. 2010;
186:1435-49.

16. Vaughan TG, Welch D, Drummond AJ, Biggs PJ, George T, French NP.
Inferring ancestral recombination graphs from bacterial genomic data.
Genetics. 2017;205:857-70.

17. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA, Bentley SD, et al.
Rapid phylogenetic analysis of large samples of recombinant bacterial
whole genome sequences using Gubbins. Nucleic Acids Res. 2015;43:e15.

18. Marttinen P, Hanage WP, Croucher NJ, Connor TR, Harris SR, Bentley SD,
et al. Detection of recombination events in bacterial genomes from large
population samples. Nucleic Acids Res. 2012,40:e6.

19. Mostowy R, Croucher NJ, Andam CP, Corander J, Hanage WP, Marttinen P.
Efficient inference of recent and ancestral recombination within bacterial
populations. bioRxiv. 2017:059642.

20. Stamatakis A. RAXML Version 8: A tool for Phylogenetic Analysis and Post-
Analysis of Large Phylogenies. Bioinformatics. 2014:btu033.

21, Robinson DF, Foulds LR. Comparison of phylogenetic trees. Math Biosci.
1981,53:131-47.

22. Kuhner MK, Felsenstein J. A simulation comparison of phylogeny algorithms
under equal and unequal evolutionary rates. Mol Biol Evol. 1994;11:459-68.

23. Cohen O, Ashkenazy H, Belinky F, Huchon D, Pupko T. GLOOME: gain loss
mapping engine. Bioinformatics. 2010,26:2914-5.

24. Lapierre M, Blin C, Lambert A, Achaz G, Rocha EPC. The impact of selection,
gene conversion, and biased sampling on the assessment of microbial
demography. Mol Biol Evol. 2016;33:1711-25.

25.  Kingman JFC. Origins of the coalescent: 1974-1982. Genetics. 2000;156:
1461-3.


https://doi.org/10.1186/s12862-020-01616-5
https://doi.org/10.1186/s12862-020-01616-5
https://github.com/TinPang/coarse-graining-phylogenetics
https://github.com/TinPang/coarse-graining-phylogenetics

Pang BMC Evolutionary Biology

26.

27.

28.

(2020) 20:52

Fraser C, Hanage WP, Spratt BG. Recombination and the nature of bacterial
speciation. Science. 2007,315:476-80.

Rubinstein RY, Kroese DP. The Cross-Entropy Method: A Unified Approach
to Combinatorial Optimization, Monte-Carlo Simulation and Machine
Learning. Springer Science & Business Media; 2004.

de Boer P-T, Kroese DP, Mannor S, Rubinstein RY. A tutorial on the cross-
entropy method. Ann Oper Res. 2005;134:19-67.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Page 13 of 13

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions




	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Results
	A coarse-graining approach to phylogenetic reconstruction
	Testing the CGP algorithm on simulated genomes
	Testing the CGP algorithm on real E. coli genomes

	Discussion
	Conclusions
	Methods
	Overview of the CGP algorithm that reconstructs ultrametric phylogenetic tree
	Model describing the evolution of the SSP distribution of a pair of genomes in a fisher-Wright population

	Supplementary information
	Abbreviations
	Acknowledgements
	Consent to publish
	Author’s contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Competing interests
	References
	Publisher’s Note

